Résolution de systèmes Linéaires - Exercices

Exercice 1. 1. Donner une écriture paramétrique du plan \mathscr{P} d'équation cartésienne : x - y + 3z = -2

2. Donner une écriture paramétrique de la droite \mathcal{D} définie par le système d'équations : $\begin{cases} 2x - y + 3z = 1 \\ x + y - 4z = 6 \end{cases}$

Exercice 2. Dans chaque cas, résoudre le système linéaire. Interpréter en termes d'intersections de plans.

1.
$$\begin{cases} 2x+y-z &= 1\\ 3x+3y-z &= 2\\ 2x+4y &= 2 \end{cases}$$
2.
$$\begin{cases} 2y-z &= 1\\ -2x-4y+3z &= -1\\ x+y-3z &= -6 \end{cases}$$
3.
$$\begin{cases} x+y+2z &= -1\\ 2x-y+2z &= -4\\ 4x+y+4z &= -2 \end{cases}$$
5.
$$\begin{cases} a+c &= 1\\ b+c &= 0\\ a+b &= 1\\ 2a+3b &= 0 \end{cases}$$

Exercice 3. Dans chaque cas, résoudre le système en discutant suivant les valeurs des paramètres scalaires. Interpréter en termes d'intersections de plans ou de droites.

1.
$$\begin{cases} x-3y+7z = a \\ x+2y-3z = b \\ 7x+4y-z = c \end{cases}$$
2.
$$\begin{cases} (1-m)x+2y-z = 0 \\ -2x-(3+m)y+3z = 0 \\ x+y-(2+m)z = 0 \end{cases}$$
3.
$$\begin{cases} (m+1)x+my = 2m \\ mx+(m+1)y = 1 \end{cases}$$
4.
$$\begin{cases} x+my = m^2 \\ mx+y = m^2 \end{cases}$$
5.
$$\begin{cases} x+y-z = x' \\ 2x+y+z = y' \\ -x-2y+3z = z' \end{cases}$$
6.
$$\begin{cases} y+z = rx \\ x+z = ry \\ x+y = rz \end{cases}$$

Exercice 4. Dans l'espace rapporté à un repère orthonormé direct on considère les plans d'équations :

$$\mathscr{P}: ax + y + z + 1 = 0$$
, $\mathscr{P}': x + ay + z + a = 0$ et $\mathscr{P}'': x + y + az + b = 0$

Déterminer les réels a et b pour que l'intersection de ces trois plans soit une droite. En donner alors une représentation paramétrique.