Équations différentielles - Exercices

Exercice 1. Résoudre les équations différentielles suivantes sur \mathbb{R} et préciser la solution qui vaut 1 pour t=0 (ou x=0).

a)
$$\frac{\mathrm{d}u}{\mathrm{d}t} - 3u = 2$$

b)
$$y' + y = t^2 + e^t$$

c)
$$y' - 2y = 2$$

c)
$$y' - 2y = 2$$

d) $\frac{dy}{dx} - 2y = e^x$

$$e) \frac{\mathrm{d}y}{\mathrm{d}t} - 2y = e^{2t}$$

Exercice 2 (Décharge d'un condensateur). Un condensateur de capacité C est placé en série avec une résistance R. La tension initiale à ses bornes vaut E et on admet que cette tension vérifie le problème de Cauchy suivant :

$$\begin{cases} RC\frac{\mathrm{d}u}{\mathrm{d}t} + u = 0\\ u(0) = E \end{cases}$$

On pose $\tau = RC$.

- 1. Résoudre ce problème de Cauchy et représenter la solution u en fonction du temps.
- 2. (a) Quel pourcentage de la tension initiale représente la tension u à l'instant τ ? 3τ ? 5τ ?
 - (b) Déterminer l'équation de la tangente à la courbe représentative de u en 0. Déterminer les coordonnées du point d'intersection de cette tangente avec l'axe des abscisses.

Exercice 3. Résoudre les équations suivantes sur \mathbb{R} et préciser la solution qui vaut 1 pour t=0 (ou x=0).

a)
$$y' + 2ty = e^{t}$$

a)
$$y' + 2ty = e^{t^2}$$
 b) $(1+x^2)y' + 2xy = 0$ c) $(1+4x^2)y' + y = 1$ d) $y' + 3t^2y = t^2 + e^{-t^3}$

c)
$$(1+4x^2)y'+y=1$$

d)
$$y' + 3t^2y = t^2 + e^{-t^3}$$

Exercice 4. Résoudre les équations suivantes sur l'intervalle précisé.

a)
$$(1+x^2)y' + xy = \sqrt{1+x^2} \text{ sur } \mathbb{R}$$

b)
$$(1+x^2)y' = xy + \sqrt{1+x^2} \operatorname{sur} \mathbb{R}$$

c)
$$xy' + y = \sin^3 x$$
, sur \mathbb{R}^*_-

d)
$$y'\cos x - y\sin x = \sin 2x$$
, sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

e)
$$y' + (\tan x)y = \cos^3 x$$
, sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

e)
$$y' + (\tan x)y = \cos^3 x$$
, sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
f) $y' + (\tan x)y = \sin x + \cos^3 x$, sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
g) $(1 - x^2)y' - 2xy = 1$, sur $\left[-1, 1 \right]$
h) $x^3y' + 4(1 - x^2)y = 0$, sur \mathbb{R}_+^*

g)
$$(1-x^2)y'-2xy=1$$
, sur $]-1,1$

h)
$$x^3y' + 4(1-x^2)y = 0$$
, sur \mathbb{R}^*_+

Exercice 5 (E3A 2019 PC). Résoudre sur \mathbb{R} l'équation différentielle : $W'(x) + \frac{1}{2(x+i)}W(x) = 0$ avec $W(0) = \sqrt{\pi}$.

1. Résoudre l'équation (E): xy' + y = 1 sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .

- 2. L'équation (E) admet-elle des solutions définies sur \mathbb{R} ?
- 3. Reprendre les questions précédentes avec l'équation (E) : $xy' 2y = x^3$.

1. Résoudre dans \mathbb{C} l'équation différentielle : $y'' + y = e^{(1+2i)t}$. Exercice 7.

2. Résoudre dans \mathbb{R} l'équation différentielle : $y'' + y = e^t \cos 2t$.

1. Résoudre l'équation différentielle : $\frac{d^2u}{dt^2} - 4\frac{du}{dt} + 3u = \cos 2t$. Exercice 8.

- 2. Résoudre l'équation différentielle : $y'' 4y' + 3y = e^t$.
- 3. Résoudre l'équation différentielle : $y'' 4y' + 3y = 2e^t 3\cos 2t$.

