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Chapitre 14 : Suites numériques

I. Suites numériques : généralités

I.1. Définitions

Définition I.1. Une suite numérique est une application u de N dans K. Pour tout n ∈ N, on note un le réel u(n), et
(un)n∈N, ou encore (un)n≥0 la suite u. On appelle un le terme général de u.

Remarque I.1. • Lorsque K=R, on parle de suite réelle.

• Certaines suites ne sont définies qu’à partir d’un certain entier n0. On les note alors (un)n≥n0 .

On peut définir une suite de plusieurs façons différentes :

• de façon explicite en donnant une expression de son terme général : un = f (n) ;

• de façon implicite en donnant une équation dépendant de n et dont la solution est un ;

• par récurrence en donnant son (ou ses) premier terme et une relation de récurrence : u0 = a et∀n ∈N,un+1 = f (un).

I.2. Variations

Définition I.2. Soit (un)n∈N une suite réelle. On dit que (un)n∈N est :

• majorée si l’ensemble {un ,n ∈N} est majoré, c’est-à-dire si : ∃M ∈R | ∀n ∈N,un ≤ M .
On dit alors que M est un majorant de (un), que M majore (un) ou encore que (un) est majorée par M .
On a une définition analogue pour les suites minorées.

• bornée si (un) est à la fois minorée et majorée.

• croissante (resp. strictement croissante) si : ∀n ∈N,un ≤ un+1 (resp. un+1 < un).

• décroissante (resp. strictement décroissante) si : ∀n ∈N,un ≥ un+1 (resp. un+1 > un).

• monotone (resp. strictement monotone) si elle est soit croissante soit décroissante (resp. soit strictement crois-
sante soit strictement décroissante).

Méthode. Pour montrer qu’une suite est monotone, on a essentiellement deux méthodes principales et deux particu-
lières :

• étudier le signe de un+1 −un ;

• si un > 0 pour tout n ∈N, étudier le quotient
un+1

un
par rapport à 1. En effet, si

un+1

un
≥ 1 (resp. ≤ 1) pour tout n ∈N,

alors la suite est croissante (resp. décroissante).

• Lorsque un = f (n), le sens de variation de (un) est le même que celui de f .

Proposition I.1. Soit (un)n∈N une suite réelle. Alors (un) est bornée si et seulement si (|un |) est majorée, c’est-à-dire ssi :
∃M ∈R+ | ∀n ∈N, |un | ≤ M.

Définition I.3. Une suite numérique (un)n∈N est dite stationnaire si elle est constante à partir d’un certain rang :

∃C ∈K,∃N ∈N | ∀n ∈N,n ≥ N ⇒ un =C .

I.3. Opérations

Définition I.4. Soient (un) et (vn) deux suites réelles et λ ∈R.

• On note λu la suite de terme général λun .

• On note u + v la suite de terme général un + vn .

• On note uv la suite de terme général un vn .
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II. Exemples

Proposition I.2. Soient (un)n∈N et (vn)n∈N deux suites réelles et λ ∈R.
Si u et v sont bornées, alors λu, u + v, uv aussi.

II. Exemples

II.1. Suites arithmétiques, géométriques et arithmético-géométriques

Définition II.1. • Soit r ∈ K. On dit qu’une suite (un)n∈N est arithmétique de raison r lorsque ∀n ∈ N, un+1 =
un + r .

• Soit q ∈K . On dit qu’une suite (un)n∈N est géométrique de raison q lorsque ∀n ∈N, un+1 = qun .

Méthode. Pour tester si une suite est arithmétique ou non :

• on calcule u1 −u0 et u2 −u1 ;

• si les deux valeurs sont différentes la suite n’est pas arithmétique;

• sinon, on calcule un+1 −un pour n’importe quel n.

Pour les suites géométriques, on fait de même en remplaçant les soustractions par des divisions.

Proposition II.1. 1. Soit (un) une suite arithmétique de raison r ∈K et de premier terme u0. Alors :

• ∀n ∈N,un = u0 +nr .

•
m∑

k=p
uk = up +um

2
(m −p +1).

2. Soit (un) une suite géométrique de raison q et de premier terme u0. Alors :

• ∀n ∈N,un = qnu0.

• Si q 6= 1,
m∑

k=p
uk = up

1−qm−p+1

1−q
.

Définition II.2. On dit qu’une suite (un)n∈N est arithmético-géométrique s’il existe a et b dans K tels que : ∀n ∈
N,un+1 = aun +b.

