Sommes et produits - Exercices

Exercice 1. Soit $m \in \mathbb{N}^*$. Factoriser l'expression $a^{2m+1} + b^{2m+1}$ par a + b. Est-il possible de factoriser $a^{2m} + b^{2m}$ par a + b?

1. Soit $x \in \mathbb{R}_+$. À l'aide de la formule du binome, montrer que : $\forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx$.

- 2. Soit $x \in \mathbb{R}$ avec x > -1. On pose a = x + 1.
 - (a) Montrer que : $\forall n \in \mathbb{N}, a^n 1 \ge n(a 1)$.
 - (b) En déduire que $\forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx$.

1. Démontrer que pour tout $k \in \mathbb{N}^*$, $\frac{1}{\sqrt{k+1}} < 2\left(\sqrt{k+1} - \sqrt{k}\right) < \frac{1}{\sqrt{k}}$.

- 2. En déduire un encadrement de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$, pour tout entier $n \in \mathbb{N}^*$.
- 3. Déterminer la partie entière de $\sum_{k=1}^{23} \frac{1}{\sqrt{k}}$.
- 4. Donner la valeur de $\sum_{k=10000}^{1000000} \frac{1}{\sqrt{k}}$ avec un erreur inférieure à $\frac{1}{50}$

Exercice 4. Déterminer a et b dans \mathbb{Z} tels que $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$, puis en déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

En s'inspirant de la méthode précédente, calculer $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$.

Exercice 5. Calculer les sommes et produits :

1.
$$\sum_{k=2}^{n} \frac{1}{k(k-1)}$$

2.
$$\sum_{k=0}^{n} \frac{k}{(k+1)!}$$

1.
$$\sum_{k=2}^{n} \frac{1}{k(k-1)}$$
 2. $\sum_{k=0}^{n} \frac{k}{(k+1)!}$ 3. $\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right)$ 4. $\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$

4.
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$

1. On souhaite calculer la somme $S_1 = \sum_{k=1}^{n} k$ d'une façon différente de celle vue en cours en utilisant no-

tamment $S_2 = \sum_{i=1}^{n} k^2$.

- (a) Exprimer $\sum_{k=1}^{n} (k+1)^2$ de deux façons différentes en fonction de S_1 , S_2 et n.
- (b) En déduire la valeur de S_1 .
- 2. En s'inspirant du 1, calculer S_2 puis $S_3 = \sum_{i=1}^{n} k^3$.

Exercice 7. Pour $n \in \mathbb{N}^*$, on note :

$$a_n = \sum_{k=1}^n k$$
, $b_n = \sum_{k=1}^n k^2$ et $c_n = \sum_{k=1}^n k^3$.

Démontrer par récurrence que $a_n = \frac{n(n+1)}{2}$, $b_n = \frac{n(n+1)(2n+1)}{6}$ et $c_n = (a_n)^2$.

Exercice 8. Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{n} k(k+1)$$

4.
$$\sum_{n=2}^{\infty} \frac{3^{k}}{3^{2k}}$$

5.
$$\sum_{k=0}^{n} \operatorname{ch}(kx), (x \in \mathbb{R})$$

7.
$$\sum_{k=0}^{n} (-1)^k k$$

1. $\sum_{k=0}^{n} k(k+1)$ 3. $\sum_{k=0}^{n} (2^k + 4k + n - 3)$ 5. $\sum_{k=0}^{n} \operatorname{ch}(kx), (x \in \mathbb{R})$ 7. $\sum_{k=0}^{n} (-1)^k k$ 2. $\sum_{k=0}^{n} (2k+1)$ 6. $\sum_{k=0}^{n} \left(\frac{1}{3+(-1)^k}\right)^k$

6.
$$\sum_{k=0}^{n} \left(\frac{1}{3 + (-1)^k} \right)$$

Exercice 9. Soient n, p des entiers tels que $0 \le p \le n$. Montrer les relations

a)
$$\binom{n-1}{p-1} = \frac{p}{n} \binom{n}{p}$$
 b) $\binom{n+k}{k} \binom{n}{p} = \binom{n+k}{p+k} \binom{p+k}{k}$

Exercice 10. Soit n > 1 un entier naturel. Exprimer le quotient $\frac{1 \times 3 \times \cdots \times (2n-1)}{2 \times 4 \times \cdots \times (2n)}$ en fonction de $\binom{2n}{n}$.