Exercice 9. Résoudre dans \mathbb{R} les équations suivantes :

a)
$$y'' + y' - 6y = 1$$

a)
$$y'' + y' - 6y = 1$$

d)
$$y'' + 3y' + 2y = \text{ch}(x)$$

$$g) y'' + 4y = \cos(t)$$

b)
$$y'' + 4y' = 4$$

e)
$$y'' + 3y' + 2y = \sinh(x)$$

h)
$$y'' + 4y = \cos(2t)$$

b)
$$y'' + 4y' = 4$$

c) $y'' + 2y' - 8y = e^{3t}$

f)
$$y'' + 2y' + y = 2e^{-}$$

d)
$$y'' + 3y' + 2y = ch(x)$$

e) $y'' + 3y' + 2y = sh(x)$
f) $y'' + 2y' + y = 2e^{-x}$
g) $y'' + 4y = cos(t)$
h) $y'' + 4y = cos(2t)$
i) $y'' + y' - 2y = 8 sin(2x)$

Exercice 10. Résoudre le problème de Cauchy :

$$\begin{cases} y'' + 2y' + 10y = 5\\ y(0) = 1 \text{ et } y'(0) = 0 \end{cases}$$

Exercice 11. Résoudre $y'' - 2ay' + y = e^x$ en discutant suivant les valeurs du paramètre réel a.

Exercice 12. Prétexte : Soient x_1 et x_2 les abscisses en fonction du temps de deux masses reliées à deux points fixes et entre elles par trois ressorts de même raideur. On admet que x_1 et x_2 vérifient :

$$\begin{cases} x_1''(t) = -2x_1(t) + x_2(t) \\ x_2''(t) = x_1(t) - 2x_2(t) \end{cases}$$

- 1. En posant $y(t) = \frac{x_1(t) x_2(t)}{2}$ et $z(t) = \frac{x_1(t) + x_2(t)}{2}$, résoudre le système proposé.
- 2. En déduire les fonctions x_1 et x_2 avec les conditions initiales :

$$\begin{cases} x_1(0) &= 0 \\ x'_1(0) &= 0 \\ x_2(0) &= 1 \\ x'_2(0) &= 0 \end{cases}$$

Exercice 13. Soient a et b deux réels et c une fonction continue sur \mathbb{R}_+^* . On considère l'équation différentielle sur \mathbb{R}_+^* :

$$t^{2}y''(t) + aty'(t) + by(t) = c(t)$$
 (E)

Soit $f: \mathbb{R}^*_+ \to \mathbb{R}$ une fonction deux fois dérivable sur \mathbb{R}^*_+ . On définit la fonction $g: \mathbb{R} \to \mathbb{R}$ par :

$$\forall x \in \mathbb{R}, \quad g(x) = f(e^x).$$

- 1. Justifier que g est deux fois dérivable sur \mathbb{R} et, pour tout réel x, calculer g'(x) et g''(x) en fonction de f et de ses dérivées.
- 2. Pour tout $t \in \mathbb{R}_+^*$, exprimer f(t) en fonction de g.
- 3. Montrer que *f* est solution de (E) si et seulement si *g* est solution d'une équation différentielle linéaire différentielle d'ordre 2 à coefficients constants que l'on précisera.
- 4. Application:
 - (a) Résoudre $y'' 2y' + 5y = e^{2x}$.
 - (b) Résoudre sur \mathbb{R}^+_* l'équation

$$t^2 v'' - t v' + 5 v = t^2$$
.

Exercice 14. On considère l'équation différentielle (*E*) : $y^{(3)} - y = 0$.

- 1. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction trois fois dérivable sur \mathbb{R} . On pose g = f'' + f' + f. Montrer que f est solution de (E) ssi g est solution d'une EDL à déterminer.
- 2. En déduire l'ensemble des solutions de (E).