Méthode. Pour déterminer l’expression de un en fonction de n pour une suite arithmético-géométrique lorsque a 6= 1 et
b 6= 0 :

• on cherche une suite constante vérifiant la relation de récurrence : on résoud l’équation ℓ= aℓ+b ;

• On a alors pour tout n ∈N :

{
un+1 = aun +b

ℓ= aℓ+b
et en soustrayant, on obtient un+1−ℓ= a(un−ℓ) : la suite vn = un−ℓ

est donc géométrique de raison a.

• On exprime le terme général de vn , puis celui de un = vn +ℓ.

II.2. Suites récurrentes linéaires homogènes d’ordre 2

Définition II.3. On dit qu’une suite (un)n∈N est récurrente linéaire homogène d’ordre 2 à coefficients constants s’il
existe a et b 6= 0 dans K tels que : ∀n ∈N,un+2 = aun+1 +bun .
On appelle alors équation caractéristique associée l’équation x2 −ax −b = 0.

Proposition II.2. Soit r ∈ C. La suite (un) = (r n) vérifie : ∀n ∈ N, un+2 = aun+1 +bun ssi r est solution de l’équation
caractéristique.
Si de plus, l’équation caractéristique admet une racine double, alors la suite (vn) = (nr n) vérifie aussi la relation de
récurrence.
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II. Exemples

Théorème II.3

Soit (un) une suite complexe récurrente linéaire homogène d’ordre 2 à coefficients constants.

• Si l’équation caractéristique a deux solutions distinctes r1 et r2, alors il existe un unique couple (A,B) ∈ C2 tel
que :

∀n ∈N,un = Ar n
1 +Br n

2 .

• Si l’équation caractéristique a une seule solution r , alors il existe un unique couple (A,B) ∈C2 tel que :

∀n ∈N,un = (An +B)r n .

Théorème II.4

Soit (un) une suite réelle récurrente linéaire homogène d’ordre 2 à coefficients constants.

• Si l’équation caractéristique a deux solutions réelles distinctes r1 et r2, alors il existe un unique couple (A,B) ∈
R2 tel que :

∀n ∈N,un = Ar n
1 +Br n

2 .

• Si l’équation caractéristique a une seule solution r , alors il existe un unique couple (A,B) ∈R2 tel que :

∀n ∈N,un = (An +B)r n .

• Si l’équation caractéristique a deux solutions complexes conjuguées ρeiθ et ρe−iθ, alors il existe un unique
couple (A,B) ∈R2 tel que :

∀n ∈N,un = ρn(A cos(nθ)+B sin(nθ)).

II.3. Suites récurrentes d’ordre 1

Proposition II.5. Soit f une fonction définie sur une partie X de R. On dit que X est stable par f si f (X ) ⊂ X .
Dans ce cas, le système : {

u0 = a ∈ X

∀n ∈N,un+1 = f (un)

définit une unique suite (un)n∈N.
De plus, pour tout n ∈N, un ∈ X .

On peut représenter graphiquement une suite du type un+1 = f (un) de la façon suivante :

• on trace le graphe de f et la droite y = x ;

• on place en abscisse le point u0 = a ;

• on trace un segment vertical de u0 à C f , puis un segment horizontal jusqu’à la droite y = x.
L’abscisse du point obtenu est u1 ;

• on repète ces opérations (segment vertical juqu’à C f puis horizontal jusqu’à y = x) pour déterminer les termes
successifs de la suite.

Méthode. Soit I un intervalle de R et f : I → R telle que I est stable par f . On considère une suite (un) telle que u0 ∈ I et
∀n ∈N, un+1 = f (un).
Pour étudier la monotonie de (un)n∈N :

• on étudie le signe de la fonction x 7→ f (x)−x ;

• si f est croissante, alors (un) est monotone, et il suffit de comparer u0 et u1 pour décider si (un) est croissante ou
décroissante.
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III. Limite d’une suite

III. Limite d’une suite

III.1. Convergence

Définition III.1. La suite réelle (un)n∈N est convergente s’il existe un réel ℓ tel que

∀ε> 0,∃N ∈N | ∀n ∈N,n ≥ N ⇒|un −ℓ| ≤ ε.

On dit alors que ℓ est la limite de (un), ou encore que un tend vers ℓ, et on écrit un −−−−−→
n→+∞ ℓ, ou encore lim

n→+∞un = ℓ.

