Résolution de systèmes Linéaires - Exercices

Exercice 1. 1. Donner une écriture paramétrique du plan \mathscr{P} d'équation cartésienne : x - y + 3z = -2

2. Donner une écriture paramétrique de la droite \mathscr{D} définie par le système d'équations : $\begin{cases} 2x - y + 3z = 1 \\ x + y - 4z = 6 \end{cases}$

Exercice 2. Dans chaque cas, résoudre le système linéaire. Interpréter en termes d'intersections de plans.

1.
$$\begin{cases} 2x+y-z &= 1\\ 3x+3y-z &= 2\\ 2x+4y &= 2 \end{cases}$$
2.
$$\begin{cases} 2y-z &= 1\\ -2x-4y+3z &= -1\\ x+y-3z &= -6 \end{cases}$$
3.
$$\begin{cases} x+y+2z &= -1\\ 2x-y+2z &= -4\\ 4x+y+4z &= -2 \end{cases}$$
5.
$$\begin{cases} a+c &= 1\\ b+c &= 0\\ a+b &= 1\\ 2a+3b &= 0 \end{cases}$$

Exercice 3. Dans chaque cas, résoudre le système en discutant suivant les valeurs des paramètres scalaires. Interpréter en termes d'intersections de plans ou de droites.

1.
$$\begin{cases} x-3y+7z = a \\ x+2y-3z = b \\ 7x+4y-z = c \end{cases}$$
2.
$$\begin{cases} (1-m)x+2y-z = 0 \\ -2x-(3+m)y+3z = 0 \\ x+y-(2+m)z = 0 \end{cases}$$
3.
$$\begin{cases} (m+1)x+my = 2m \\ mx+(m+1)y = 1 \end{cases}$$
4.
$$\begin{cases} x+my = m^2 \\ mx+y = m^2 \end{cases}$$
5.
$$\begin{cases} x+y-z = x' \\ 2x+y+z = y' \\ -x-2y+3z = z' \end{cases}$$
6.
$$\begin{cases} y+z = rx \\ x+z = ry \\ x+y = rz \end{cases}$$

Exercice 4. Dans l'espace rapporté à un repère orthonormé direct on considère les plans d'équations :

$$\mathscr{P}: ax + y + z + 1 = 0$$
, $\mathscr{P}': x + ay + z + a = 0$ et $\mathscr{P}'': x + y + az + b = 0$

Déterminer les réels a et b pour que l'intersection de ces trois plans soit une droite. En donner alors une représentation paramétrique.

Indications - Solutions

Exercice 1:

1.
$$\mathscr{P} = \left\{ (-2,0,0) + y(1,1,0) + z(-3,0,1), (y,z) \in \mathbb{R}^2 \right\}$$

2.
$$\mathcal{D} = \{(7/3, 11/3, 0) + z(1/3, 11/3, 1), z \in \mathbb{R}\}.$$

Exercice 2:

1.
$$S = \left\{ \left(\frac{1}{3} + \frac{2}{3}z, \frac{1}{3} - \frac{1}{3}z, z \right), z \in \mathbb{R} \right\}.$$

2.
$$S = \{(1,2,3)\}.$$

Exercice 3:

1. Si
$$-2a-5b+c \neq 0$$
, il n'y a pas de solution. Sinon, les solutions sont $S = \left\{ \left(\frac{2a+3b}{5} - z, \frac{b-a}{5} + 2z, z \right), z \in \mathbb{R} \right\}$.

2. Si
$$m = -1$$
, $S = \{(-y, y, 0), y \in \mathbb{R}\}$; si $m = 0$, $S = \{(3z, -z, z), z \in \mathbb{R}\}$; si $m = -3$, $S = \{\left(\frac{3}{2}z, -\frac{5}{2}z, z\right), z \in \mathbb{R}\}$; sinon, $S = \{0, 0, 0\}$.

3. Si
$$m = -\frac{1}{2}$$
, $S = \{(-2 + y, y), y \in \mathbb{R}\}$; sinon, $S = \{(m, 1 - m)\}$.

4. Si
$$m = -1$$
, $S = \emptyset$; si $m = 1$, $S = \{(1 - y, y), y \in \mathbb{R}\}$; sinon $S = \left\{ \left(\frac{m^2}{1 + m}, \frac{m^2}{1 + m}\right) \right\}$.

5.
$$S = \{(5x' - y' + 2z', -7x' + 2y' - z', -3x' + y' - z')\}.$$

6. Si
$$r = -1$$
, $S = \{(-y - z, y, z), y, z \in \mathbb{R}\}$; si $r = 2$, $S = \{(z, z, z), z \in \mathbb{R}\}$; sinon, $S = \{(0, 0, 0)\}$.

Exercice 4: Le système $\begin{cases} ax + y + z &= -1 \\ x + ay + z &= -a \\ x + y + az &= -b \end{cases}$ doit être compatible et doit avoir deux équations. Après échelonnement, si a = 1, on

obtient un plan ou l'ensemble vide; si a = -2, il reste deux équations, mais il faut b = 1 pour la compatibilité; sinon, il n'y a qu'une

seule solution. Donc
$$a=-2$$
 et $b=1$. Une représentation paramétrique est alors
$$\begin{cases} x=t\\ y=-1+t\\ z=t \end{cases}$$