Exercice 15. Trouver toutes les applications $f : \mathbb{R} \to \mathbb{R}$ dérivables et telles que :

$$\forall x \in \mathbb{R}, f'(x) + f(x) = f(0) + f(1)$$

Exercice 16. Trouver toutes les applications $f : \mathbb{R} \to \mathbb{R}$ dérivables telles que :

$$\begin{cases} \forall x \in \mathbb{R}, f'(x) = f(x) + \int_0^1 f(t) dt \\ f(0) = 1 \end{cases}$$

Exercice 17. Déterminer les fonctions $f : \mathbb{R} \to \mathbb{R}$, dérivables en 0 et telles que :

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x)f(y).$$

Exercice 18. Trouver toutes les fonctions f dérivables sur \mathbb{R} et telles que :

$$\forall x \in \mathbb{R}, f'(x) = f(\pi - x).$$

I. Indications - Solutions

Exercice 1:

- a) Solution générale de l'équation homogène : $u_H(t) = C e^{3t}$, $C \in \mathbb{R}$. Solution particulière : $u_P(t) = -\frac{2}{3}$ (solution évidente). Solution générale de l'équation : $u(t) = C e^{3t} \frac{2}{3}$, $C \in \mathbb{R}$. Condition initiale : $C = \frac{5}{3}$.
- b) Solution générale de l'équation homogène : $y_H(t) = C e^{-t}$, $C \in \mathbb{R}$. Solution particulière : $y_P(t) = t^2 2t + 2 + \frac{e^t}{2}$ (superposition + solution évidente). Solution générale de l'équation : $y(t) = C e^{-t} + t^2 2t + 2 + \frac{e^t}{2}$, $C \in \mathbb{R}$. Condition initiale : $C = -\frac{3}{2}$.
- c) Solution générale de l'équation homogène : $y_H(t) = C e^{2t}$, $C \in \mathbb{R}$. Solution particulière : $y_P(t) = -1$ (solution évidente). Solution générale de l'équation : $y(t) = C e^{2t} 1$, $C \in \mathbb{R}$. Condition initiale : C = 2.
- d) Solution générale de l'équation homogène : $y_H(x) = Ce^{2x}$, $C \in \mathbb{R}$. Solution particulière : $y_P(x) = -e^x$ (solution évidente). Solution générale de l'équation : $y(x) = Ce^{2x} e^x$, $C \in \mathbb{R}$. Condition initiale : C = 2.
- e) Solution générale de l'équation homogène : $y_H(t) = Ce^{2t}$, $C \in \mathbb{R}$. Solution particulière : $y_P(t) = te^{2t}$ (solution évidente). Solution générale de l'équation : $y(t) = Ce^{2t} + te^{2t}$, $C \in \mathbb{R}$. Condition initiale : C = 1.

Exercice 2:

- 1. Solution générale de l'équation : $u(t) = Ce^{-t/\tau}$. $u(0) = E \iff C = E$. Donc $u(t) = Ee^{-t/\tau}$.
- 2. (a) $\frac{u(\tau)}{u(0)} = e^{-1} \cong 36,79\%$, $\frac{u(3\tau)}{u(0)} = e^{-3} \cong 4,98\%$ et $\frac{u(5\tau)}{u(0)} = e^{-5} \cong 0,67\%$.
 - (b) $y = u'(0)t + u(0) = -Et/\tau + E$, qui coupe l'axe des abscisses pour $t = \tau$.

Exercice 3:

- a) Solution générale de l'équation homogène : $y_H(t) = C e^{-t^2}$, $C \in \mathbb{R}$. Solution particulière $y_P(t) = e^{-t^2} \int_{x=0}^t e^{2x^2} dx$ (variation de la constante). Ainsi les solutions de l'équation initiale sont $y(t) = e^{-t^2} \int_{x=0}^t e^{2x^2} dx + C e^{-t^2}$, $C \in \mathbb{R}$. Puis $y(0) = 1 \iff C = 1$.
- b) $(1+x^2)y'+2xy=0 \iff y'+\frac{2x}{1+x^2}y=0$ car $1+x^2$ ne s'annule jamais sur \mathbb{R} . Solution générale de l'équation : $y(x)=C\frac{1}{x^2+1}$, $C\in\mathbb{R}$. Puis $y(0)=1 \iff C=1$.
- c) $(1+4x^2)y'+y=1 \iff y'+\frac{1}{1+(2x)^2}y=\frac{1}{1+(2x)^2}$. Solution générale de l'équation homogène : $y_H(x)=C\,\mathrm{e}^{-\frac{\arctan(2x)}{2}}$, $C\in\mathbb{R}$. Solution particulière $y_P(x)=1$. Ainsi les solutions de l'équation initiale sont $y(x)=1+C\,\mathrm{e}^{-\frac{\arctan(2x)}{2}}$, $C\in\mathbb{R}$. Puis $y(0)=1\iff C=0$.
- d) Solution générale de l'équation homogène : $y_H(t) = Ce^{-t^3}$, $C \in \mathbb{R}$. Solution particulière $y_P(t) = \frac{1}{3} + te^{-t^3}$ (variation de la constante). Ainsi les solutions de l'équation initiale sont $y(t) = \frac{1}{3} + te^{-t^3} + Ce^{-t^3}$, $C \in \mathbb{R}$. Puis $y(0) = 1 \iff C = \frac{2}{3}$.