Exercice 11. Montrer par récurrence sur n que pour tous entiers naturels n et p tels que $p \le n$, on a :

$$\binom{p}{p} + \binom{p+1}{p} + \dots + \binom{n}{p} = \binom{n+1}{p+1}$$

Interpréter le résultat sur le triangle de Pascal.

Exercice 12. Calculer, pour $n \in \mathbb{N}$:

a)
$$\sum_{k=0}^{n} k \binom{n}{k}$$
; b) $\sum_{k=0}^{n} (-1)^{k-1} k \binom{n}{k}$; c) $\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}$; d) $\sum_{k=0}^{n} k^2 \binom{n}{k}$ Indication: On pourra utiliser la fonction $x \mapsto \sum_{k=0}^{n} \binom{n}{k} x^k$.

Exercice 13. Soit $n \in \mathbb{N}$ et $p \le n$. Simplifier $\sum_{k=0}^{p} \binom{n}{k} \binom{n-k}{p-k}$.

Exercice 14. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n \binom{2n+1}{k}$.

- 1. En effectuant le changement d'indice j = 2n + 1 k, déterminer une autre expression de S_n .
- 2. En déduire la valeur de S_n .

Exercice 15. Soient $m, n \in \mathbb{N}^*$ et $0 \le r \le m, n$.

- 1. Que vaut le coefficient devant x^r dans le développement de $(1+x)^{m+n}$?
- 2. Que vaut le coefficient devant x^r dans le développement de $(1+x)^n(1+x)^m$?
- 3. En déduire la valeur de $\sum_{k=0}^{r} {m \choose k} {n \choose r-k}$.

Exercice 16. 1. Linéariser les expressions suivantes : a) $\sin^3(x) \cos^3(x)$;

b) $\cos(x)\cos^2(2x)$

2. En déduire les valeurs des intégrales : a) $\int_0^{\frac{\pi}{2}} \sin^3(x) \cos^3(x) dx$;

b) $\int_0^{\frac{\pi}{2}} \cos(x) \cos^2(2x) dx$

Exercice 17. Exprimer:

1. cos(4x) en fonction de cos x.

2. $\sin(5x)$ en fonction de $\sin x$.

Exercice 18. Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{n} \sin(k\theta)$$
2.
$$\sum_{k=0}^{n} \cos(a+k\theta)$$
3.
$$\sum_{k=0}^{n} \cos^{3}(k\theta)$$
4.
$$\sum_{k=0}^{n} \binom{n}{k} \sin(k\theta)$$
6.
$$\sum_{k=0}^{n} \sin(k\alpha) \sin(k\beta)$$

Exercice 19. Calculer les sommes suivantes :

Exercice 20. 1. Calculer: $\sum_{k=0}^{n} \sum_{i=k}^{n} \binom{n}{i} \binom{i}{k}.$

2. Calculer : $\sum_{k=1}^{n} k2^k$ en faisant apparaître une somme double.

I. Indications - Solutions

Exercice 1: Justifier d'abord que $a^{2m+1} + b^{2m+1} = a^{2m+1} - (-b)^{2m+1}$

Que se passerait-il si on pouvait factoriser, puis remplacer b par -a?

Exercice 2:

- 1. Pour $n \in \mathbb{N}$, $(1+x)^n = \binom{n}{0}x^0 + \binom{n}{1}x^1 + \sum_{k=2}^n \binom{n}{k}x^k$. On minore la somme par 0 car $x \ge 0$.
- 2. (a) On utilise Bernoulli: $a^n 1 = (a 1)(a^{n-1} + \dots + 1)$. On distingue ensuite les cas a > 1, a < 1 et a = 1.
 - (b) On remplace x = a 1 dans l'inégalité précédente.

