Ensembles, logique et rédaction - Exercices

I. Logique

Exercice I.1. On considère A: « m et n sont deux entiers pairs » et B: « m+n est un entier pair ». A-t-on $\forall m, n \in \mathbb{N}, A \Rightarrow B$? $\forall m, n \in \mathbb{N}, B \Rightarrow A$? $\forall m, n \in \mathbb{N}, A \iff B$? Justifier.

Exercice I.2. Soit f une fonction définie sur un intervalle I et à valeurs dans \mathbb{R} . Écrire avec des quantificateurs les assertions suivantes puis leur négation.

- 1. La fonction f n'est pas la fonction nulle.
- 2. La fonction f ne s'annule jamais.
- 3. La fonction f est majorée par 5.
- 4. La fonction f est bornée.

- 5. Tout réel admet un antécédent par f.
- 6. 0 est le seul antécédent de 0 par f.
- 7. La fonction f est ni croissante ni décroissante sur I.

Exercice I.3. 1. Montrer que pour tout $n \in \mathbb{N}$, $n^2 - 3n + 2$ est pair.

2. Montrer que pour tout $n \in \mathbb{N}$, 3 divise $n^3 - n$.

Exercice I.4. Soit $a, b \in \mathbb{R}$.

- 1. Montrer que : $(\forall \varepsilon > 0, |a| \le \varepsilon) \Rightarrow a = 0$.
- 2. Montrer que : $(\forall \varepsilon > 0, a < b + \varepsilon) \Rightarrow a \le b$.
- 3. Montrer que : $a < b \iff (\exists c \in \mathbb{R} \mid a < c < b)$.

Exercice I.5. Soit $z \in \mathbb{C}$. Montrer par l'absurde que l'on a : $|z+1| \ge 1$ ou $|z-1| \ge 1$.

Exercice I.6. 1. Montrer que toute fonction de \mathbb{R} dans \mathbb{R} s'écrit de façon unique comme la somme d'une fonction paire et d'une fonction impaire.

2. Montrer que toute fonction de \mathbb{R} dans \mathbb{R} s'écrit de façon unique comme la somme d'une fonction constante et d'une fonction qui s'annule en 0.

Exercice I.7. 1. Déterminer les fonctions $f : \mathbb{R} \to \mathbb{R}$ telles que : $\forall (x, y) \in \mathbb{R}^2$, f(x) f(y) - f(xy) = x + y.

2. Déterminer les fonctions $f : \mathbb{R} \to \mathbb{R}$ telle que : $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x) + y.

Exercice I.8. • Bonjour mon capitaine, je voudrais connaître l'âge de vos trois enfants.

- Hardi moussaillon, le produit de leurs âges est 36!
- Mais il me faudrait une information supplémentaire!
- Sacrebleu, la somme de leurs âges est égale au nombre de marins de mon équipage!
- Bon, je vais aller les compter

...

- Mon capitaine, il me faudrait en savoir plus pour conclure.
- Corne de saperlipopette! Le plus jeune de mes enfants ne sait pas nager!

Quel est l'âge des enfants du capitaine?

II. Ensembles

Exercice II.1. 1. Déterminer le complémentaire dans \mathbb{R} de [1,2[.

- 2. Dans \mathbb{R}^2 , dessiner l'ensemble $\{(x, y) \in \mathbb{R}^2 \mid x < 2 \text{ et } y \le 3\}$. Déterminer son complémentaire.
- 3. On pose $A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y = 1\}$ et $B = \{(3t 1, -2t + 1), t \in \mathbb{R}\}$. Montrer que A = B.

Exercice II.2. 1. Montrer que $\{x \in \mathbb{R} \mid \forall \varepsilon > 0, x < \varepsilon\} =]-\infty, 0]$.

2. Soit a < b deux réels. Montrer que $[a, b] = \{ta + (1 - t)b, \text{ avec } t \in [0, 1]\}.$

Exercice II.3. On définit les ensembles :

$$E = \{0, 1\}, \quad F = \{x \in \mathbb{C} \mid \exists n \in \mathbb{N}, x^n = x\} \quad \text{et} \quad G = \{x \in \mathbb{C} \mid \forall n \in \mathbb{N}, x^n = x\}.$$

1. Écrire en toutes lettres les définitions des ensembles F et G.