Exercice 4:

a)
$$S = \left\{ x \mapsto \frac{x}{\sqrt{x^2 + 1}} + \frac{C}{\sqrt{x^2 + 1}}, C \in \mathbb{R} \right\}.$$

b) $S = \left\{ x \mapsto \arctan(x)\sqrt{x^2 + 1} + C\sqrt{x^2 + 1}, C \in \mathbb{R} \right\}.$
c) $S = \left\{ x \mapsto -\frac{\cos(x)}{x} + \frac{\cos^3(x)}{3x} + \frac{C}{x}, C \in \mathbb{R} \right\}.$

d) $S = \left\{ x \mapsto -\frac{\cos(2x)}{2\cos(x)} + \frac{C}{\cos(x)}, C \in \mathbb{R} \right\}.$

f)
$$S = \left\{ x \mapsto -\ln(\cos(x))\cos(x) + \frac{x\cos(x)}{2} + \frac{\cos(x)\sin(2x)}{4} + C\cos(x), C \in \mathbb{R} \right\}$$

g)
$$S = \left\{ x \mapsto -\frac{x}{x^2 - 1} + \frac{C}{x^2 - 1}, C \in \mathbb{R} \right\}.$$

h)
$$S = \left\{ x \mapsto C \frac{e^{\frac{-2}{x^2}}}{x^4}, C \in \mathbb{R} \right\}.$$

Exercice 5: On commence par cherche une primitive de $x \mapsto \frac{1}{2} \frac{1}{x+i} = \frac{1}{2} \frac{x}{x^2+1} - \frac{i}{2} \frac{1}{x^2+1}$, qui est $x \mapsto \frac{1}{4} \ln(x^2+1) - \frac{i}{2} \arctan(x)$. Solution de l'équation (homogène) : $W_H(x) = C \frac{1}{(x^2+1)^{\frac{1}{4}}} e^{\frac{i}{2} \arctan(x)}$. Avec la condition initiale, $C = \sqrt{\pi}$.

Exercice 6:

- 1. Sur $\mathbb{R}_{+}^{*}: y_{-}(x) = 1 + C_{+} \frac{1}{x}, C_{+} \in \mathbb{R}, \text{ sur } \mathbb{R}_{-}^{*}: y_{+}(x) = 1 + C_{+} \frac{1}{x}, C_{-} \in \mathbb{R}.$
- 2. Soit y une solution de (E) définie sur \mathbb{R} . Ses restrictions sur \mathbb{R}_+^* et \mathbb{R}_-^* sont données à la question précédente. En regardant les limites en 0^+ et 0^- , on a forcément $C_+ = C_- = 0$. Donc y = 1.
- 3. Sur \mathbb{R}_{\pm}^* : $y_{\pm}(x) = C_{\pm}x^2 + x^3$, $C_{\pm} \in \mathbb{R}$. On prend y une solution sur \mathbb{R} . En calculant la limite de y en 0, on ne trouve pas de condition sur C_{\pm} . En regardant la dérivée en 0, on ne trouve pas de condition non plus! On trouve donc $y = \begin{cases} C_{+}x^2 + x^3 & \text{si } x \ge 0 \\ C_{-}x^2 + x^3 & \text{si } x \le 0 \end{cases}$.