Si (un) ne converge pas, on dit que (un) est divergente.

Lorsque (un) tend vers ℓ, on peut approcher ℓ par les termes de la suite d’aussi près que l’on veut, du moment que l’indice
de la suite est assez grand.

Proposition III.1. Soit (un)n∈N une suite réelle. les propriétés suivantes sont équivalentes :
1. un −−−−−→

n→+∞ ℓ 2. un −ℓ−−−−−→
n→+∞ 0 3. |un −ℓ| −−−−−→

n→+∞ 0.

Proposition III.2. Toute suite convergente est bornée.

Remarque III.1. La réciproque est fausse. La suite de terme général un = (−1)n est bornée mais elle ne converge pas.

Il y a deux cas particuliers de suites divergentes : celles qui vont vers +∞ ou vers −∞.

Définition III.2. Soit (un)n∈N une suite réelle. On dit que (un) diverge vers :

• +∞ si : ∀A ∈R,∃N ∈N | ∀n ∈N,n ≥ N ⇒ un ≥ A • −∞ si : ∀A ∈R,∃N ∈N | ∀n ∈N,n ≥ N ⇒ un ≤ A

Proposition III.3 (Unicité de la limite). Soit (un) une suite réelle. Si (un) tend vers ℓ et vers ℓ′, alors ℓ = ℓ′. Autrement
dit, la limite d’une suite est unique.

Proposition III.4 (Limites et bornes sup/inf ). Soit A une partie non vide de R.

• Soit M un majorant de A. Alors M = sup(A) ssi il existe une suite (un) d’éléments de A tels que un → M.

• Soit m un minorant de A. Alors m = inf(A) ssi il existe une suite (un) d’éléments de A tels que un → m.

III.2. Opérations sur les limites

Lemme III.1. Soit (un) une suite numérique, ℓ ∈R et M > 0 un réel indépendant de n. Si :

∀ε> 0,∃N ∈N | ∀n ∈N,n ≥ N ⇒|un −ℓ| ≤ Mε

alors (un) converge vers ℓ.

Théorème III.5

Somme un + vn :

limun

lim vn
β +∞ −∞

α α+β +∞ −∞
+∞ +∞ +∞ FI
−∞ −∞ FI −∞

Produit un vn :

limun

lim vn
β 6= 0 ±∞

0 0 FI
α 6= 0 αβ ∗∞
±∞ ∗∞ ∗∞

Quotient
un

vn
:

limun

lim vn
β 6= 0 0± ±∞

α 6= 0
α

β
∗∞ 0

0 0 FI 0
±∞ ∗∞ ∗∞ FI
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III. Limite d’une suite

On appelle suite extraite de (un)n∈N une suite obtenue en ne prenant que certains termes de (un), pris dans le même ordre
qu’ils apparaissent dans (un). Plus formellement :

Définition III.3. Soit (un)n∈N une suite. On appelle suite extraite de (un) toute suite de la forme (uφ(n))n∈N, où φ : N→
N est une fonction strictement croissante.

Proposition III.6. Si la suite (un)n∈N tend vers ℓ ∈R, alors toute suite extraite (uφ(n))n∈N tend aussi vers ℓ.

Méthode. Pour montrer qu’une suite n’a pas de limite, il suffit de trouver deux suites extraites qui n’ont pas la même
convergence.
Par exemple, si un = (−1)n , alors les suites extraites (u2n) et (u2n+1) convergent toutes les deux, mais la première tend vers
1, la seconde vers −1. Donc la contraposée de la proposition III.6 montre que (un) n’est pas convergente.

On a la « réciproque » suivante :

Proposition III.7. Soit (un)n∈N une suite réelle. Si les suites extraites (u2n) et (u2n+1) tendent vers une même limite ℓ ∈R,
alors (un) tend aussi vers ℓ.

Théorème III.8

Soit f : I →R une fonction, ℓ un élément ou une borne de I , L ∈R et (un)n∈N une suite réelle.

lim
n→+∞un = ℓ et lim

x→ℓ
f (x) = L ⇒ lim

n→+∞ f (un) = L.

Remarque III.2. Ce résultat est très utile lorsqu’on étudie une suite vérifiant une relation un+1 = f (un) : en effet, si on
a montré que (un) converge vers une limite ℓ inconnue, alors (un+1) converge aussi vers ℓ et si lim

x→ℓ
f (x) = f (ℓ), alors la

limite vérifie l’équation f (ℓ) = ℓ.

