Devoir Surveillé 02

(durée: 4 heures, sans calculatrice)

On fera attention à la qualité de la rédaction. Soulignez ou encadrez les résultats et mettez en valeur les arguments importants. La calculatrice est interdite.

Exercice 1 (Onze questions indépendantes).

- 1. Résoudre l'inéquation $sin(x) \ge \frac{1}{2}$ d'inconnue $x \in \mathbb{R}$.
- 2. Calculer la partie réelle et la partie imaginaire de $(1+i)^{12}$.
- 3. On pose $j = \frac{-1 + i\sqrt{3}}{2}$.
 - (a) Déterminer le module et un argument de j.
 - (b) Calculer j^3 et $j + j^2$.
 - (c) Soit $k \in \mathbb{N}$ un multiple de 3. Montrer que $1 + j^k + j^{2k} = 3$.
 - (d) Soit $\ell \in \mathbb{N}$. Montrer que $1 + j^{3\ell+1} + j^{2(3\ell+1)} = 0$.
- 4. On pose $z = e^{i\frac{\pi}{3}} e^{i\frac{\pi}{4}}$.
 - (a) Déterminer la forme algébrique de *z*.
 - (b) En déduire une expression du module de z.
 - (c) Factoriser z par l'angle moitié.
 - (d) En déduire une expression de $\sin\left(\frac{\pi}{24}\right)$.
 - (e) Déterminer un argument de z.

5. Soient
$$f: x \mapsto \sqrt{\frac{x^2 - 4x + 3}{x - 2}}$$
, $g: x \mapsto \ln(x^2 - 1)\cos(x)$ et $h: x \mapsto \sin(x^2 + 1)e^{2x}$.

- (a) Déterminer les ensembles de définition de f, g et h.
- (b) Déterminer l'ensemble de dérivabilité de f.
- 6. Déterminer les limites suivantes :

(a)
$$\lim_{x \to +\infty} \frac{\ln(e^x + x)}{x - \ln(x)}$$

(b) $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2}$
(c) $\lim_{x \to 0} \frac{e^{x - 1}}{x}$
(d) $\lim_{x \to +\infty} \frac{e^{3x} - e^x}{x - x^4}$
(e) $\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$
(f) $\lim_{x \to 0} x^2 \sin(\frac{1}{x})$

- 7. Soit f définie autour d'un réel a. Rappeler la définition de f est dérivable en a.
- 8. Soient $f: I \to J$ et $g: J \to \mathbb{R}$ deux fonctions.
 - (a) Écrire la définition de f est croissante sur I.
 - (b) On suppose que f est croissante sur I et g est décroissante sur J. Montrer que $g \circ f$ est décroissante sur I.
- 9. Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions bornée. Montrer que f+g et fg sont bornées.
- 10. Soit $a \in \mathbb{R} \setminus \mathbb{Z}$. Rappeler la définition de $x \mapsto x^a$ et son ensemble de définition.
- 11. Soit $f: x \mapsto \cos(x)$ qui est dérivable sur \mathbb{R} .
 - (a) Déterminer une équation de la tangente à \mathscr{C}_f au point d'abscisse 1.
 - (b) Rappeler l'ensemble de définition, l'ensemble de dérivabilité et la dérivée de arccos.
 - (c) Tracer dans l'ordre et sur le même graphique :
 - la tangente au point d'abscisse $\pi/2$;
 - la courbe de f sur $[-\pi, \pi]$;
 - la courbe de arccos;
 - la courbe de $x \mapsto \arccos(x+1)$.

Exercice 2 (Une étude de fonction).

On définit la fonction $f: x \mapsto \sqrt{x^2 - x + 1}$.

- 1. (a) Vérifier que pour tout $x \in \mathbb{R}$, $x^2 x + 1 = \left(x \frac{1}{2}\right)^2 + \frac{3}{4}$.
 - (b) En déduire que la fonction f est définie sur \mathbb{R} .
- (a) Déterminer les limites de f en $+\infty$ et en $-\infty$.
 - (b) En utilisant les quantités conjuguées, montrer que $\lim_{x \to +\infty} f(x) x = -\frac{1}{2}$.
 - (c) De même, déterminer la limite de la fonction $x \mapsto f(x) + x$ en $-\infty$. Attention! Que vaut $\sqrt{x^2}$?
 - (d) En déduire que la courbe représentative de f admet des asymptotes en $\pm \infty$ dont on précisera les équations.
- (a) Écrire f sous la forme $u \circ v$, où u et v sont des fonctions à préciser.
 - (b) Justifier que f est dérivable sur \mathbb{R} puis calculer f'.
 - (c) Déterminer le tableau de variations de f sur \mathbb{R} .
- 4. Tracer la courbe représentative de f. On fera apparaître la tangente horizontale et les asymptotes.