Exercice 7:

- 1. Solution générale de l'équation homogène : $y_H(t) = C_1 e^{it} + C_2 e^{-it}$, $C_1, C_2 \in \mathbb{C}$. Solution particulière $y_P(t) = \frac{-1-2i}{10} e^{(1+2i)t}$. Ainsi les solutions de l'équation initiale sont $y(t) = \frac{-1-2i}{10} e^{(1+2i)t} + C_1 e^{it} + C_2 e^{-it}$, $C_1, C_2 \in \mathbb{C}$.
- 2. On remarque que $e^t \cos(2t) = \operatorname{Re}\left(e^{(1+2i)t}\right)$, donc les solutions dans \mathbb{R} de l'équation sont $y(t) = \operatorname{Re}\left(\frac{-1-2i}{10}e^{(1+2i)t}\right) + C_1 \cos t + C_2 \sin t = -\frac{1}{10}e^t \cos(2t) + \frac{2}{10}e^t \sin(2t) + C_1 \cos t + C_2 \sin t$, $C_1, C_2 \in \mathbb{R}$.

Exercice 8:

1.
$$S = \left\{ t \mapsto -\frac{1}{65} \left(\cos(2t) + 8\sin(2t) \right) + C_1 e^{3t} + C_2 e^t, C_1, C_2 \in \mathbb{R} \right\}$$

2.
$$S = \left\{ t \mapsto -\frac{1}{2} t e^t + C_1 e^{3t} + C_2 e^t, C_1, C_2 \in \mathbb{R} \right\}$$

3.
$$S = \left\{ x \mapsto -x e^x + \frac{3}{65} \left(\cos(2x) + 8\sin(2x) \right) + C_1 e^{3x} + C_2 e^x, C_1, C_2 \in \mathbb{R} \right\}$$

Exercice 9:

a)
$$S = \left\{ x \mapsto C_1 e^{2x} + C_2 e^{-3x} - \frac{1}{6}, C_1, C_2 \in \mathbb{R} \right\}$$

b) $S = \left\{ x \mapsto C_1 + C_2 e^{-4x} + x, C_1, C_2 \in \mathbb{R} \right\}$
c) $S = \left\{ t \mapsto C_1 e^{2t} + C_2 e^{-4t} + \frac{1}{7} e^{3t}, C_1, C_2 \in \mathbb{R} \right\}$
d) $S = \left\{ x \mapsto C_1 e^{-x} + C_2 e^{-2x} + \frac{x}{2} e^{-x} + \frac{1}{12} e^x, C_1, C_2 \in \mathbb{R} \right\}$
e) $S = \left\{ x \mapsto C_1 e^{-x} + C_2 e^{-2x} - \frac{x}{2} e^{-x} + \frac{1}{12} e^x, C_1, C_2 \in \mathbb{R} \right\}$
i) $S = \left\{ x \mapsto C_1 e^x + C_2 e^{-2x} - \frac{6}{5} \sin(2x) - \frac{2}{5} \cos(2x), C_1, C_2 \in \mathbb{R} \right\}$

Exercice 10: $S = \{t \mapsto (C_1 \cos(3t) + C_2 \sin(3t)) e^{-t} + \frac{1}{2}, C_1, C_2 \in \mathbb{R}\}$, conditions initiales : $C_1 = \frac{1}{2}, C_2 = \frac{1}{6}$.

Exercice 11: Le discriminant de l'équation caractéristique est $\Delta = 4(a^2 - 1)$.

- Si $a \in]-\infty, -1[\cup]1, +\infty[$, alors $\Delta > 0$ et les deux racines sont $r_1 = a + \sqrt{a^2 1}$ et $r_2 = a \sqrt{a^2 1}$. Les solutions de l'équation homogène sont $y_H(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$, $C_1, C_2 \in \mathbb{R}$. Notons que $r_1 = 1 \iff a = 1$ et $r_2 = 1 \iff a = 1$. Une solution particulière est donnée par $y_P(x) = \frac{e^x}{2 2a}$.
- Si a = -1: les solutions de l'équation homogène sont $y_H(x) = (C_1 + C_2 x) e^{-x}$, $C_1, C_2 \in \mathbb{R}$. Une solution particulière est donnée par $y_P(x) = \frac{e^x}{4}$.
- Si a = 1: les solutions de l'équation homogène sont $y_H(x) = (C_1 + C_2 x) e^x$, $C_1, C_2 \in \mathbb{R}$. Une solution particulière est donnée par $y_P(x) = \frac{x^2 e^x}{2}$.
- Si $a \in]-1,1[$: les deux racines sont $r_1 = a + i\sqrt{1-a^2}$ et $r_2 = a i\sqrt{1-a^2}$. Les solutions de l'équation homogène sont $y_H(x) = (C_1\cos(\sqrt{1-a^2}\,t) + C_2\sin(\sqrt{1-a^2}\,t))\,e^{at}$, $C_1,C_2 \in \mathbb{R}$. Une solution particulière est donnée par $y_P(x) = \frac{e^x}{2-2a}$.