III.3. Exemples

Exemple III.1. La suite un = n tend vers +∞. En effet, soit A > 0, et N = bAc+1. Alors, pour tout n ≥ N , un = n ≥ N > A.
Plus généralement, si α> 0, alors nα →+∞, et si β< 0, alors nβ → 0.

Proposition III.9. Soit (un) une suite arithmétique de raison r et de premier terme u0. Alors :

• si r > 0, un →+∞ ; • si r < 0, un →−∞ ; • si r = 0, un → u0.

III.4. Passage à la limite

Proposition III.10. Soit (un)n∈N une suite réelle qui tend vers ℓ> 0. Alors il existe N ∈N tel que :

∀n ∈N,n ≥ N ⇒ un > 0

Théorème III.11

Soient (un)n∈N et (vn)n∈N deux suites réelles convergentes. On suppose qu’il existe N ∈ N tel que pour tout n ≥ N ,
un ≤ vn .
Alors lim

n→+∞un ≤ lim
n→+∞vn .

Remarques III.3. Attention :

• il faut d’abord justifier que les deux suites convergent ;

• les inégalités strictes ne passent pas à la limite.
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IV. Théorèmes de convergence

IV. Théorèmes de convergence

IV.1. Comparaisons

Théorème IV.1

Soient (un)n∈N, (mn)n∈N et (Mn)n∈N trois suites réelles, et ℓ ∈R.

Si, à partir d’un certain rang et lorsque n →+∞ alors
un ≤ Mn Mn →−∞ un →−∞
mn ≤ un mn →+∞ un →+∞

|un −ℓ| ≤ Mn Mn → 0 un → ℓ

mn ≤ un ≤ Mn mn → ℓ et Mn → ℓ un → ℓ (∗)

(∗) Ce théorème est appelé théorème des gendarmes.

Proposition IV.2. Tout nombre réel est la limite d’une suite de nombres rationnels.

IV.2. Théorème des limites monotones

Théorème IV.3

Soit (un)n∈N une suite réelle croissante.

• Si (un) est majorée, alors elle converge.

• Si (un) n’est pas majorée, alors un →+∞.

Corollaire IV.4. Soit (un)n∈N une suite réelle décroissante.

• Si (un) est minorée, alors elle converge.

• Si (un) n’est pas minorée, alors un →−∞.

Proposition IV.5. Soit (un) une suite géométrique de raison q et de premier terme u0. Alors :

• si q > 1, un →+∞ si u0 > 0 et un →−∞ si u0 < 0 ;

• si −1 < q < 1, un → 0 ;

• si q ≤−1, (un) n’a pas de limite.

IV.3. Suites adjacentes

Théorème IV.6

Soient (un)n∈N et (vn)n∈N deux suites réelles telles que :

i) (un) est croissante ;

ii) (vn) est décroissante ;

iii) lim
n→+∞vn −un = 0.

Alors (un) et (vn) sont convergentes et convergent vers la même limite ℓ. De plus, pour tout n ∈N, un ≤ ℓ≤ vn .
On dit que (un) et (vn) sont des suites adjacentes.
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V. Suites complexes

V. Suites complexes

Définition V.1. La suite numérique (un)n∈N ∈CN est convergente s’il existe ℓ ∈C tel que

∀ε> 0,∃N ∈N | ∀n ∈N,n ≥ N ⇒|un −ℓ| ≤ ε.

Si (un) ne converge pas, on dit que (un) est divergente.

Proposition V.1. Soit (un) ∈ CN. La suite (un) converge vers ℓ ∈ C si et seulement si (Re(un)) converge vers Re(ℓ) et
(Im(un)) converge vers Im(ℓ).

Définition V.2. Soit (un) une suite complexe. On dit que (un) est bornée si :

∃M ∈R | ∀n ∈N, |un | ≤ M .

Remarque V.1. Tous les résultats ne faisant pas intervenir d’inégalité ou de monotonie sont encore vrais pour les suites
complexes : une suite convergente est bornée, les opérations sur les limites et la version suivante du théorème d’encadre-
ment.

Proposition V.2. Soit (un) ∈KN, (vn) ∈RN et ℓ ∈K. Si |un −ℓ| ≤ vn à partir d’un certain rang et vn → 0, alors un → ℓ.

Proposition V.3. Soit (un) une suite bornée et (vn) une suite qui converge vers 0. Alors la suite (un vn) converge vers 0.