Exercice 3:

- 1. $\sqrt{k+1} \sqrt{k} = \frac{1}{\sqrt{k+1} + \sqrt{k}}$ en utilisant la quantité conjuguée. Comme $\sqrt{k+1} < \sqrt{k}$, on obtient l'encadrement voulu
- 2. Avec l'inégalité de gauche on obtient : $\sum_{k=1}^{n-1} \frac{1}{\sqrt{k+1}} < 2\sqrt{n} 2$, donc $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < 2\sqrt{n} 1$. Avec l'inégalité de droite on obtient : $2\sqrt{n+1} 2 < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$.
- 3. $2\sqrt{26} 2 < S < 2\sqrt{25} 1 = 9$. De plus, $2\sqrt{26} 2 > 2\sqrt{25} 2 = 8$. Donc la partie entière vaut 8.
- 4. On retrouve un encadrement : $2\sqrt{1000001} 2\sqrt{10000} < \sum_{k=10000}^{1000000} \frac{1}{\sqrt{k}} < 2\sqrt{1000000} 2\sqrt{9999}$, et avec la calculatrice, on obtient 1800,001 < S < 1800,02.

Exercice 4: On trouve a = 1, b = -1. La somme vaut $1 - \frac{1}{n+1}$.

On écrit $\frac{1}{k(k+1)(k+2)} = \frac{\frac{1}{2}}{k} + \frac{-1}{k+1} + \frac{\frac{1}{2}}{k+2}$. La somme vaut $\frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right)$.

Exercice 5

1.
$$\sum_{k=2}^{n} \frac{1}{k(k-1)} = \sum_{k=2}^{n} \frac{1}{k-1} - \frac{1}{k} = 1 - \frac{1}{n}$$

2.
$$\sum_{k=0}^{n} \frac{k}{(k+1)!} = \sum_{k=0}^{n} \frac{k+1}{(k+1)!} - \frac{1}{(k+1)!} = 1 - \frac{1}{(n+1)!}$$

$$3. \quad \prod_{k=2}^{n} \left(1 - \frac{1}{k} \right) = \frac{1}{n}$$

4.
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right) = \prod_{k=2}^{n} \frac{k-1}{k} \frac{k+1}{k} = \frac{n+1}{2n}$$

Exercice 6

1. (a)
$$\sum_{k=1}^{n} (k+1)^2 = S_2 + (n+1)^2 - 1 = S_2 + 2S_1 + n$$

(b)
$$S_1 = \frac{n(n+1)}{2}$$
.

2.
$$\sum_{k=1}^{n} (k+1)^3 = S_3 + (n+1)^3 - 1 = S_3 + 3S_2 + 3S_1 + n$$
, donc $S_2 = \frac{n(n+1)(2n+1)}{6}$. De même, $S_3 = \left(\frac{n(n+1)}{2}\right)^2$.

Exercice 8

1.
$$\sum_{k=0}^{n} k(k+1) = \sum_{k=0}^{n} k^2 + \sum_{k=0}^{n} k = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(2n+4)}{6}$$

2.
$$\sum_{k=0}^{n} (2k+1) = n(n+1) + n = n(n+2)$$

3.
$$\sum_{k=0}^{n} (2^{k} + 4k + n - 3) = 2^{n+1} + 2n(n+1) + n(n+1) - 3(n+1) = 2^{n+1} + 3(n+1)(n-1)$$

4.
$$\sum_{k=0}^{n} \frac{3^k}{2^{2k-1}} = 8(3/4)^{n+1} - 8$$

5.
$$\sum_{k=0}^{n} \operatorname{ch}(kx) = \frac{1}{2} \frac{e^{(n+1)x} - 1}{e^{x} - 1} + \frac{1}{2} \frac{e^{-(n+1)x} - 1}{e^{-x} - 1} = \frac{1}{2} \frac{e^{\frac{n+1}{2}x}}{e^{\frac{x}{2}}} \frac{\operatorname{sh}((n+1)x/2)}{\operatorname{sh}(x/2)} + \frac{1}{2} \frac{e^{-\frac{n+1}{2}x}}{e^{-\frac{x}{2}}} \frac{\operatorname{sh}((n+1)x/2)}{\operatorname{sh}(x/2)} = \operatorname{ch}(nx/2) \frac{\operatorname{sh}((n+1)x/2)}{\operatorname{sh}(x/2)}$$
si $x \neq 0$.