Exercice 12:

- 1. On vérifie aisément que y''(t) = -3y(t) et z''(t) = -z(t). Donc $y(t) = C_1 \cos(\sqrt{3}t) + C_2 \sin(\sqrt{3}t)$, $z(t) = C_3 \cos t + C_4 \sin t$, $C_1, C_2, C_3, C_4 \in \mathbb{R}$. Puis on trouve $x_1(t) = y(t) + z(t)$ et $x_2(t) = z(t) y(t)$.
- 2. $x_1(t) = -\frac{1}{2}\cos(\sqrt{3}t) + \frac{1}{2}\cos t$, $x_2(t) = \frac{1}{2}\cos(\sqrt{3}t) + \frac{1}{2}\cos t$.

Exercice 13:

1. La fonction g est la composée de f qui est 2 fois dérivables sur \mathbb{R}_+^* et de $x \mapsto e^x$ qui est deux fois dérivable sur \mathbb{R} et à valeurs dans \mathbb{R}_+^* . Donc g est deux fois dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$,

$$g'(x) = e^x f'(e^x)$$
 et $g''(x) = e^x f'(e^x) + e^{2x} f''(e^x)$

- 2. Pour tout $t \in \mathbb{R}_+^*$, $t = e^{\ln(t)}$, donc $f(t) = g(\ln(t))$
- Si f est solution de (E), alors pour tout $t \in \mathbb{R}_+^*$:

$$t^2 f''(t) + at f'(t) + b f(t) = c(t).$$

On pose $x = \ln(t)$ de sorte que pour tout $x \in \mathbb{R}$:

$$e^{2x} f''(e^x) + a e^x f'(e^x) + b f(e^x) = c(e^x)$$

donc

$$g''(x) - g'(x) + ag'(x) + bg(x) = c(e^x).$$

Ainsi, g est solution de l'EDL : $y'' + (a-1)y' + by = c(e^x)$.

• Réciproquement, si g est solution de l'EDL ci-dessus, alors pour tout $x \in \mathbb{R}$:

$$g''(x) + (a-1)g'(x) + bg(x) = c(e^x)$$

donc

$$e^{2x} f''(e^x) + ae^x f'(e^x) + bf(e^x) = c(e^x)$$

On pose $t = e^x$, de sorte que pour tout $t \in \mathbb{R}_+^*$

$$t^2 f''(t) + at f'(t) + b f(t) = c(t).$$

Donc f est solution de (E).

Ainsi, f est solution de (E) ssi g est solution de l'EDL: $y'' + (a-1)y' + by = c(e^x)$

4. (a) L'équation caractéristique est $x^2 - 2x + 5 = 0$, dont les racines sont $1 \pm 2i$. Les solutions de l'équation homogène sont donc de la forme $y_h(x) = (A\cos(2x) + B\sin(2x))e^x$, pour $A, B \in \mathbb{R}$.

On cherche une solution particulière y_p sous la forme $y_p(x) = Ce^{2x}$. On trouve $C = \frac{1}{5}$.

Ainsi, les solutions de l'équation $y'' - 2y' + 5y = e^{2x}$ sont les fonctions

$$x \mapsto \frac{1}{5} e^{2x} + (A\cos(2x) + B\sin(2x)) e^x \text{ pour } A, B \in \mathbb{R}.$$

(b) On a a = 1, donc a - 1 = -2 et b = 5. D'après la question 3, une fonction f est solution de $t^2y'' - ty' + 5y = t^2$ si et seulement si $g = f \circ \exp$ est solution de $y'' - 2y' + 5y = e^{2x}$. Ainsi, les solutions de l'équation $t^2y'' - ty' + 5y = t^2$ sont les fonctions

$$t \mapsto \frac{1}{5}t^2 + (A\cos(2\ln(t)) + B\sin(2\ln(t))) t, \text{ pour } A, B \in \mathbb{R}.$$

Exercice 14:

- 1. On commence par remarquer que g est dérivable sur \mathbb{R} et calculer $g' = f^{(3)} + f'' + f' = f^{(3)} f + g$. Si f est solution de (E), alors g' = g. Réciproquement, si g vérifie g' = g, alors $f^{(3)} f = 0$.
- 2. Les solutions de g' = g sont les fonctions $x \mapsto Ce^x$, pour $C \in \mathbb{R}$.

