Chapitre 6: Applications des nombres complexes

I. Équations algébriques

I.1. Équations du second degré à coefficients complexes

Proposition I.1. Tout nombre complexe non nul z admet exactement deux racines carrées opposées.

Méthode. • Si $z = \rho e^{i\theta}$ est donné sous forme exponentielle, les deux racines carrées sont $\sqrt{\rho} e^{i\frac{\theta}{2}}$ et $\sqrt{\rho} e^{i(\frac{\theta}{2} + \pi)}$.

• Si z = c + id, on cherche $a, b \in \mathbb{R}$ tels que $(a + ib)^2 = c + id$. On prend les parties réelles et imaginaires ce qui nous donne le système $\begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases}$ à résoudre. On peut aussi utiliser l'égalité des modules $a^2 + b^2 = |z|$ qui peut permettre de simplifier les calculs.

Remarque I.1. • Si $z = -\lambda$, avec $\lambda \in \mathbb{R}_+^*$, alors les deux racines carrées de z sont $\pm i\sqrt{\lambda}$.

• Il est **INTERDIT** d'utiliser la notation \sqrt{z} lorsque z est un nombre complexe.

Théorème I.2

Soient $a, b, c \in \mathbb{C}$, avec $a \neq 0$. Soit Δ le discriminant du polynome $az^2 + bz + c$ et δ une racine carrée de Δ . Alors l'équation $az^2 + bz + c = 0$ admet deux solutions (éventuellement confondues):

$$z_1 = \frac{-b-\delta}{2a}$$
 et $z_2 = \frac{-b+\delta}{2a}$

Remarque I.2. Si les coefficients sont réels et $\Delta < 0$, alors les deux solutions sont complexes conjuguées.

Proposition I.3 (Relations coefficients-racines). Soient z_1 et z_2 les solutions (éventuellement confondues) de $az^2 + bz + c = 0$. Alors

 $z_1 + z_2 = -\frac{b}{a} \quad et \quad z_1 z_2 = \frac{c}{a}.$

I.2. Racines de l'unité

Définition I.1. On note $\mathbb U$ l'ensemble des nombres complexes de module 1.

Proposition I.4. • L'ensemble \mathbb{U} correspond au cercle trigonométrique dans le plan complexe.

- L'ensemble \mathbb{U} est stable par multiplication et par division.
- Un nombre complexe z est dans U ssi il existe $\theta \in \mathbb{R}$ tel que $z = e^{i\theta}$.

Remarque I.3. On dit que \mathbb{U} muni de la multiplication est un groupe. De plus, la fonction $\theta \mapsto e^{i\theta}$ est un morphisme de groupe de $(\mathbb{R}, +)$ vers (\mathbb{U}, \times) .

Soit $n \in \mathbb{N}$. On considère l'équation $z^n = 1$, d'inconnue $z \in \mathbb{C}$.

Si z est solution, alors $1=|z^n|=|z|^n$, donc |z|=1. Ainsi $z\in\mathbb{U}$, donc il existe $\theta\in\mathbb{R}$ tel que $z=\mathrm{e}^{i\theta}$. Or $1=\left(\mathrm{e}^{i\theta}\right)^n=\mathrm{e}^{in\theta}$, d'où $n\theta=0$ [2π]. Donc il existe $k\in\mathbb{Z}$ tel que $n\theta=2k\pi$, soit encore $\theta=\frac{2k\pi}{n}$.

On peut se contenter de chercher $\theta \in [0, 2\pi[$. On obtient donc :

Théorème L5

*L'*équation $z^n = 1$ a exactement n solution $e^{\frac{2ik\pi}{n}}$, $k \in \{0, 1, ..., n-1\}$ qui sont appelées **racines** n-**ièmes de l'unité**.

• Géométriquement, ces n valeurs sont sur le cercle unité, aux sommets d'un n-gone régulier. On note souvent \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité.

• En posant $\omega = e^{\frac{2i\pi}{n}}$, les racines de l'unité sont $1, \omega, \omega^2, \dots, \omega^{n-1}$.

Méthode. Pour résoudre l'équation $z^n = w$, où $w \in \mathbb{C}$ est fixé :

- Si w = 0, la seule solution est z = 0.
- Si $w \neq 0$, on écrit $w = \rho e^{i\theta}$. On a donc $w = \left(\rho^{\frac{1}{n}} e^{i\frac{\theta}{n}}\right)^n$. L'équation $z^n = w$ devient $z^n = \left(\rho^{\frac{1}{n}} e^{i\frac{\theta}{n}}\right)^n$ soit $\left(\frac{z}{e^{\frac{1}{n}} e^{i\frac{\theta}{n}}}\right)^n = 1$. Les solutions sont donc $z = \rho^{\frac{1}{n}} e^{i\frac{\theta}{n}} e^{\frac{2ik\pi}{n}}, k \in \{0, 1, ..., n-1\}.$

Proposition I.6. *Soit* $n \ge 2$.

$$\sum_{k=0}^{n-1} \omega^k = 0 \quad et \quad \prod_{k=0}^{n-1} \omega^k = (-1)^{n-1}.$$

I.3. Équations de degré supérieur

Définition I.2. Soit $n \in \mathbb{N}$. Une fonction f est une **fonction polynomiale de degré** n si elle s'écrit :

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

où a_0, a_1, \ldots, a_n sont des nombres complexes appelés **coefficients de** f et $a_n \neq 0$.

Proposition I.7. Soit f une fonction polynomiale et z_0 une solution de f(z) = 0. Alors il existe une fonction polynomiale *g* telle que pour tout $z \in \mathbb{C}$, $f(z) = (z - z_0)g(z)$.

Pour résoudre des équations du type f(z) = 0, on pourra en général appliquer une des deux méthodes suivantes :

- procéder à un changement de variables afin d'obtenir une équation de plus petit degré que l'on sait résoudre.
- on cherche une racine évidente z_0 , puis on factorise par $(z-z_0)$ pour faire diminuer le degré.

II. Géométrie

Théorème II.1

Soient A, B, C et D quatre points distincts du plan.

$$(\overrightarrow{AB}, \overrightarrow{CD}) \equiv \arg\left(\frac{z_D - z_C}{z_B - z_A}\right) [2\pi] \quad \text{et} \quad \frac{CD}{AB} = \left|\frac{z_D - z_C}{z_B - z_A}\right|.$$

Corollaire II.2. Soient A, B, C et D quatre points distincts du plan.

- $(AB) \perp (CD) \iff \frac{z_D z_C}{z_B z_A} \in i\mathbb{R};$ $(AB) / (CD) \iff \frac{z_D z_C}{z_B z_A} \in \mathbb{R};$ $A, B, C \text{ sont align\'es} \iff \frac{z_C z_A}{z_B z_A} \in \mathbb{R};$

• L'image M'(z') de M(z) par la translation de vecteur \vec{u} vérifie : $z' = z + z_{\vec{u}}$. **Proposition II.3.**

- L'image M'(z') de M(z) par la rotation d'angle θ vérifie : $z' = e^{i\theta} z$.
- L'image M'(z') de M(z) par l'homothétie de rapport k: z' = kz.
- L'image M'(z') de M(z) par la symétrie d'axe l'axe des réels vérifie : $z' = \overline{z}$.