Matrices et applications linéaires - Exercices

Exercice 1. Pour chaque matrice, déterminer l'application linéaire canoniquement associée puis son noyau, son rang et son image.

$$1. A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad 2. B = \begin{pmatrix} -1 & 1 & 1 \\ 3 & -2 & -4 \\ -2 & 1 & 3 \end{pmatrix} \qquad 3. C = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad 4. D = \begin{pmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Exercice 2. Pour chaque application linéaire, déterminer sa matrice dans les bases canoniques, puis dire si l'application est injective, surjective, bijective.

1.
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x, y) = (2x + 3y, 3x - 5y)$;
2. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (2x - 3y, x + y)$;
3. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x, y) = (2x - y, x + y, x - y)$;
4. $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x, y, z) = (x + y, y - z)$;
5. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x, y, z) = (x, x - z, x + z)$.

Exercice 3. Soit $A = \begin{pmatrix} 2 & 1 & 2 \\ -2 & 4 & 2 \\ 2 & -1 & 2 \end{pmatrix}$ et $f: \mathbb{R}^3 \to \mathbb{R}^3$ son application linéaire canoniquement associée.

- 1. Déterminer l'ensemble des vecteurs $u \in \mathbb{R}^3$ tels que f(u) = 4u.
- 2. Déterminer l'ensemble des vecteurs $u \in \mathbb{R}^3$ tels que f(u) = 2u.
- 3. Soit $e_2 \in \mathbb{R}^3$ un vecteur non nul tel que $f(e_2) = 2e_2$. Déterminer un vecteur $e_3 \in \mathbb{R}^3$ tel que $f(e_3) = 2e_3 + e_2$.
- 4. Justifier qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Exercice 4. Pour tout $m \in \mathbb{R}$, on définit l'application linéaire $f_m(x, y, z) = (mx + y + (2m - 1)z, x + (1 - m)y, x - y + (2 - m)z)$.

- 1. Déterminer la matrice A canoniquement associée à f_m .
- 2. Pour quelles valeurs de m la rang de A vaut-il 3? Que peut-on dire de f_m dans ce cas?
- 3. Déterminer le noyau de A en fonction de m.

Exercice 5. 1. Soit $\varphi : P \in \mathbb{C}_3[X] \to P' \in \mathbb{C}_3[X]$. Déterminer la matrice de φ dans les bases canoniques.

- 2. Soit $\psi: P \in \mathbb{C}_n[X] \mapsto \int_0^1 P(x) dx \in \mathbb{C}$. Déterminer la matrice de ψ dans les bases canoniques.
- 3. Soit $P_1 = 3X + 2$ et $P_2 = 2X + 3$. Montrer que (P_1, P_2) est une base de $\mathbb{R}_1[X]$ et donner la matrice de $f \in \mathcal{L}(\mathbb{R}_1[X])$ définie par f(P) = P' dans cette base.

Exercice 6. Pour tout $P \in \mathbb{R}_2[X]$, on pose $\varphi(P) = (X^2 - X + 1)P' - (2X - 1)P + X^2P(1)$.

- 1. Montrer que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_2[X]$.
- 3. Est-ce que φ est un automorphisme?

Exercice 7. On considère l'application $f: \mathbb{R}_n[X] \to \mathbb{R}_m[X]$ dont la matrice dans les bases canoniques est $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

- 1. Oue valent m et n?
- 2. Soit $P \in \mathbb{R}_n[X]$. Déterminer l'expression de f(P).

Exercice 8. Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $\varphi \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ définie par $\varphi(M) = AM - MA$.

Déterminer la matrice de φ dans la base canonique $(E_{11}, E_{12}, E_{21}, E_{22})$ de $\mathcal{M}_2(\mathbb{R})$.

Exercice 9. Soit $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $d: f \in E \mapsto f' \in E$. On note $F = \text{Vect}(\sin, \cos, \cosh, \sinh)$.

- 1. (a) Donner la dimension de F et montrer que F est stable par d. On note $\varphi \in \mathcal{L}(F)$ l'endomorphisme induit par d
 - (b) Écrire la matrice M de φ dans la base $\mathscr{B} = (\sin, \cos, \cosh, \sinh)$. Calculer M^n pour tout $n \in \mathbb{N}$.
 - (c) Montrer que φ est un automorphisme et écrire M^{-1} .
- 2. Déterminer $\ker(\varphi \mathrm{id}_F)$ et $\mathrm{Im}(\varphi \mathrm{id}_F)$ en utilisant M. En déduire les solutions dans F de $y' y = \mathrm{e}^{-t} + \sin(t)$.

Exercice 10. 1. Soit $\varphi \in \mathcal{L}(\mathbb{R}_3[X])$ définit par $\varphi(P) = P(X+1)$. Donner la matrice A de φ dans la base canonique de $\mathbb{R}_3[X]$ puis calculer A^{-1} .

2. Soit $\psi \in \mathcal{L}(\mathbb{R}_6[X])$ définit par $\psi(P) = P(1-X)$. Donner la matrice B de ψ dans la base canonique de $\mathbb{R}_6[X]$ puis calculer B^{-1} .