Ainsi, f est solution de (E) ssi il existe $C \in \mathbb{R}$ tel que $f'' + f' + f = Ce^x$. L'équation caractéristique a pour solutions $-\frac{1}{2} \pm i\frac{\sqrt{3}}{2}$, donc les solutions de l'équation homogène sont $x \mapsto e^{-x/2}(A\cos(\sqrt{3}/2) + B\sin(\sqrt{3}/2))$, avec $A, B \in \mathbb{R}$. On cherche ensuite une solution particulière sous la forme $x \mapsto Ke^x$, et on trouve K = C/3.

Au final, l'ensemble des solutions de (E) est : $\left\{x \mapsto \frac{C}{3}e^x + e^{-x/2}(A\cos(\sqrt{3}/2) + B\sin(\sqrt{3}/2)), \text{ avec } A, B, C \in \mathbb{R}\right\}$

Exercice 15: Analyse: Soit f une fonction dérivable vérifiant l'équation. On pose b = f(0) + f(1), puis on résoud y' + y = b. Les solutions sont $y(x) = b + C e^{-x}$, $C \in \mathbb{R}$. Ainsi f s'écrit $f(x) = b + C e^{-x}$. Synthèse: Réciproquement, on est ramené à l'équation $f(0) + f(1) = b \iff b = -\frac{C(e+1)}{e}$. Donc $S = \left\{x \mapsto C\left(-\frac{e+1}{e} + e^{-x}\right), C \in \mathbb{R}\right\}$.

Exercice 16: Analyse: Comme dans l'exercice précédent, on pose $b = \int_0^1 f(t) dt$, puis on résoud y' = y + b. On trouve y(x) = -b + b

 Ce^x , $C \in \mathbb{R}$. Synthèse: Réciproquement, on est ramené à l'équation $\int_0^1 f(t) dt = b \iff b = \frac{C(e-1)}{2}$. Donc $S = \left\{ C\left(\frac{e-1}{2} + e^x\right), C \in \mathbb{R} \right\}$. **Exercice 17:** Analyse: Soit f une solution du problème. On commence par démontrer que f(0) = 0 ou 1. Dans le premier cas, f est la

Exercice 17: Analyse: Soit f une solution du problème. On commence par démontrer que f(0) = 0 ou 1. Dans le premier cas, f est la fonction nulle. Dans le deuxième cas, on fixe $x \in \mathbb{R}$ et on démontre que f est dérivable en x et que f'(x) = f'(0)f(x). Ainsi, f est une fonction du type e^{at} , pour un certain $a \in \mathbb{R}$. Synthèse: On vérifie réciproquement que toutes ces fonctions conviennent.

Exercice 18 : Analyse : soit f une solution du problème. Comme f est dérivable sur $\mathbb R$ et $x\mapsto \pi-x$ aussi, f' est dérivable sur $\mathbb R$ par composition. Ainsi, f est deux fois dérivable sur $\mathbb R$. De plus, $f''(x)=-f'(\pi-x)=-f(x)$ pour tout $x\in\mathbb R$. Ainsi, f vérifie l'ED y''+y=0. Les solutions sont $y(x)=C_1\cos(x)+C_2\sin(x)$, $C_1,C_2\in\mathbb R$. On remplace dans l'équation de départ et on trouve que pour tout $x\in\mathbb R$, $-C_1\sin(x)+C_2\cos(x)=-C_1\cos(x)+C_2\sin(x)$. En prenant x=0 et $x=\frac{\pi}{2}$, on obtient $C_1=-C_2$. Synthèse : Prenons une fonction de la forme $f(x)=C(\cos(x)-\sin(x))$ avec $C\in\mathbb R$. Alors $f'(x)=C(-\cos(x)-\sin(x))=f(\pi-x)$ pour tout $x\in\mathbb R$.