Calculs de primitives - Exercices

Exercice 1. Déterminer une primitive pour chacune des fonctions suivantes, en précisant leurs ensembles de définition :

1.
$$f_1(x) = 6x^2 + 8x + 3$$

2.
$$f_2(x) = 5a^2x^6$$

3.
$$f_3(x) = x(x+a)(x+b)$$

4.
$$f_4(x) = \sqrt{2ax}$$

5.
$$f_5(x) = \frac{a}{a-x}$$

$$6. \ \ f_6(x) = \frac{2x+3}{2x+1}$$

7.
$$f_7(x) = \frac{2x+1}{\sqrt{x^2+1}}$$

$$8. \ \ f_8(x) = \frac{x}{2x^2 + 3}$$

9.
$$f_9(x) = a e^{-bx}$$

10.
$$f_{10}(x) = xe^{-(x^2+1)}$$

10.
$$f_{10}(x) = x e^{-(x^2+1)}$$

11. $f_{11}(x) = \frac{e^x}{e^x - 1}$

12.
$$f_{12}(x) = \frac{e^{\frac{1}{x}}}{x^2}$$

13.
$$f_{13}(x) = \cos \frac{x}{\sqrt{2}}$$

13.
$$f_{13}(x) = \cos \frac{x}{\sqrt{2}}$$

14. $f_{14}(x) = \frac{1}{x + ia} \ (a \in \mathbb{R}^*)$, E3A PC 2020 19. $f_{19}(x) = \frac{\sin(x)}{1 + \cos^2(x)}$

15.
$$f_{15}(x) = \frac{\arcsin(x)}{\sqrt{1-x^2}}$$

16.
$$f_{16}(x) = \frac{\sinh(x)}{\sqrt{\cosh(x)}}$$

16.
$$f_{16}(x) = \frac{\sinh(x)}{\sqrt{\cosh(x)}}$$

17. $f_{17}(x) = \frac{\sin(x)}{1 + \cos(x)}$

18.
$$f_{18}(x) = \frac{\sin(x)}{1 + \cos^2(x)}$$

19.
$$f_{19}(x) = \frac{\ln^2(x+2)}{x+2}$$

Exercice 2. Déterminer les primitives de :

1.
$$x \mapsto \cos(x)\sin(x)$$

2.
$$x \mapsto \sin^2 x$$

3.
$$x \mapsto \cos^3(x)$$

4.
$$x \mapsto \tan(x)$$

1. Déterminer les primitives de $x \mapsto e^{3x} \cos(2x)$.

2. Proposer une autre méthode pour trouver ces primitives.

Exercice 4. Soit f la fonction définie sur \mathbb{R} par $f(t) = (2t+1)e^{-t}$. On cherche une primitive F de f sous la forme $F(t) = (2t+1)e^{-t}$.

1. Dériver *F* puis en déduire une primitive de $f(t) = (2t+1)e^{t}$.

2. Calculer
$$\int_{0}^{1} (2t+1) e^{-t} dt$$
.

3. Proposer une autre méthode pour déterminer une primitive de f.

Exercice 5. Déterminer une primitive de chacune des fonctions :

$$1. \ x \mapsto \frac{1}{x^2 - 4}$$

2.
$$x \mapsto \frac{1-x}{1+x^2}$$

$$3. \ x \mapsto \frac{x + x^2}{1 + x^2}$$

3.
$$x \mapsto \frac{x + x^2}{1 + x^2}$$
4.
$$x \mapsto \frac{1}{x^2 + 2x + 5}$$

5.
$$x \mapsto \frac{1}{x^2 - 5x + 6}$$

6.
$$x \mapsto \frac{1}{2x^2 - 4x + 2}$$

Exercice 6. Déterminer les expressions de :

1.
$$x \mapsto \int_{-\infty}^{x} t \ln(t) dt$$

2.
$$x \mapsto \int_{-\infty}^{x} t \arctan(t) dt$$

3.
$$x \mapsto \int_{-\infty}^{x} (t-1)\sin(t)dt$$

1.
$$x \mapsto \int_{-x}^{x} t \ln(t) dt$$
 3. $x \mapsto \int_{-x}^{x} (t-1) \sin(t) dt$ 4. $x \mapsto \int_{-x}^{x} (t+1) \cosh(t) dt$

$$\int_{-\infty}^{\infty} \ln(t) dt$$

Exercice 7. Déterminer les primitives suivantes à l'aide d'un changement de variable :

$$1. \int_{0}^{x} \frac{\mathrm{d}t}{\sqrt{t} + \sqrt{t}^3}$$

$$2. \int_{-\infty}^{\infty} \frac{\ln(t)}{t + t \ln^2(t)} dt$$

3.
$$\int_{0}^{x} \frac{e^{2t}}{e^{t}+1} dt$$
4.
$$\int_{0}^{x} \frac{dt}{e^{t}+1}$$

$$4. \int^x \frac{\mathrm{d}t}{\mathrm{e}^t + 1}$$

$$5. \int_{-\infty}^{\infty} \frac{\mathrm{d}t}{\sin(t)}, \ u = \cos(t)$$

5.
$$\int_{-\infty}^{\infty} \frac{dt}{\sin(t)}, u = \cos(t)$$
6.
$$I_4 = \int_{-\infty}^{\infty} \frac{t}{\sqrt{1+t}} dt, u = \sqrt{1+t}.$$

Exercice 8. Calculer les intégrales suivantes :

