Chapitre 9 : Résolution de systèmes linéaires

I. Des droites et des plans

I.1. Droites dans le plan

Définition I.1. Soient a, b et c des réels tels que $(a, b) \neq (0, 0)$. L'ensemble des points M(x, y) du plan vérifiant ax + by = c est une droite \mathcal{D} .

L'équation ax + by = c est une **équation cartésienne** de \mathcal{D} .

Remarque I.1. Une droite admet plusieurs équations cartésiennes, mais toutes sont proportionnelles.

Définition I.2. Soit \mathscr{D} une droite du plan. Un vecteur \vec{u} est un **vecteur directeur** de \mathscr{D} s'il existe deux points distincts A et B sur \mathscr{D} tels que $\vec{u} = \overrightarrow{AB}$.

L'ensemble des points de la droite \mathcal{D} est alors $\{A + t\vec{u} \mid t \in \mathbb{R}\}$. C'est une **représentation paramétrique** de la droite \mathcal{D} .

Proposition I.1. Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites d'équations respectives $a_1x + b_1y = c_1$ et $a_2x + b_2y = c_2$. Alors, l'ensemble des solutions de

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$

est

- une droite $si \mathcal{D}_1 = \mathcal{D}_2$;
- vide si \mathcal{D}_1 et \mathcal{D}_2 sont parallèles;
- un point si \mathcal{D}_1 et \mathcal{D}_2 sont sécantes.

Remarque I.2. Dans le premier cas, la solution du système fait intervenir un paramètre.

I.1.1 Plans dans l'espace

Définition I.3. Un plan de l'espace est un ensemble de points dont les coordonnées vérifient une équation cartésienne du type ax + by + cz = d, avec $(a, b, c) \neq (0, 0, 0)$.

Un vecteur normal à un plan est un vecteur qui est orthogonal à tous les vecteurs du plan.

Proposition I.2. Soient \mathscr{P} et \mathscr{P}' deux plans d'équations ax + by + cz = d et a'x + b'y + c' = d'. L'ensemble des solutions du système

$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$$

est

- $un plan si \mathcal{P} = \mathcal{P}';$
- vide si P et P' sont parallèles;
- une droite sinon.

Remarques I.3. • Dans le premier cas, on obtient des solutions dépendant de deux paramètres et dans le troisième, un seul paramètre intervient.

• Lorsqu'on rajoute un troisième plan, on a une nouvelle possibilité : celle d'obtenir un seul point.

II. Systèmes linéaires

On note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

II.1. Définitions

Définition II.1. On appelle **système linéaire** de n équations à p inconnues $x_1, x_2, ..., x_p$ la donnée de n équations ayant les mêmes p inconnues :

$$\mathcal{S} : \left\{ \begin{array}{rcl} a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,p}x_p & = & b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,p}x_p & = & b_2 \\ & \vdots & \vdots & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,p}x_p & = & b_n \end{array} \right.$$

Les nombres $a_{i,j} \in \mathbb{K}$ et $b_i \in \mathbb{K}$ sont appelés les **coefficients** du système.

Le système est dit **homogène** si $b_1 = b_2 = ... = b_n = 0$.

On dit qu'un système est compatible s'il admet au moins une solution. Sinon, on dit qu'il est incompatible.

II.2. Systèmes échelonnés

Définition II.2. Un système est dit **échelonné** si le nombre de coefficients nuls qui commencent une ligne croît strictement de ligne en ligne.

Le premier coefficient non nul de chaque ligne est appelé **pivot**. L'inconnue correspondante est une **inconnue principale**. Les autres inconnues sont des **paramètres**.

Remarque II.1. Un système échelonné est facile à résoudre :

- soit il y a une équation du type 0 = b avec $b \neq 0$ et le système est incompatible;
- soit on exprime les inconnues principales en fonction des paramètres.

II.3. Opérations élémentaires et pivot de Gauss-Jordan

Définition II.3. On appelle **opérations élémentaires** sur le système :

• l'échange de deux lignes : $L_i \leftrightarrow L_j$

(Permutation)

• la multiplication d'une ligne par un scalaire $\lambda \in \mathbb{K}$ non nul : $L_i \leftarrow \lambda L_i$

(Dilatation)

• le remplacement de L_i par $L_i + \lambda L_j : L_i \leftarrow L_i + \lambda L_j$

(Transvection)

Deux systèmes sont dits équivalents si on passe de l'un à l'autre en utilisant des opérations élémentaires.

Théorème II.1

Deux systèmes équivalents ont les mêmes solutions.

Pour résoudre un système, on utilise l'algorithme du pivot de Gauss décrit dans la fiche pour se ramener à un système échelonné.