6.
$$\sum_{k=0}^{n} \left(\frac{1}{3 + (-1)^k} \right)^k = \frac{16}{15} (1 - (1/16)^{\left\lfloor \frac{n}{2} \right\rfloor}) + \frac{2}{3} (1 - (1/4)^{\left\lfloor \frac{n-1}{2} \right\rfloor})$$
 en décomposant en pairs/impairs.

7.
$$\sum_{k=0}^{n} (-1)^k k = \frac{n}{2} \text{ si } n \text{ pair et } -\frac{n+1}{2} \text{ si } n \text{ impair, donc } (-1)^n \left\lfloor \frac{n+1}{2} \right\rfloor.$$

Exercice 9: Appliquer la définition des coefficients binomiaux.

Exercice 10: On multiplie la fraction par le produit des pairs de 2 à 2n en haut et en bas: $\frac{1 \times 3 \times \cdots \times (2n-1)}{2 \times 4 \times \cdots \times (2n)} = \frac{(2n)!}{(\prod_{k=1}^{n} 2k)^2} = \frac{(2n)!}{(\prod_{k=1}^{$

$$\frac{(2n)!}{2^{2n}(n!)^2} = \frac{1}{2^{2n}} \binom{2n}{n}$$

 $\frac{(2n)!}{2^{2n}(n!)^2} = \frac{1}{2^{2n}} \binom{2n}{n}.$ **Exercice 11:** Penser à la formule de Pascal pour l'hérédité.

Exercice 12: On pose $f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k = (1+x)^n$ d'après la formule du binôme de Newton.

1. En dérivant
$$f$$
, $f'(1) = \sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$

2.
$$f'(-1) = \sum_{k=0}^{n} (-1)^{k-1} k \binom{n}{k} = 0 \text{ si } n \ge 2, = 1 \text{ si } n = 1$$

3. En primitivant f (attention à la constante!), $\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1} = \frac{2^{n+1}-1}{n+1}$.

4. En dérivant 2 fois
$$f: f''(1) = \sum_{k=0}^{n} k(k-1) \binom{n}{k}$$
, donc $\sum_{k=0}^{n} k^2 \binom{n}{k} = f''(1) + f'(1) = n(n-1)2^{n-2} + n2^{n-1}$.

Exercice 13: On pourra vérifier que $\binom{n}{k}\binom{n-k}{p-k} = \binom{n}{p}\binom{p}{k}$, puis utiliser la formule du binôme de Newton pour trouver

$$2^p \binom{n}{p}$$
.

1.
$$S_n = \sum_{j=n+1}^{2n+1} {2n+1 \choose j}$$
.

2.
$$2S_n = \sum_{k=0}^{2n+1} {2n+1 \choose k} = 2^{2n+1}$$
, donc $S_n = 2^{2n}$.

Exercice 15:

1.
$$\binom{m+n}{r}$$
 (Newton).

2. On applique Newton à chacun des deux facteurs, puis on redéveloppe. Pour obtenir une puissance r à la fin, on prend une puissance k dans le premier facteur et une puissance r-k dans le deuxième. On trouve $\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$.

$$3. \sum_{k=0}^{r} {m \choose k} {n \choose r-k} = {m+n \choose r}.$$

1. a)
$$\sin^3 x \cos^3 x = \frac{3}{32} \sin(2x) - \frac{1}{32} \sin(6x)$$

b)
$$\cos x \cos^2(2x) = \frac{1}{2}\cos(x) + \frac{1}{4}\cos(3x) + \frac{1}{4}\cos(5x)$$
.