Exercice 11. 1. Montrer que $P = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice dans la base canonique de \mathbb{R}^3 d'un projecteur dont on donnera les éléments caractéristiques.

2. Montrer que $S = \begin{pmatrix} -1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice dans la base canonique de \mathbb{R}^3 d'une symétrie dont on donnera les éléments caractéristiques.

Exercice 12. Soit *E* de dimension *n* et $f \in \mathcal{L}(E)$ telle que $f^n = 0$ et $f^{n-1} \neq 0$.

- 1. Justifier qu'il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
- 2. On se donne un tel x. Montrer que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est une base de E.
- 3. Déterminer la matrice de f dans la base \mathcal{B} .

Exercice 13. Soient u = (0, 1, 1), v = (2, 0, -1) et w = (2, 1, 1) trois vecteurs de \mathbb{R}^3 .

- 1. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Soit z = (4, -1, 1). Déterminer les coordonnées de z dans la base (u, v, w).
- 3. Soit $x \in \mathbb{R}^3$ dont les coordonnées dans la base (u, v, w) sont (-1, -8, 4). Déterminer les coordonnées de x dans la base canonique de \mathbb{R}^3 .

Exercice 14. Soit $A = \begin{pmatrix} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. On pose $f_1 = (1, 1, 1)$, $f_2 = (1, -1, 0)$ et $f_3 = (1, 0, 1)$.

- 1. Montrer que $\mathscr{B} = (f_1, f_2, f_3)$ est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de f dans la base \mathscr{B} .
- 3. En déduire A^n .

Exercice 15. Soit $a \in \mathbb{R}$. Soit φ l'endomorphisme de $\mathbb{R}_3[X]$ défini par $\varphi(P) = P + (X - a)P' + (X - a)^2P''$. Montrer qu'il existe

une base \mathscr{B} de $\mathbb{R}_3[X]$ telle que $\mathrm{Mat}_{\mathscr{B}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 10 \end{pmatrix}$.

Exercice 16. 1. Soit E un \mathbb{K} -ev de dimension $n \in \mathbb{N}^*$ et p un projecteur de E. On pose $r = \operatorname{rg}(p)$. Montrer qu'il existe une base \mathscr{B} de E telle que $\operatorname{Mat}_{\mathscr{B}}(p) = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix}$.

Soit $s \in \mathcal{L}(\mathbb{R}^3)$ la symétrie par rapport au plan \mathcal{P} d'équation x + y - z = 0 parallèlement à la droite $\mathcal{D} = \text{Vect}((-1, -1, 1))$.

- 2. Écrire la matrice de *s* dans une base adaptée à la somme directe $\mathscr{P} \oplus \mathscr{D}$.
- 3. En déduire la matrice de s dans la base canonique.

Exercice 17. Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathscr{B} = (e_1, e_2, e_3)$ une base de E. On considère f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est donnée par $A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$.

- 1. Déterminer une base et la dimension de $F = \ker(f id_E)$, $G = \ker(f 2id_E)$ et $H = \ker(f + 4id_E)$.
- 2. Déterminer une base \mathscr{C} de E dans laquelle la matrice D de f est diagonale.
- 3. Soit $n \in \mathbb{N}$. Déterminer une expression de A^n faisant intervenir les matrices de passages de \mathscr{B} à \mathscr{C} .

Exercice 18 (CCP PC 2018). On pose $A = \begin{pmatrix} 1 & -2 & 0 & 1 \\ 1 & -2 & -1 & 4 \\ 0 & 0 & -2 & 6 \end{pmatrix}$.

- 1. Donner une base de Im(A).
- 2. Donner une base de ker(A).
- 3. Déterminer $(Q, P) \in GL_3(\mathbb{R}) \times GL_4(\mathbb{R})$ tel que $Q^{-1}AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- 4. Déterminer la dimension de $\{M \in \mathcal{M}_3(\mathbb{R}) \mid MA = 0_{3,4}\}.$

Exercice 19. Soit $M \in \mathcal{M}_2(\mathbb{C})$ une matrice non nulle telle que $M^2 = 0_2$. Montrer que M est semblable à $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Exercice 20 (Mines-Ponts PC 2018). Soit $E_n = \mathbb{R}_n[X]$, $F_0 = 1$ et $F_k = \frac{X(X-1)\cdots(X-k+1)}{k!}$ pour $k \in [[1, n]]$.

- 1. Montrer que $\mathcal{B} = (F_0, F_1, ..., F_n)$ est une base de E_n .
- 2. Pour tout $P \in E_n$, on pose $\Phi(P) = P(X+1) P(X)$. Montrer que Φ est un endomorphisme de E_n .
- 3. Donner la matrice de Φ dans la base \mathscr{B} .
- 4. Soit $Q \in E_{n-1}$. Montrer qu'il existe un unique polynôme $P \in E_n$ tel que $\Phi(P) = Q$ et P(0) = 0.
- 5. On prend n = 3 et $Q = X^2$.
 - (a) Exprimer Q dans la base \mathcal{B} .
 - (b) En déduire *P* tel que $\Phi(P) = X^2$ et P(0) = 0.
 - (c) En déduire la valeur de $\sum_{k=0}^{m} k^2$ pour tout $m \in \mathbb{N}^*$.