
I Fonctions récursives 1

Chapitre 1.7 : Récursivité
I Fonctions récursives

Une fonction récursive est une fonction qui s’appelle elle-même. Un des exemples les plus simple est le calcul
de la factorielle d’un entier positif :

def fact(n:int) -> int:
'''Renvoie n!
'''
if n == 0:

return 1
else:

return n*fact(n-1)

Si on croit la spécification de cette fonction, fact(n-1) renvoie (n− 1)! ce qui donne bien n× (n− 1)! = n!. C’est
en quelque sorte une fonction définie par récurrence, et qui se prête bien à la résolution de problèmes définis par
récurrence (notamment le calcul des termes d’une suite).

Une fonction récursive se présente généralement sous la forme :
def f(...):

if ...: #Condition d'arrêt, cas de base
#Pas d'appel récursif

else:
#Un ou plusieurs appels récursifs

Le cas de base est très important et doit être cohérent avec les appels récursifs. Par exemple, l’appel de la
fonction

def fact(n):
return n*fact(n-1)

avec n’importe quel n donnera une erreur de dépassement de pile (voir plus loin).

De même, si on essaye de calculer n! avec n! =
(n+ 1)!

(n+ 1)
:

def fact_inv(n):
if n == 0:

return 1
else:

return fact_inv(n+1)/(n+1)

II Principe de fonctionnement : les piles
Une pile (ou stack) est une structure de donnée linéaire (éléments rangés sur une ligne) qui permet de stocker

des éléments en utilisant le principe LIFO : Last In First Out. On ne peut accéder qu’au dernier élément ajouté,
appelé sommet.
On dispose de trois opérations élémentaires sur les piles :

• créer une pile ;
• empiler (push) un élément sur une pile ;
• dépiler (pop) un élément d’une pile.
L’interpréteur Python utilise une pile d’appel pour stocker les appels de fonctions lors de l’exécution d’un

script :
• l’interpréteur exécute la fonction en haut de la pile ;
• à chaque fois que le script appelle une fonction, l’interpréteur créé un bloc fonction (qui contient des infor-

mations sur la fonction : les arguments, de la place pour les variables locales, de la place pour la valeur de
retour, ...) et le place sur la pile et commence à l’exécuter.

Par exemple, lors de l’exécution de fact(3) :

ITC PCSI2 – Lycée Albert Schweitzer



III Terminaison et complexité 2

fact
n = 3
Retour ?

Étape 1

fact
n = 2
Retour ?

fact
n = 3
Retour ?

Étape 2

fact
n = 1
Retour ?

fact
n = 2
Retour ?

fact
n = 3
Retour ?

Étape 3

fact
n = 0
Retour 1

fact
n = 1
Retour ?

fact
n = 2
Retour ?

fact
n = 3
Retour ?

Étape 4
fact
n = 1
Retour 1

fact
n = 2
Retour ?

fact
n = 3
Retour ?

Étape 5

fact
n = 2
Retour 2

fact
n = 3
Retour ?

Étape 6

fact
n = 3
Retour 6

Étape 7

Sous Python, la pile d’appel est limitée à 1000 appels. Autrement, on obtient :
RuntimeError : maximum recursion depth exceeded

III Terminaison et complexité
Pour justifier la terminaison d’une fonction récursive, on n’a pas de variant, mais on procède en suivant les

mêmes idées que pour les boucles.
■ Exemple 1 La fonction récursive :

def fact(n : int) -> int:
''' Fonction récursive qui renvoie
'''
assert
if n == 0:

return 1
else:

return n*fact(n-1)

termine car ■

Pour déterminer la complexité temporelle d’une fonction récursive, on établit en général une relation de récur-
rence entre les coûts pour différentes tailles d’entrée.

