Contrôle de cours 22 - Séries / Espaces préhilbertiens / Déterminants - Sujet A Jeudi 12 juin 2025

Nom et prénom :	
Trom et prenom.	
	••••••
	5 minutes.
L'usage de la calc	ulatrice est interdit.
Question 1 (6 pts)	
Soit (u_n) et (v_n) deux suites à termes positifs. Coc	her la ou les bonnes cases :
1. Si $u_n \xrightarrow[n \to +\infty]{} 0$, alors $\sum u_n$ converge:	
□ Vrai	☐ Faux
Justification :	
2. Si $u_n \le v_n$ à partir d'un certain rang et $\sum v_n$, diverge alors :
$\square \sum u_n$ diverge; $\square \sum u_n$	converge; \Box on ne peut rien dire!
3. Si $u_n \le v_n$ à partir d'un certain rang et $\sum u_n$	diverge alors :
$\square \sum \nu_n$ diverge; $\square \sum \nu_n$	converge; \Box on ne peut rien dire!
4. Si $n^{\alpha} u_n \xrightarrow[n \to +\infty]{} 0$ alors :	
\Box si $\alpha > 1$, $\sum u_n$ converge;	\square si $\alpha \leq 0$, $\sum u_n$ diverge;
\Box si $\alpha > 0$, $\sum u_n$ converge;	$□$ si $α ≤ 0$, $\sum u_n$ diverge; $□$ on ne peut rien dire!
5. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$: $\det(A + B) = \det(A) +$	$det(B)$ \Box VRAI \Box FAUX
6. Soit $f \in \mathcal{L}(\mathbb{K}^n)$ et $\lambda \in \mathbb{K}$: $\det(\lambda f) = \lambda^n \det(f)$	\Box VRAI \Box FAUX \Box
Question 2 (4 pts)	
Déterminer la nature des séries :	
1. $\sum e^{-\frac{1}{n}}$	$\frac{1}{2} \sum_{n=1}^{\infty} 2^n + n$
$1. \sum_{n\geq 1} e^{-\frac{1}{n}}$	$3. \sum_{n\geq 1} \frac{2^n + n}{n2^n}$
$\sin(n)$	\sqrt{n}
2. $\sum_{n\geq 0} \frac{\sin(n)}{2^n}$	$4. \sum_{n\geq 0} \frac{\sqrt{n}}{n^2+1}$

Question 3 (2 pts)

On considère \mathbb{R}^2 muni du produit scalaire usuel. Soit $u_1=(1,-1)$ et $u_2=(2,1)$. Orthonormaliser la famille (u_1, u_2) .

Question 4 (4 pts)

On considère \mathbb{R}^3 muni du produit scalaire usuel. Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$.

- 1. Déterminer une base de F^{\perp} .
- 2. Soit v = (1,0,0). Déterminer le projeté orthogonal de v sur F.

3. Calculer d(v, F).

Question 5 (1 pt)

Justifier que la famille $u_1 = (5, 1, -3)$, $u_2 = (0, 2, 1)$, $u_3 = (-2, 1, 4)$ est une base de \mathbb{R}^3 .

Question 6 (2 pts)

Soit $\lambda \in \mathbb{R}$. Soit $u \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 6 \\ 0 & 1 & -1 \end{pmatrix}$. Pour quelles valeurs de λ est-ce que u – λ id a set in u .

Pour quelles valeurs de λ est-ce que $u - \lambda \operatorname{id}_{\mathbb{R}^3}$ est inversible?

Contrôle de cours 22 - Séries / Espaces préhilbertiens / Déterminants - Sujet B Jeudi 12 juin 2025

Nom et prénom :	
Durée : 15 L'usage de la calcu	
Question 1 (6 pts)	
Soit (u_n) et (v_n) deux suites à termes positifs. Coch	ner la ou les bonnes cases :
1. Si $\sum u_n$ converge, alors $u_n \xrightarrow[n \to +\infty]{} 0$:	
□ Vrai	☐ Faux
Justification:	
	•
2. Si $u_n \le v_n$ à partir d'un certain rang et $\sum v_n$	
$\square \sum u_n$ diverge; $\square \sum u_n$ c	converge; \Box on ne peut rien dire!
3. Si $u_n \le v_n$ à partir d'un certain rang et $\sum u_n$	converge alors :
$\square \sum \nu_n$ diverge; $\square \sum \nu_n$ c	converge;
4. Si $n^{\alpha}u_n \xrightarrow[n \to +\infty]{} +\infty$ alors:	
\square si $\alpha < 1, \sum u_n$ diverge;	\Box si $\alpha \ge 0$, $\sum u_n$ converge:
\square si $\alpha < 0$, $\sum u_n$ diverge;	$□$ si α ≥ 0, $\sum u_n$ converge; $□$ on ne peut rien dire!
5. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$: $\det(AB) = \det(A) \det(B)$	B) □ VRAI □ FAUX
6. Soit $f \in \mathcal{L}(\mathbb{K}^n)$ et $\lambda \in \mathbb{K}$: $\det(\lambda f) = \lambda \det(f)$	\Box VRAI \Box FAUX \Box
Question 2 (4 pts)	
Déterminer la nature des séries :	
1. $\sum_{n\geq 1} e^{-\frac{1}{n^2}}$	$3. \sum_{n\geq 1} \frac{2^n + n}{n^2 2^n}$
$2. \sum_{n\geq 0} \frac{\sin(n)}{n!}$	$4. \sum_{n\geq 0} \frac{\sqrt{n}}{n^{\frac{3}{2}}+1}$

Question 3 (2 pts)

On considère \mathbb{R}^2 muni du produit scalaire usuel. Soit $u_1=(1,1)$ et $u_2=(2,-1)$. Orthonormaliser la famille (u_1,u_2) .

Question 4 (4 pts)

On considère \mathbb{R}^3 muni du produit scalaire usuel. Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 1y + 3z = 0\}$.

- 1. Déterminer une base de F^{\perp} .
- 2. Soit v = (1,0,0). Déterminer le projeté orthogonal de $v \, {\rm sur} \, F$.

3. Calculer d(v, F).

Question 5 (1 pt)

Justifier que la famille $u_1 = (5, 0, -2)$, $u_2 = (1, 2, 1)$, $u_3 = (-3, 1, 4)$ est une base de \mathbb{R}^3 .

Question 6 (2 pts)

Soit $a \in \mathbb{R}$. Soit $u \in \mathcal{L}(\mathbb{R}_2[X])$ défini pour tout $P \in \mathbb{R}_2[X]$ par u(P) = XP' - aP. Pour quelles valeurs de a est-ce que u est inversible? Commencer par déterminer la matrice de u dans la base canonique. \square