- 2. Montrer que $E \subset F$.
- 3. Montrer que l'un des ensemble *F* ou *G* est inclus dans l'autre.
- 4. *E* est-il inclus dans *G*?
- 5. Déterminer l'ensemble *G* en extension.

1. Soit $E = \{e\}$ un singleton. Déterminer $\mathscr{P}(E)$ puis $\mathscr{P}(\mathscr{P}(E))$. Exercice II.4.

- 2. Soit $E = \{a, b, c\}$. Déterminer $\mathcal{P}(E)$.
- 3. Déterminer $\mathscr{P}(\emptyset)$, puis $\mathscr{P}(\mathscr{P}(\emptyset))$.
- 4. Soit $E = \{1, 2, 3\}$. Déterminer $(E \times E) \setminus \{(x, x) \mid x \in E\}$.

Exercice II.5. Soit E = [1,4]. Soient $A = \{(i,j) \in E^2 \mid i < j\}$, $B = \{(i,j) \in E^2 \mid i = j\}$ et $C = \{(i,j) \in E^2 \mid i > j\}$. Montrer que (A, B, C) forme une partition de E^2 .

Exercice II.6. Écrire sous forme d'un intervalle en justifiant les ensembles :

$$1. \ \ A = \bigcup_{n \in \mathbb{N}} [0, n]$$

$$2. B = \bigcup_{n \in \mathbb{N}^*} \left[0, \frac{1}{n} \right]$$

$$1. \ \ A = \bigcup_{n \in \mathbb{N}^*} \left[0, n\right] \\ 2. \ \ B = \bigcup_{n \in \mathbb{N}^*} \left[0, \frac{1}{n}\right] \\ 3. \ \ C = \bigcup_{n \in \mathbb{N}^*} \left[0, 1 - \frac{1}{n}\right] \\ 4. \ \ D = \bigcap_{n \in \mathbb{N}^*} \left]0, 1 + \frac{1}{n}\right[$$

4.
$$D = \bigcap_{n \in \mathbb{N}^*} \left[0, 1 + \frac{1}{n} \right]$$

Exercice II.7. Soit *E* un ensemble. Montrer par contraposée que :

- 1. $\forall A, B \in \mathcal{P}(E)$, $(A \cap B = A \cup B) \Rightarrow A = B$.
- 2. $\forall A, B, C \in \mathcal{P}(E)$, $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C$.

Exercice II.8. Soit *E* un ensemble et *A*, *B*, *C* trois parties de *E*. Montrer que :

- 1. $A \subset B \Rightarrow A \cup C \subset B \cup C$. Étudier la réciproque.
- 2. $A \subset B \Rightarrow A \cap C \subset B \cap C$. Étudier la réciproque.
- 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 4. $A \subset B \iff A \cap \overline{B} = \emptyset$.

Exercice II.9. Soient A, B et C trois parties d'un ensemble E telles que $E = A \cup B \cup C$. Soit $D \in \mathcal{P}(E)$ vérifiant : $A \cap D \subset B$, $B \cap D \subset C$ et $C \cap D \subset A$.

Montrer que $D \subset A \cap B \cap C$.

Exercice II.10. Soit E un ensemble. Soient A et B deux parties de E. On définit la différence symétrique de A et B par : $A\Delta B = (A \cup B) \setminus (A \cap B).$

- 1. Montrer que $A\Delta B = (A \setminus B) \cup (B \setminus A)$ et faire un dessin.
- 2. On suppose que $A\Delta B = A \cap B$. Montrer que $A = B = \emptyset$.
- 3. Soit $C \in \mathcal{P}(E)$. Montrer que $A\Delta B = A\Delta C \iff B = C$.
- 4. Résoudre l'équation $A\Delta X = \emptyset$ d'inconnue $X \in \mathcal{P}(E)$.

Exercice II.11. Soient A et B deux parties d'un ensemble E. Résoudre l'équation : $A \cup X = B$ d'inconnue $X \in \mathcal{P}(E)$.