■ Exemple 2 On calcule les termes de la suite (un) définie par u0 = 0 et un+1 = un + 1 si un < 1 et un+1 =
un

2
sinon.

def u(n : int) -> float:
if n == 0:

return 0

ITC PCSI2 – Lycée Albert Schweitzer



III Terminaison et complexité 3

else:
if u(n-1) < 1:

return u(n-1) + 1
else:

return u(n-1)/2

Notons cn la complexité pour l’appel de u(n). Alors, c0 = O(1) et pour tout n ≥ 1, cn = 2cn−1 +2. On a une suite
arithmético-géométrique et cn = O(2n).
On peut améliorer énormément cette complexité :

■

Les fonctions récursives fournissent en général un code concis et élégant, mais qui peut cacher des problèmes
de dépassement de pile et de complexité. Par exemple, considérons la suite de Fibonacci :

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2 si n ≥ 2

On obtient naturellement la fonction récursive suivante :
def fibo(n):

Celle-ci pose un problème important : lors de l’exécution de fibo(5), la fonction fibo(2) est exécutée 3 fois, et il
y a 15 appels en tout ! La complexité est exponentielle.
On peut dérécursifier la fonction précédente pour obtenir une complexité linéaire, mais une fonction moins facilement
lisible :

def fibo_iter(n):

On peut aussi résoudre le problème soulevé par la fonction récursive en utilisant une technique appelée mémoïsation :
l’idée est de sauvegarder au fur et à mesure les valeurs de la suite pour éviter d’avoir à les recalculer.
Pour cela, on utilise un dictionnaire d dont les clés seront les entiers n et les valeurs les Fn qu’on a déjà calculé. A
chaque appel, on commence par vérifier si n est dans d, auquel cas, on renvoie la valeur associée. Sinon, on appelle
récursivement la fonction pour calculer Fn et on stocke cette valeur dans le dictionnaire avant de la renvoyer. On
obtient par exemple :

ITC PCSI2 – Lycée Albert Schweitzer



IV Exercices 4

def fibo_memo(n, d={0:1, 1:1}):
if n in d:

return d[n]
else:

F = fibo_memo(n-2, d) + fibo_memo(n-1, d)
d[n] = F
return F

On utilise ici une astuce pythonesque : lorsqu’on appelle la fonction fibo_memo(5) (sans préciser d) le paramètre
d est automatiquement crée avec valeur {0:1, 1:1}.

IV Exercices
Exercice 1 — Mystère. On considère les deux fonctions suivantes :

def mys(n):
if n == 0:

return True
else:

return tere(n-1)

def tere(n):
if n == 0:

return False
else:

return mys(n-1)

1. Exécuter à la main les instructions mys(4) et tere(4).
2. Que font ces fonctions ? Le démontrer par récurrence.
3. Recopier et commenter ces fonctions.
4. Comment modifier la fonction mys pour qu’elle renvoie la même chose mais sans utiliser la fonction tere ?

■

Exercice 2 On considère la fonction suivante :
def decompte(n):

if n >= 0:
print(n)
decompte(n-1)

1. Exécuter à la main cette fonction avec de petites valeurs de n. Commenter cette fonction.
2. Écrire une fonction récursive compte(n) qui affiche les entiers de 0 à n.

■

Exercice 3 Écrire une fonction récursive dichotomie_rec(L, e, g, d) qui prend en paramètres une liste triée
par ordre croissant, un nombre e et deux indices g et d et qui renvoie True si e est dans L[g:d] en utilisant le
principe de dichotomie. ■

Exercice 4 — Méthode de Hörner. Soit P =

n∑
k=0

akX
k un polynôme. L’algorithme de Hörner se base sur l’égalité

suivante :
P = ((. . . ((anX + an−1)X + an−2)X + . . .)X + a1)X + a0

pour calculer P (b) pour un flottant b. Le polyôme P est représenté par la liste [an, . . . , a0].
Écrire une fonction récursive hornerrec(P, b) qui prend un polynôme et un flottant et qui renvoie la valeur
de P(b) en utilisant l’algorithme de Hörner. Cette fonction ne doit pas modifier P. ■

ITC PCSI2 – Lycée Albert Schweitzer


