Contrôle de cours 5 - Somme / Complexes - Sujet A Mercredi 15 octobre 2025

Durée : 15 minutes. L'usage de la calculatrice est interdit.

Question 1 (6 pts)

Soient $a,b,x,y,q\in\mathbb{C},\,k,n,p,d\in\mathbb{N}$ avec $p\leq d$. Rappelez les formules :

- (attention au cas particulier) $\binom{n}{k}$ =
- $\binom{n}{k} + \binom{n}{k+1} =$
- $\sum_{k=1}^{n} k =$
- (attention au cas particulier) $\sum_{k=p}^{d} q^k =$
- $(x+y)^n =$
- $a^n b^n =$

Question 2 (1 pt)

Compléter:

$$\sum_{1 \le i < j \le n} a_{ij} = \sum_{j=\dots}^{\dots} \sum_{i=\dots}^{\dots} a_{ij} = \sum_{i=\dots}^{\dots} \sum_{j=\dots}^{\dots} a_{ij}$$

Question 3 (3 pts)

Simplifier au maximum les sommes :

1.
$$\sum_{k=0}^{n} (4k-1) =$$

$$2. \sum_{k=3}^{n+1} 5^{n-k} =$$

$$3. \sum_{k=0}^{n} \binom{n}{k} 6^k =$$

Question 4 (2pts)

Simplifier la somme :

$$\sum_{k=1}^{n-1} (\cos(k+1) - \cos(k-1)) =$$

Question 5 (2 pts)

- 1. Soit $n \in \mathbb{N}^*$. Les racines n-ième de l'unité sont les solutions complexes z de l'équation :
- 2. L'ensemble des solutions de cette équation est :

Question 6 (2 pts)

Soient $a,b,c\in\mathbb{C}$ avec $a\neq 0$. Soient z_1,z_2 les solutions de $az^2+bz+c=0$. Relations coefficients-racines :

•

Question 7 (4 pts)

1. Déterminer les racines carrées de -8-6i.

2. Résoudre dans \mathbb{C} l'équation $z^2 + (1+i)z + 2 + 2i = 0$.

Contrôle de cours 5 - Sommes / Complexes - Sujet B Mercredi 15 octobre 2025

Durée : 15 minutes. L'usage de la calculatrice est interdit.

Question 1 (6 pts)

Soient $a, b, x, y, q \in \mathbb{C}$, $k, n, p, d \in \mathbb{N}$ avec $p \le d$. Rappelez les formules :

$$\bullet \quad \sum_{k=1}^{n} k =$$

•
$$(a+b)^n =$$

• (attention au cas particulier)
$$\binom{n}{k}$$
 =

•
$$\binom{n}{k} + \binom{n}{k+1} =$$

• (attention au cas particulier) $\sum_{k=a}^{b} q^k =$

•
$$x^n - y^n =$$

Question 2 (1 pt)

Compléter:

$$\sum_{1 \leq i < j \leq n} a_{ij} = \sum_{i=\dots}^{\dots} \sum_{j=\dots}^{\dots} a_{ij} = \sum_{j=\dots}^{\dots} \sum_{i=\dots}^{\dots} a_{ij}$$

Question 3 (3 pts)

Simplifier au maximum les sommes :

1.
$$\sum_{k=4}^{n+1} 5^{n-k} =$$

$$2. \sum_{k=0}^{n} \binom{n}{k} 3^k =$$

3.
$$\sum_{k=1}^{n} (5k+2) =$$

Question 4 (2pts)

Simplifier la somme :

$$\sum_{k=1}^{n-1} (\arctan(k-1) - \arctan(k+1)) =$$

Question 5 (2 pts)

- 1. Soit $n \in \mathbb{N}^*$. Les racines n-ième de l'unité sont les solutions complexes z de l'équation :
- 2. L'ensemble des solutions de cette équation est :

Question 6 (2 pts)

Soient $a,b,c\in\mathbb{C}$ avec $a\neq 0$. Soient z_1,z_2 les solutions de $az^2+bz+c=0$. Relations coefficients-racines :

•

•

Question 7 (4 pts)

1. Déterminer les racines carrées de 8 – 6*i*.

2. Résoudre dans \mathbb{C} l'équation $z^2 + (1+i)z - 2 + 2i = 0$.