2.
$$\int_0^{\frac{pi}{2}} \sin^3 x \cos^3 x dx = \frac{1}{12} \text{ et } \int_0^{\frac{\pi}{2}} \cos x \cos^2(2x) dx = \frac{7}{15}.$$

1.
$$\cos(4x) = 8\cos^4 x - 8\cos^2 x + 1$$
.

2.
$$\sin(5x) = 16\sin^5 x - 20\sin^3 x + 5\sin x$$
.

Exercice 18:

•
$$\sum_{k=0}^{n} \sin(k\theta) = \sin \frac{n\theta}{2} \frac{\sin \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}} \operatorname{si} \theta \not\in 2\pi \mathbb{Z}, = 0 \operatorname{si} \theta \in 2\pi \mathbb{Z};$$

$$\bullet \ \sum_{k=0}^{n} \cos(a+k\theta) = \cos\left(a+\frac{n\theta}{2}\right) \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}} \text{ si } \theta \not\in 2\pi\mathbb{Z}, = (n+1)\cos a \text{ si } \theta \in 2\pi\mathbb{Z};$$

• linéariser
$$\cos^3(x)$$
 pour trouver $\sum_{k=0}^n \cos^3(k\theta) = \frac{3}{4} \cos \frac{n\theta}{2} \frac{\sin \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}} + \frac{1}{4} \cos \frac{3n\theta}{2} \frac{\sin \frac{3(n+1)\theta}{2}}{\sin \frac{3\theta}{2}} \sin \theta \not\in 2\pi \mathbb{Z} \cup \frac{2\pi}{3} \mathbb{Z};$

•
$$\sum_{k=0}^{n} {n \choose k} \sin(k\theta) = 2^n \sin \frac{n\theta}{2} \cos^n \frac{\theta}{2};$$

• on dérive la précédente;

• utiliser $\sin(k\alpha)\sin(k\beta) = \frac{1}{2}\cos(k(\alpha - \beta)) - \frac{1}{2}\cos(k(\alpha + \beta))$.

Exercice 19:

1.
$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} (i+j) = p \frac{n(n+1)}{2} + n \frac{p(p+1)}{2} = \frac{np(n+p+2)}{2}$$

2. $\sum_{1 \le i < j \le n} (i+j) = \frac{(n-1)n(n+1)}{2}$ (on peut décomposer la somme précédente en somme sur la diagonale plus 2 fois la somme cherchée).

3.
$$\sum_{1 \le i < j \le n} \min(i, j) = \frac{n(n-1)(n+1)}{6}$$

4.
$$\sum_{1 \le i, j \le n} \min(i, j) = \frac{n(n+1)(2n+1)}{6}$$

5.
$$\sum_{1 \le i < j \le n} ij = \frac{n(n+1)(n-1)(3n+2)}{24}$$

6.
$$\sum_{1 \le i < j \le n} \frac{i}{j-1} = n-1$$

$$7. \sum_{0 \le i \le j \le n} 2^{-j} \binom{j}{i} = n+1$$

Exercice 20:

1.
$$\sum_{k=0}^{n} \sum_{i=k}^{n} \binom{n}{i} \binom{i}{k} = \sum_{0 \le k \le i \le n} \binom{n}{i} \binom{i}{k} = \sum_{i=0}^{n} \binom{n}{i} \sum_{k=0}^{i} \binom{i}{k} = \sum_{i=0}^{n} 2^{i} \binom{n}{i} = 3^{n}.$$

2.
$$\sum_{k=1}^{n} k2^{k} = \sum_{k=1}^{n} \sum_{i=1}^{k} 2^{k} = \sum_{i=1}^{n} \sum_{k=i}^{n} 2^{k} = \sum_{i=1}^{n} 2^{i} (2^{n-i+1} - 1) = n2^{n+1} - \sum_{i=1}^{n} 2^{i} = n2^{n+1} - 2(2^{n} - 1) = (n-1)2^{n+1} + 2$$