Exercice 3 (Des complexes et des fonctions).

1. Questions préliminaires :

- (a) Énoncer l'inégalité triangulaire pour les nombres complexes.
- (b) Soit $f: I \to J$ une fonction. Donner la définition de f est une bijection de I sur J.
- (a) Déterminer l'ensemble \mathscr{D} des $\theta \in \mathbb{R}$ tels que : $1 + e^{i\theta} \neq 0$. Pour tout $\theta \in \mathcal{D}$, on pose $z_{\theta} = \frac{1}{1 + e^{i\theta}}$.
 - (b) Montrer que : $\forall \theta \in \mathcal{D}, |z_{\theta}| \geq \frac{1}{2}$
 - (c) Soit $\theta \in \mathcal{D}$. Calculer $\text{Re}(z_{\theta})$ et $\text{Im}(z_{\theta})$ en fonction de θ .

3. Soit
$$f: \theta \mapsto \frac{\sin(\theta)}{1 + \cos(\theta)}$$

- (a) Déterminer l'ensemble de définition de *f* .
- (b) Étudier la parité de f.
- (c) Justifier que f est 2π -périodique.
- (d) Étudier les variations de f sur $[0, \pi[$.
- (e) Calculer: $\lim_{\theta \to \pi^{-}} \frac{\sin(\theta)}{\theta \pi}$ et $\lim_{\theta \to \pi^{-}} \frac{\cos(\theta) + 1}{\theta \pi}$. En déduire $\lim_{\theta \to \pi^{-}} f(\theta)$.
- (f) Montrer que f est bijective de] $-\pi$, π [sur \mathbb{R} . On note g sa réciproque.
- (g) Justifier que g est dérivable sur \mathbb{R} puis exprimer g' en fonction de g.
- 4. Prouver que pour tout $y \in \mathbb{R}$, il existe $\theta \in \mathcal{D}$ tel que $z_{\theta} = \frac{1}{2} + iy$.

Exercice 4. 1. Montrer que pour tout $t \in \mathbb{R}$, $ch(t) \ge 1$.

- 2. Montrer que pour tout $t \in \mathbb{R}$, $\frac{\operatorname{sh}(t)}{\operatorname{ch}(t)} \in]-1,1[$.
- 3. Montrer que pour tout $t \in \mathbb{R}$, $\arccos\left(\frac{\sinh(t)}{\cosh(t)}\right) + \arctan(\sinh(t)) = \frac{\pi}{2}$.

Correction du Devoir Surveillé 02

Correction de l'exercice 1 :

1. On lit sur le cercle trigonométrique l'ensemble des solutions :
$$\{x \in \mathbb{R} \mid \exists k \in \mathbb{Z}, \frac{\pi}{6} + 2k\pi \le x \le \frac{5\pi}{6} + 2k\pi \}$$

2. On remarque tout d'abord que
$$1 + i = \sqrt{2}e^{i\pi/4}$$
.

Puis,
$$\left(\sqrt{2}e^{i\pi/4}\right)^{12} = \sqrt{2}^{12}e^{3i\pi} = -2^6$$
.

Donc
$$(1+i)^{12} = -64$$
 et $\boxed{\text{Re}\left((1+i)^{12}\right) = -64 \text{ et Im}\left((1+i)^{12}\right) = 0}$

3. (a) On a
$$j = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = e^{\frac{2i\pi}{3}}$$
. Donc $|j| = 1$ et $\arg(j) = \frac{2\pi}{3}[2\pi]$

(c) Il existe
$$\ell \in \mathbb{N}$$
 tel que $k = 3\ell$. Donc $1 + j^k + j^{2k} = 1 + j^{3\ell} + j^{6\ell} = 1 + (j^3)^\ell + (j^3)^{2\ell}$. Ainsi, $1 + j^k + j^{2k} = 3$

(d) On a
$$1 + j^{3\ell+1} + j^{2(3\ell+1)} = 1 + (j^3)^{\ell} j + (j^3)^{2\ell} j^2 = 1 + j + j^2$$
. Donc $1 + j^{3\ell} + j^{2(3\ell+1)} = 0$

