Contrôle de cours 7 - EDL / Systèmes linéaires - Sujet A Mercredi 19 novembre 2025

Question 1 (2 pts)

Résoudre l'équation différentielle (E): $y' + \frac{1}{\sqrt{1-x^2}}y = 0$ sur]-1,1[. L'équation est homogène. De plus, $\int_0^t \frac{1}{\sqrt{1-x^2}} dx = \arcsin(t) + K$, donc $y' + \frac{1}{\sqrt{1-t^2}}y = 0 \iff \exists C \in \mathbb{K} \mid y: t \mapsto C e^{-\arcsin(t)}$.

Question 2 (5 pts)

Résoudre l'équation différentielle (*E*) : $y' - xy = xe^{\frac{x^2}{2}}$ sur \mathbb{R} .

L'équation homogène associée est (H): y'-xy=0. On pose $a: x\mapsto -x$ de primitive $A: x\mapsto -x^2/2$. Donc les solutions de (H) sont $y_H: x\mapsto K e^{x^2/2}$ avec $K\in\mathbb{R}$.

On fait varier la constante : on cherche une fonction s dérivable telle que $y_P : x \mapsto s(x) e^{x^2/2}$ est solution de (E). Or y_P est solution de (E) ssi $\forall x \in \mathbb{R}$, $s'(x) e^{x^2/2} + xs(x) e^{x^2/2} - xs(x) e^{x^2/2} = x e^{x^2/2} \iff \forall x \in \mathbb{R}$, s'(x) = x. On prend donc $s(x) = \frac{x^2}{2}$ et $y_P : x \mapsto \frac{x^2}{2} e^{x^2/2}$ est une solution de (E).

L'ensemble des solutions de
$$(E)$$
 est $\left\{x \mapsto K e^{x^2/2} + \frac{x^2}{2} e^{x^2/2}, K \in \mathbb{R}\right\}$.

Question 3 (2 pts)

Résoudre le système linéaire : $\begin{cases} x + 3y + z - t = 0 \\ y - z + t = 0 \end{cases}$

Le système est déjà échelonné : inconnues principales x et y, paramètres z et t.

Le système est équivalent à $\{x = -3y - z + t = -4z + 4ty = z - t : L'ensemble des solutions est \{(-4z + 4t, z - t, z, t), z, t \in \mathbb{R}\} = \{z(-4, 1, 1, 0) + t(4, -1, 0, 1), z, t \in \mathbb{R}\}.$

Question 4 (3 pts)

Résoudre l'équation différentielle (*E*) : $y'' + 4y' + 5y = e^x$.

L'équation caractéristique associée est $r^2 + 4r + 5 = 0$ de discriminant $\Delta = -4 = (2i)^2$. Ses solutions sont donc $-2 \pm i$.

Les solutions de l'équation homogème y'' + 4y' + 5 = 0 sont donc $y_H : x \mapsto e^{-2x} (A\cos(x) + B\sin(x))$, avec $A, B \in \mathbb{R}$.

On cherche $P \in \mathbb{R}$ tel que $y_P : x \mapsto P e^x$ soit solution de (E). Or y_P est solution de (E) ssi $\forall x \in \mathbb{R}$, $P e^x + 4P e^x + 5P e^x = e^x \iff 10P = 1$. Donc $y_P : x \mapsto \frac{1}{10} e^x$ est solution de (E).

L'ensemble des solutions de
$$(E)$$
 est $\left\{x \mapsto e^{-2x} (A\cos(x) + B\sin(x)) + \frac{1}{10}e^x, A, B \in \mathbb{R}\right\}$.

Contrôle de cours 7 - EDL / Systèmes linéaires - Sujet B Mercredi 19 novembre 2025

Question 1 (2 pts)

Résoudre l'équation différentielle (E): $y' + \sin(2t)y = 0$.

L'équation est homogène. De plus, $\int_{-\infty}^{t} \sin(2x) dx = -\frac{1}{2} \cos(2t) + K$, donc $y' + \sin(2t)y = 0 \iff \exists C \in \mathbb{K} \mid y : t \mapsto C e^{\frac{\cos(2t)}{2}}$.

Question 2 (5 pts)

Résoudre l'équation différentielle $(E): xy'-2y=x^3 e^{2x}$ sur $]0,+\infty[$. L'équation homogène associée est $(H): y'-\frac{2}{x}y=0$. On pose $a: x\mapsto -\frac{2}{x}$ de primitive $A: x\mapsto -2\ln(x)$. Donc les solutions de (H) sont $y_H: x\mapsto Ke^{2\ln(x)}=Kx^2$ avec $K\in\mathbb{R}$.

On fait varier la constante : on cherche une fonction s dérivable telle que $y_P : x \mapsto s(x)x^2$ est solution de (E). Or y_P est solution de (E) ssi $\forall x \in \mathbb{R}$, $s'(x)x^2 + 2xs(x) - 2xs(x) = x^2 e^{2x} \iff \forall x \in \mathbb{R}$, $s'(x) = e^{2x}$. On prend donc $s(x) = \frac{e^{2x}}{2}$ et $y_P : x \mapsto \frac{x^2}{2} e^{2x}$ est une solution de (E).

L'ensemble des solutions de (E) est $\left\{x \mapsto Kx^2 + \frac{x^2}{2}e^{2x}, K \in \mathbb{R}\right\}$.

Question 3 (2 pts)

Résoudre le système linéaire : $\begin{cases} x + 2y + z - t = 0 \\ y - z + t = 0 \end{cases}$

Le système est déjà échelonné : inconnues principales x et y, paramètres z et t.

Le système est équivalent à $\{x = -2y - z + t = -3z + 3ty = z - t : L'ensemble des solutions est \{(-3z + 3t, z - t, z, t), z, t \in \mathbb{R}\} = \{z(-3, 1, 1, 0) + t(3, -1, 0, 1), z, t \in \mathbb{R}\}.$

Question 4 (3 pts)

Résoudre l'équation différentielle (*E*) : $y'' - 4y' + 4y = e^x$.

L'équation caractéristique associée est $r^2 - 4r + 4 = 0 \iff (r-2)^2 = 0$ de solution 2.

Les solutions de l'équation homogème y'' - 4y' + 4 = 0 sont donc $y_H : x \mapsto e^{2x}(A + Bx)$, avec $A, B \in \mathbb{R}$. On cherche $P \in \mathbb{R}$ tel que $y_P : x \mapsto Pe^x$ soit solution de (E). Or y_P est solution de (E) ssi $\forall x \in \mathbb{R}$, $Pe^x - 4Pe^x + 4Pe^x = e^x \iff P = 1$. Donc $y_P : x \mapsto e^x$ est solution de (E).

L'ensemble des solutions de (E) est $\{x \mapsto e^{2x}(A+Bx) + e^x, A, B \in \mathbb{R}\}.$