VI. Comparaison de suites

VI.1. Négligeabilité, domination

Définition VI.1. Soit (un)n∈N et (vn)n∈N deux suites numériques. On suppose que vn ne s’annule pas à partir d’un
certain rang. On dit alors que la suite (un) est :

• négligeable devant (vn) si
un

vn
−−−−−→
n→+∞ 0, et on note un = o(vn) ;

• dominée par (vn) si

(
un

vn

)
n∈N

est bornée, et on note un =O(vn).

Remarque VI.1. un =O(1) ⇐⇒ (un) est bornée.

Proposition VI.1. Soit (un) une suite numérique et ℓ ∈C. Alors limun = ℓ ⇐⇒ un = ℓ+o(1).
En particulier, un = o(1) ⇐⇒ un → 0.

Proposition VI.2. 1. Si un = o(vn) alors un =O(vn).

2. Si un = o(vn) et vn = o(wn), alors un = o(wn).

3. Si un =O(vn) et vn =O(wn), alors un =O(wn).

Proposition VI.3. 1. Si un = o(wn), vn = o(wn) et λ,µ ∈C, alors λun +µvn = o(wn).

2. Si un = o(vn) et wn = o(zn), alors un wn = o(vn zn).

3. Si un = o(vn), alors un wn = o(vn wn).

4. Si φ : N→N est strictement croissante et un = o(vn), alors uφ(n) = o(vφ(n)).
Même chose en remplaçant o par O.
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VI. Comparaison de suites

Remarque VI.2. On a donc un ×o(1) = o(un).

Proposition VI.4 (Croissances comparées). Soient α,β ∈R et q,r ∈R∗ :

1. si β> 0, (lnn)α = o(nβ).

2. si α<β, nα = o(nβ).

3. si |q | > 1, nα = o(qn)

4. si |q | < 1, qn = o(nα).

5. si |q| < |r |, qn = o(r n).

6. qn = o(n!).

7. n! = o(nn).

VI.2. Équivalence

Définition VI.2. Soit (un)n∈N et (vn)n∈N deux suites numériques qui ne s’annulent pas à partir d’un certain rang. On

dit alors que la suite (un) est équivalente à (vn) si
un

vn
−−−−−→
n→+∞ 1, et on note un ∼ vn .

Proposition VI.5. 1. un ∼ un (refléxivité).

2. Si un ∼ vn , alors vn ∼ un (symétrie).

3. Si un ∼ vn et vn ∼ wn , alors un ∼ wn (transitivité).

Remarque VI.3. On dit que ∼ est une relation d’équivalence sur l’ensemble des suites qui ne s’annulent pas à partir d’un
certain rang.

Proposition VI.6. 1. un ∼ vn si et seulement si un − vn = o(vn). On écrira aussi un = vn +o(vn).

2. Si un = o(vn) et un ∼αn et vn ∼βn , alors αn = o(βn).

Proposition VI.7. Soit (un) une suite numérique et ℓ ∈C. Alors :

• si ℓ 6= 0 : limun = ℓ ⇐⇒ un ∼ ℓ ;

• en général : limun = ℓ ⇐⇒ un = ℓ+o(1).

Proposition VI.8. 1. Si un ∼ vn et wn ∼ zn , alors un wn ∼ vn zn et
un

wn
∼ vn

zn
.

2. Si un ∼ vn , alors |un | ∼ |vn |.
3. Si λ ∈R est fixé, et un ∼ vn , alors (un)λ ∼ (vn)λ (lorsque ces expressions ont un sens).

4. Si φ : N→N est strictement croissante et un ∼ vn , alors uφ(n) ∼ vφ(n).

Remarque VI.4. Attention : on ne peut pas en général ajouter les équivalents ! Il faut toujours revenir à la définition. On
peut par contre ajouter les o.
On ne peut pas non plus composer les équivalents par la gauche!

Proposition VI.9. Si vn = o(un), alors un + vn ∼ un .

Proposition VI.10. 1. Si un ∼ vn et vn → ℓ, alors un → ℓ.

2. Si (un) et (vn) sont réelles et si un ∼ vn alors un et vn ont le même signe à partir d’un certain rang.

Proposition VI.11. Soient (un), (vn) et (wn) trois suites réelles telles que un ≤ vn ≤ wn à partir d’un certain rang. Alors,
si un ∼ wn , on a vn ∼ un et vn ∼ wn .
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