4. (a)
$$z = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)$$
, donc $z = \frac{1-\sqrt{2}}{2} + i\frac{\sqrt{3}-\sqrt{2}}{2}$

(b)
$$|z|^2 = \frac{(1-\sqrt{2})^2}{4} + \frac{(\sqrt{3}-\sqrt{2})^2}{4} = \frac{1-2\sqrt{2}+2+3-2\sqrt{6}+2}{4} = \frac{8-2\sqrt{2}-2\sqrt{6}}{4}.$$

$$\operatorname{Donc}\left[|z| = \frac{\sqrt{8-2\sqrt{2}-2\sqrt{6}}}{2}\right].$$
(c) $z = 2i e^{\frac{7\pi}{24}} \sin\left(\frac{\pi}{24}\right).$

(c)
$$z = 2i e^{\frac{7\pi}{24}} \sin\left(\frac{\pi}{24}\right)$$

(d) Comme
$$\frac{\pi}{24} \in [0, \pi]$$
, $\sin\left(\frac{\pi}{24}\right) \ge 0$, donc d'après les deux questions précédentes, $|z| = 2\sin\left(\frac{\pi}{24}\right) = \frac{\sqrt{8 - 2\sqrt{2} - 2\sqrt{6}}}{2}$.

Ainsi, $\sin\left(\frac{\pi}{24}\right) = \frac{\sqrt{8 - 2\sqrt{2} - 2\sqrt{6}}}{4}$.

(e) D'après la question 4c,
$$z = 2\sin\left(\frac{\pi}{24}\right)e^{i\pi/2}e^{7i\pi/24}$$
, donc $arg(z) \equiv \frac{19\pi}{24}[2\pi]$

• Commençons par le signe de $x^2 - 4x + 3$: $\Delta = 16 - 12 = 4$, donc ce polynôme admet deux racines réelles $x_{\pm} = \frac{4 \pm 2}{2}$. 5. On obtient le tableau de signes suivant :

x	-∞		1		2		3	+∞
$x^2 - 4x + 3$		+	0	_		_	0	+
x - 2		_		-	0	+		+
$\frac{x^2-4x+3}{x-2}$		_	0	+		_	0	+

Ainsi, f est définie sur $[1,2[\cup[3,+\infty[$

• Soit
$$x \in \mathbb{R}$$
, $x^2 - 1 > 0 \iff x \in]-\infty, -1[\cup]1, +\infty[$. Donc g est définie sur $g = \infty, -1[\cup]1, +\infty[$

•
$$h$$
 est définie sur \mathbb{R}

6. (a)
$$\frac{\ln(e^x + x)}{x - \ln(x)} = \frac{\ln(e^x) + \ln(1 + x/e^x)}{x(1 - \ln(x)/x)} = \frac{1}{1 - \ln(x)/x} + \frac{\ln(1 + x/e^x)}{x(1 - \ln(x)/x)}. \text{ Or, } \frac{x}{e^x} \xrightarrow[x \to +\infty]{} 0 \text{ et } \frac{\ln(x)}{x} \xrightarrow[x \to +\infty]{} 0 \text{ par croissances comparison}$$

$$\text{Donc} \left[\frac{\ln(e^x + x)}{x - \ln(x)} \xrightarrow[x \to +\infty]{} 1 \right].$$

(b) On factorise:
$$\frac{x^2 - 5x + 6}{x - 2} = \frac{(x - 2)(x - 3)}{x - 2} = x - 3 \xrightarrow{x \to 2} -1$$

(c) On pose
$$f: x \mapsto e^x$$
. La fonction f est dérivable en 0, donc $\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} f'(0) = e^0$. Donc $e^x - 1 \xrightarrow[x \to 0]{} 1$

(d)
$$\boxed{\frac{\mathrm{e}^{3x}-\mathrm{e}^x}{x-x^4}=\frac{\mathrm{e}^{3x}}{x^4}\frac{1-\mathrm{e}^{-2x}}{-1+\frac{1}{x^3}}\xrightarrow[x\to+\infty]{}-\infty}} \ \mathrm{par} \ \mathrm{croissances} \ \mathrm{compar\acute{e}es}.$$

(e)
$$(1+x)^{\frac{1}{x}} = e^{\frac{\ln(1+x)}{x}}$$
. Posons $f: x \mapsto \ln(1+x)$. La fonction f est dérivable en 0 donc $\frac{f(x)-f(0)}{x-0} \xrightarrow[x\to 0]{} f'(0) = \frac{1}{1+0}$. Donc $(1+x)^{\frac{1}{x}} \xrightarrow[x\to 0]{} e^{1} = e^{1}$.

