Mathématiques - PCSI2

Colles 08 - 17/11/2025 au 21/11/2025

Thèmes traités en classe

• Chapitre 6 : Applications des nombres complexes. **Exercices traités en classe :** I.1, I.2, I.3, I.4, I.5, I.6, I.7, I.8, I.9, II.1, II.2, II.3.

- Chapitre 7: Calculs de primitives.
 - ▶ Primitives d'une fonction réelle à valeurs complexes sur un intervalle.
 - ▶ Théorème fondamental de l'analyse.
 - ▶ Méthodes de calculs : direct, IPP, changement de variable.
 - ightharpoonupPrimitives de $x \mapsto e^{\alpha t} \cos(\omega t)$ et $t \mapsto e^{\alpha t} \sin(\omega t)$.
 - ightharpoonup Primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$.

Exercices traités en classe : 1, 3, 5, 6, 7, 12, 13.

Questions de cours

Question 1

- Relations coefficients racines pour le second degré : énoncé et démonstration et illustrer comment s'en servir.
- Énoncer le théorème sur les racines *n*-ièmes de l'unité. Calculer la somme et le produit des racines *n*-ièmes de l'unité.
- C06 Exercice I.4: Résoudre dans \mathbb{C} l'équation $z^8 = \frac{1+i}{\sqrt{3}-i}$.
- C06 Exercice II.2 : soit A(1+i) et B(-2+3i). Déterminer l'affixe du point E tel que le triangle ABE soit équilatéral direct.
- Soit $a \in \mathbb{C}$. Montrer que $x \mapsto e^{ax}$ est dérivable sur \mathbb{R} et que sa dérivée est $x \mapsto a e^{ax}$.
- Énoncé du théorème d'intégration par parties. C07 Exercice 6 : Calcul de $\int_{-\infty}^{x} t \arctan(t) dt$.
- C07 Exercice 7 : Calculer $\int_{0}^{x} \frac{dt}{\sqrt{t} + \sqrt{t^3}}$ en posant $u = \sqrt{t}$, puis $\int_{0}^{x} \frac{dt}{\sin(t)}$ en posant $u = \cos(t)$.
- C07 Exercice 5 : Déterminer une primitive de $x \mapsto \frac{1}{x^2 4}$ et de $x \mapsto \frac{1}{x^2 + 2x + 5}$.
- C07 Exercise 13: Étudier la fonction $h: x \mapsto \int_0^{\cos^2(x)} \arccos(\sqrt{t}) dt + \int_0^{\sin^2(x)} \arcsin(\sqrt{t}) dt$.

Questions 2 et 3

- Énoncer une définition sur les thèmes traités en classe.
- Énoncer un des résultats suivants :
 - ▶ Résolution d'une équation du second degré à coefficients complexes.
 - ▶ Relations coefficients-racines.
 - \triangleright Théorème sur les racines n-ièmes de l'unité.
 - ▶ Somme et produit des racines *n*-ièmes de l'unité.
 - ▶ Théorème lien angle/argument, longueur/module.
 - ▶ Théorème fondamental de l'analyse.
 - ▶ Linéarité de l'intégrale.
 - ▶ Intégration par parties.
 - > Formule du changement de variable.

Mathématiques - PCSI2

A savoir faire

- 1. Savoir linéariser une expression trigonométrique.
- 2. Savoir utiliser la formule de Moivre.
- 3. Savoir faire des manipulations simples sur les sommes doubles.
- 4. Savoir résoudre une équation du second degré à coefficients complexes.
- 5. Savoir résoudre une équation $z^n = w$.
- 6. Savoir résoudre une équation en utilisant un changement d'inconnue ou une solution évidente.
- 7. Savoir résoudre un problème simple de géométrie simple avec les complexes.
- 8. Savoir déterminer les primitives d'une fonction en utilisant :
 - le tableau de primitives usuelles;
 - une IPP;
 - un changement de variable;
 - les exemples importants (exponentielle fois cos / sin, une fraction rationnelle).

LAS - Le Raincy Programme de colles 17/11/2025 au 21/11/2025