1.
$$I_1 = \int_0^1 e^{tx} dx$$

2.
$$I_2 = \int_0^{\frac{\pi}{2}} \cos^2(t) dt$$

3.
$$I_3 = \int_{-1}^{1} (it + t^2) dt$$

4.
$$I_4 = \int_{-1}^{1} |x^2 - x| dx$$

4.
$$I_4 = \int_{-1}^{1} |x^2 - x| dx$$

5. $I_5 = \int_{0}^{\frac{\pi}{2}} e^{(2+i)t} dt$

$$6. \quad I_6 = \int_e^{e^2} \frac{\mathrm{d}x}{x \ln x}$$

7.
$$I_7 = \int_0^{\frac{\pi}{4}} \tan(t) dt$$

$$8. I_8 = \int_e^{e^2} \frac{\ln x}{x} dx$$

9.
$$I_9 = \int_0^1 t e^{t^2} dt$$

10.
$$I_{10} = \int_0^1 5^x dx$$
 12. $I_{12} = \int_0^1 \frac{4x+2}{(x^2+x+3)^3} dx$ 14. $I_{14} = \int_0^1 \frac{dx}{ix+1}$. 17. $I_{11} = \int_1^2 \frac{dx}{x^2+5x+6}$ 18. $I_{13} = \int_0^\pi \frac{dx}{\cos x + i \sin x}$

Exercice 9. 1. Trouver deux réels a et b tels que pour tous $x \notin \{1,2\}$, $\frac{x+2}{x^2-3x+2} = \frac{a}{x-1} + \frac{b}{x-2}$ puis déterminer une primitive de $x \mapsto \frac{x+2}{x^2-3x+2}$.

2. Déterminer
$$a, b, c \in \mathbb{R}$$
 tels que $\frac{1}{x(x+1)(x+2)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}$ puis calculer $x \mapsto \int_{-\infty}^{x} \frac{\mathrm{d}x}{x(x+1)(x+2)}$.

3. Déterminer
$$a, b, c \in \mathbb{R}$$
 tels que $\frac{2x}{(x+1)(x^2+1)} = \frac{a}{x+1} + \frac{bx}{x^2+1} + \frac{c}{x^2+1}$ puis calculer $x \mapsto \int_{-\infty}^{x} \frac{2x}{(x+1)(x^2+1)} dx$.

Exercice 10. Pour tout $n \in \mathbb{N}$, on pose $J_n = \int_0^1 (1 - t^2)^n dt$.

1. En utilisant une IPP, trouver une relation entre
$$J_n$$
 et J_{n+1} .

2. Déterminer l'expression de
$$J_n$$
 en fonction de n .

3. En déduire la valeur de
$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k}$$
.

Exercice 11. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_1^e x(\ln x)^n dx$.

1. Déterminer une relation de récurrence entre
$$I_n$$
 et I_{n-1} pour tout $n \ge 1$.

2. Démontrer que la suite
$$(I_n)$$
 est décroissante.

3. Déduire des deux questions précédentes que pour tout
$$n \in \mathbb{N}^*$$
, $\frac{e^2}{n+3} \le I_n \le \frac{e^2}{n+2}$.

4. En déduire que
$$(I_n)$$
 et (nI_n) convergent et déterminer leurs limites.

Exercice 12. Calculer les intégrales suivantes :

1.
$$\int_{1}^{2} (\ln x)^{2} dx$$

2. $\int_{0}^{1} \frac{e^{x}}{\sqrt{e^{x}+1}} dx$
3. $\int_{1}^{2} \frac{dt}{t+t \ln^{2}(t)}$
5. $\int_{0}^{1} \arctan(x) dx$
6. $\int_{0}^{1} x^{2} \sqrt{1-x^{2}} dx$
7. $\int_{0}^{\pi} e^{x} \cos(x) dx$
11. $\int_{0}^{1} \ln(1+t^{2}) dt$
12. $\int_{1}^{e^{\pi}} \sin(\ln(t)) dt$.

Exercice 13. Soient u, v et f trois fonctions de \mathbb{R} dans \mathbb{R} telle que f est continue. On note F une primitive de f. Soit G définie sur \mathbb{R} par :

$$G(x) = \int_{u(x)}^{v(x)} f(t) dt$$

1. Exprimez G en fonction de F, de u et de v.

2. Montrez que si u et v sont dérivables alors G est dérivable et donnez sa dérivée.

3. Application : étudier la fonction
$$h: x \mapsto \int_0^{\cos^2(x)} \arccos(\sqrt{t}) dt + \int_0^{\sin^2(x)} \arcsin(\sqrt{t}) dt$$
.

Exercice 14. 1. Montrer que $\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\cos(t) + \sin(t)} dt = \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\cos(t) + \sin(t)} dt$ en posant $u = \frac{\pi}{2} - t$.

2. En déduire que :
$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\cos(t) + \sin(t)} dt = \frac{\pi}{4}.$$

3. En déduire la valeur de
$$\int_0^1 \frac{dt}{\sqrt{1-t^2}+t}$$
.

Exercice 15. Soit f une fonction continue de [0,1] dans \mathbb{R}

1. Montrer que :
$$\int_0^{\pi} t f(\sin(t)) dt = \frac{\pi}{2} \int_0^{\pi} f(\sin(t)) dt.$$

2. En déduire la valeur de :
$$\int_0^{\pi} \frac{t \sin(t)}{1 + \cos^2(t)} dt.$$