(f) Pour tout
$$x \neq 0$$
, $-1 \le \sin\left(\frac{1}{x}\right) \le 1$, donc $-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$. Par encadrement, $x^2 \sin\left(\frac{1}{x}\right) \xrightarrow[x \to 0]{} 0$

7.
$$f$$
 est dérivable en a ssi le taux d'accroissement $\frac{f(a+h)-f(a)}{h}$ admet une limite finie lorsque $h \to 0$.

8. (a)
$$f$$
 est croissante sur I ssi $\forall x, y \in I$, si $x < y$ alors $f(x) \le f(y)$

(b) Soient
$$x, y \in I$$
 avec $x < y$. Comme f est croissante sur I , $f(x) \le f(y)$. Comme g est décroissante sur J , $g(f(x)) \ge g(f(y))$. Donc $g \circ f$ est décroissante sur I .

9. Il existe $M, M' \in \mathbb{R}$ tels que pour tout $x \in I$, $|f(x)| \le M$ et $|g(x)| \le M'$. Alors pour tout $x \in I$, $|(f+g)(x)| \le |f(x)| + |g(x)| \le M + M'$ d'après l'inégalité triangulaire. Ainsi, comme |f+g| est majorée,

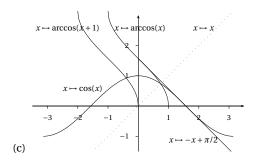
f + g est bornée

De même, pour tout
$$x \in I$$
, $|fg(x)| \le MM'$, donc $|fg|$ est majorée et fg est bornée

10. Pour tout
$$x \in]0, +\infty[, x^a = e^{a \ln(x)}]$$

11. (a) Une équation de la tangente à
$$\mathscr{C}_f$$
 au point d'abscisse $\pi/2$ est $y = -x + \pi/2$

(b) La fonction arccos est définie sur
$$[-1,1]$$
, dérivable sur $]-1,1[$ et pour tout $x \in]-1,1[$, $\arccos'(x)=-\frac{1}{\sqrt{1-x^2}}$



Correction de l'exercice 2:

1. (a) On développe
$$\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} = x^2 - 2x\frac{1}{2} + \frac{1}{4} + \frac{3}{4} = x^2 - x + 1$$
. On a bien l'égalité voulue.

(b) Pour tout
$$x \in \mathbb{R}$$
, $\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4} > 0$. Donc f est bien définie sur \mathbb{R} .

2. (a) On commence par réécrire
$$f(x) = \sqrt{x^2 - x + 1} = \sqrt{x^2 \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)}$$

En
$$+\infty$$
: $\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to +\infty} x^2 = +\infty$, donc $\lim_{x \to +\infty} f(x) = +\infty$.
En $-\infty$: $\lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to -\infty} x^2 = +\infty$, donc $\lim_{x \to -\infty} f(x) = +\infty$.

En
$$-\infty$$
: $\lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to -\infty} x^2 = +\infty$, donc $\lim_{x \to -\infty} f(x) = +\infty$

(b) On utilise la quantité conjuguée :

$$f(x) - x = \sqrt{x^2 - x + 1} - x = \frac{(\sqrt{x^2 - x + 1} - x)(\sqrt{x^2 - x + 1} + x)}{\sqrt{x^2 - x + 1} + x}$$

$$= \frac{-x + 1}{\sqrt{x^2 - x + 1} + x}$$

$$= \frac{x\left(-1 + \frac{1}{x}\right)}{x\left(\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} + 1\right)} \quad \text{car } x > 0$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} + 1}$$

Or,
$$\lim_{x\to +\infty} -1 + \frac{1}{x} = -1$$
 et $\lim_{x\to +\infty} \sqrt{1-\frac{1}{x}+\frac{1}{x^2}} + 1 = 2$, donc $\lim_{x\to +\infty} f(x) - x = -\frac{1}{2}$.
(c) On procède de même pour $f(x) + x$, en faisant attention cette fois car $x < 0$:

$$f(x) + x = \sqrt{x^2 - x + 1} + x = \frac{(\sqrt{x^2 - x + 1} + x)(\sqrt{x^2 - x + 1} - x)}{\sqrt{x^2 - x + 1} - x}$$

$$= \frac{-x + 1}{\sqrt{x^2 - x + 1} - x}$$

$$= \frac{x\left(-1 + \frac{1}{x}\right)}{x\left(-\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - 1\right)} \quad \text{car } x < 0, \sqrt{x^2} = -x$$

$$= \frac{-1 + \frac{1}{x}}{-\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - 1}$$

Or,
$$\lim_{x \to -\infty} -1 + \frac{1}{x} = -1$$
 et $\lim_{x \to -\infty} -\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - 1 = -2$, donc $\lim_{x \to -\infty} f(x) + x = \frac{1}{2}$.

(d) En + ∞ : d'après la question 2b, $\lim_{x \to +\infty} f(x) - \left(x - \frac{1}{2}\right) = 0$, donc la droite d'équation $y = x - \frac{1}{2}$ est asymptote à la courbe \mathcal{C}_f en $+\infty$

En $-\infty$: d'après la question $\frac{2c}{x \to -\infty} f(x) - \left(-x + \frac{1}{2}\right) = 0$, donc la droite d'équation $y = -x + \frac{1}{2}$ est asymptote à la courbe \mathscr{C}_f en $-\infty$.

- (a) On pose $u(x) = \sqrt{x}$ et $v(x) = x^2 x + 1$. Alors $f(x) = u \circ v(x)$.
 - (b) Comme u est dérivable sur \mathbb{R}^+_* , et que pour tout $x \in \mathbb{R}$, $v(x) \ge \frac{3}{4} > 0$, $u \circ v$ est dérivable sur \mathbb{R} . De plus, pour tout réel x,

$$f'(x) = v'(x) \times u' \circ v(x) = \frac{2x - 1}{2\sqrt{x^2 - x + 1}}.$$

x	-∞		$\frac{1}{2}$		+∞
2x - 1		-	0	+	
f'(x)		-	0	+	
f	+∞ _		$\frac{\sqrt{3}}{2}$		+«x
	4 3	1			
	2				- •

Correction de l'exercice 3:

- (a) Soient $z, z' \in \mathbb{C}, |z + z'| \le |z| + |z'|$
 - (b) f est une bijection de I sur J ssi $\forall y \in J$, $\exists ! x \in I \mid f(x) = y$
- (a) Soit $\theta \in \mathbb{R}$. $e^{i\theta} = -1 \iff e^{i\theta} = e^{i\pi} \iff \theta \equiv \pi[2\pi]$.
 - (b) Soit $\theta \in \mathcal{D}$. D'après l'inégalité triangulaire, $|1 + e^{i\theta}| \le |1| + |e^{i\theta}| = 2$. Donc $|z_{\theta}| \ge \frac{1}{2}$
 - (c) $z_{\theta} = \frac{1 + e^{-i\theta}}{(1 + \cos(\theta))^2 + \sin^2(\theta)} = \frac{1 + \cos(\theta) i\sin(\theta)}{1 + \cos^2(\theta) + 2\cos(\theta) + \sin^2(\theta)} = \frac{1 + \cos(\theta) i\sin(\theta)}{2(1 + \cos(\theta))} = \frac{1}{2} i\frac{\sin(\theta)}{2(1 + \cos(\theta))}$ $Donc \left[\frac{1}{Re(z_{\theta})} = \frac{1}{2} \text{ et Im}(z_{\theta}) = -\frac{\sin(\theta)}{2(1 + \cos(\theta))} \right].$
- (a) Soit $\theta \in \mathbb{R}$. $f(\theta)$ est défini ssi $\cos(\theta) \neq -1 \iff \theta \not\equiv \pi[2\pi]$. Donc f est définie sur \mathscr{D}
 - (b) Soit $\theta \in \mathcal{D}$: $f(-\theta) = \frac{\sin(-\theta)}{1 + \cos(-\theta)} = -\frac{\sin(\theta)}{1 + \cos(\theta)}$ car sin est impaire et cos est paire. Donc f est impaire (c) Soit $\theta \in \mathcal{D}$: $f(\theta + 2\pi) = \frac{\sin(\theta + 2\pi)}{1 + \cos(\theta + 2\pi)} = f(\theta)$ car sin et cos sont 2π -périodiques.
 - Donc f est 2π -périodique
 - (d) f est dérivable sur $[0, \pi[$ par opérations et pour tout $\theta \in [0, \pi[$, $f'(\theta) = \frac{\cos(\theta)(1+\cos(\theta))+\sin^2(\theta)}{(1+\cos(\theta))^2} = \frac{2+\cos(\theta)}{(1+\cos(\theta))^2}$. Or, pour tout $\theta \in [0, \pi[$. $\cos(\theta) \ge -1$, $\operatorname{donc} 2 + \cos(\theta) > 0$ et $f'(\theta) > 0$. Ainsi, f est strictement croissante sur $[0, \pi[$
 - (e) La fonction $g: x \mapsto \sin(x)$ est dérivable en π donc $\frac{g(\theta) g(\pi)}{\theta \pi} \xrightarrow{\theta \to \pi} g'(\pi) = \cos(\pi)$. Donc $\frac{\sin(\theta)}{\theta \pi} \xrightarrow{\theta \to \pi} -1$ De même cos est dérivable en π et $\boxed{\frac{\cos(\theta) + 1}{\theta - \pi} \frac{1}{\theta \to \pi^{-}} 0^{-}}$

Ainsi,
$$f(\theta) = \frac{\sin(\theta)}{\theta - \pi} \frac{\theta - \pi}{1 + \cos(\theta)} \xrightarrow[\theta \to \pi^{-}]{} + \infty$$

- (f) Comme f est impaire, elle est strictement croissante sur $]-\pi,\pi[.f]$ est continue sur $]-\pi,\pi[.D]$ après le théorème de la bijection monotone, f est une bijection de f = f = f = f = f (d'après la limite de la question précédente).
- (g) Comme la dérivée de f ne s'annule pas sur $]-\pi,\pi[$, g est dérivable sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$, $g'(x) = \frac{1}{f'(g(x))} = \frac{(1+\cos(g(x)))^2}{2+\cos(g(x))}$
- 4. Soit $y \in \mathbb{R}$. D'après la question 3f, il existe un unique $\theta \in]-\pi,\pi[$ tel que $f(\theta)=-2y.$ Or, $z_{\theta}=\frac{1}{2}-i\frac{1}{2}f(\theta)=\frac{1}{2}+iy.$ Ainsi, il existe $\theta \in \mathcal{D}$ tel que $z_{\theta} = \frac{1}{2} + iy$

Correction de l'exercice 4:

- 1. Pour tout $t \in \mathbb{R}$, $\operatorname{ch}^2(t) = 1 + \operatorname{sh}^2(t) \ge 1$
- 2. Soit $t \in \mathbb{R}$, $\frac{\sinh(t)}{\cosh(t)} = \frac{e^t e^{-t}}{e^t + e^{-t}}$. Or $-e^t e^{-t} < e^t e^{-t} < e^t + e^{-t}$, car l'exponentielle est toujours strictement positive. Donc $\left| -1 < e^{-t} < e^{$
- 3. Soit $f: t \mapsto \arccos\left(\frac{\sinh(t)}{\cosh(t)}\right) + \arctan(\sinh(t))$.

Comme arccos est dérivable sur] – 1,1[et arctan est dérivable sur \mathbb{R} , d'après la question précédente, f est dérivable sur \mathbb{R} . De

Comme arccos est derivable sur
$$J = 1$$
, I et arctan est derivable sur \mathbb{R} , d après la question précèdente, f est derivable, pour tout $t \in \mathbb{R}$, $f'(t) = -\frac{\frac{\operatorname{ch}^2(t) - \operatorname{sh}^2(t)}{\operatorname{ch}^2(t)}}{\sqrt{1 - \frac{\operatorname{sh}^2(t)}{\operatorname{ch}^2(t)}}} + \frac{\operatorname{ch}(t)}{1 + \operatorname{sh}^2(t)} = -\frac{1}{\operatorname{ch}^2(t)} \frac{1}{\sqrt{\frac{\operatorname{ch}^2(t) - \operatorname{sh}^2(t)}{\operatorname{ch}^2(t)}}} + \frac{\operatorname{ch}(t)}{\operatorname{ch}^2(t)} = -\frac{1}{\operatorname{ch}(t)} + \frac{1}{\operatorname{ch}(t)} = 0.$

Donc f est constante sur \mathbb{R} . De plus, $f(0) = \arccos(0) + \arctan(0) = \frac{\pi}{n}$.

Donc f est constante sur \mathbb{R} . De plus, $f(0) = \arccos(0) + \arctan(0) = \frac{\pi}{2}$

Donc
$$\forall t \in \mathbb{R}, \arccos\left(\frac{\operatorname{sh}(t)}{\operatorname{ch}(t)}\right) + \arctan(\operatorname{sh}(t)) = \frac{\pi}{2}$$