
I. Généralités

Suites numériques - Exercices

I. Généralités

Exercice I.1. Étudier la monotonie des suites définies par :

1. un =
n∑

k=1

1

kn
2. vn =

n∏
k=1

2k −1

2k
3. wn =

n∑
k=1

1

n +k
4. zn =

n∏
k=1

ch
( x

k

)
, x ∈R

Exercice I.2. Soit p ∈N. Pour tout entier n ≥ 0, on pose un = cos

(
2πn!

p !

)
. Justifier que la suite (un)n∈N est stationnaire.

Exercice I.3. 1. Montrer que la somme de deux suites stationnaires est stationnaire.

2. Que dire de la somme de deux suites croissantes?

Exercice I.4. Soit (un)n∈N la suite définie par u0 ∈ [0,4] et pour tout n ∈N, un+1 = un

2
+

√
|un |.

1. Étudier la fonction f : x 7→ x

2
+p

x.

2. Déterminer les points fixes de f et en déduire deux intervalles stables par f .

3. Justifier que (un) est bien définie et bornée.

4. Étudier les variations de la suite (un).

Exercice I.5. Soit (un)n∈N la suite définie par u0 = 1 et pour tout n ∈N, un+1 =
√

1+un . On pose f : x 7→p
1+x.

1. Étudier rapidement la fonction f .

2. Déterminer les points fixes de f et en déduire deux intervalles stables par f .

3. Justifier que la suite (un) est bien définie et bornée.

4. Étudier la monotonie de (un).

Exercice I.6. Les suites suivantes sont-elles arithmétiques, géométriques ou ni l’un ni l’autre?

1. un = n2 −3n +2

2.

u0 = 3

un+1 = 1

4
un +3

et vn = un−4

3.

{
u0 = 2

un+1 = 2+un

4. un = 3n +1

2

5.

u0 = 1

un+1 = 2un

2+3un

6. un = (−1)n ×23n+1

Exercice I.7. Soient (un) et (vn) les suites définies par u0 = 0, v0 = 1 et : ∀n ∈N,un+1 = un − vn

2
et vn+1 = un + vn

2
.

On considère la suite (zn) de terme général zn = un + i vn . Déterminer le terme général de la suite (zn) en fonction de n,
puis en déduire les expressions de un et vn .

Exercice I.8. Soit (wn)n∈N la suite réelle définie par w0 = 0 et pour tout n ∈N, wn+1 = 2wn +3

wn +4
.

1. Étudier la fonction f : x 7→ 2x +3

x +4
et déterminer f ([0,1[).

2. Montrer que la suite (wn) est bien définie et que pour tout n ∈N, wn ∈ [0,1[.

3. Montrer que la suite (wn) est croissante.

4. Soit (zn)n∈N la suite définie par zn = wn −1

wn +3
.

Montrer que (zn) est géométrique.

5. En déduire le terme général de (wn).

Exercice I.9. Déterminer le terme général de la suite définie par u0 = 5 et ∀n ∈N,un+1 = 3un −4.

Exercice I.10. Dans chaque cas, déterminer le terme général de la suite (un) vérifiant u0 = 1, u1 = 0 et :

1. ∀n ∈N,un+2 = 2un+1 +3un 2. ∀n ∈N,un+2 = 6un+1 −9un 3. ∀n ∈N,un+2 = 4un+1 −5un

Exercice I.11. Soient α et β deux réels strictement positifs. On considère la suite (un) de premier terme u0 > 0 et vérifiant :

∀n ∈N,un+1 =αuβ
n .

Déterminer le terme général de la suite (un).
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II. Convergence

Exercice I.12 (E3A 2021 PC). 1. On noteγ la racine positive du trinôme x2−x−1. Justifier que γ> 1 et que la deuxième

racine est − 1

γ
.

2. Soient (an) et (bn) définier par b0 = 0, b1 = 1 et les relations : ∀n ∈N,

{
an+1 = bn

bn+1 = an +bn
.

(a) Montrer que pour tout entier n strictement positif : bn+1 = bn +bn−1.

(b) Parmi les réponses proposées, une seule est l’expression correcte de bn valable pour tout entier naturel n.
Laquelle ?

i.
γn

p
5
+ (−1)n+1

γn+1
p

5
ii.

(−1)n+1γn

p
5

+ 1

γn
p

5
iii.

γn

p
5
+ (−1)n+1

γn
p

5

(c) Montrer que pour tout n ∈N, bn ∈N.

(d) Exprimer, pour tout n ∈N, an en fonction de n.

(e) Démontrer que pour n ∈N, γn = an +bnγ.

Exercice I.13. Soit (un) la suite définie par :

{
u0 = 1

∀n ∈N,un+1 = 3un +2n .

1. Soit (an) la suite définie par an = c2n , où c est une constante réelle. Justifier qu’il existe une unique valeur de c telle
que : ∀n ∈N, an+1 = 3an +2n .

2. Les suites (an) et (un) sont-elles égales?

3. Déterminer le terme général de (un).

Exercice I.14. Soit (un)n∈N une suite réelle.

1. Montrer que (un) est arithmétique si et seulement si pour tout n ∈N, un+1 = un +un+2

2
.

2. On suppose que (un) est strictement positive. Montrer que (un) est géométrique si et seulement si pour tout n ∈N,
un+1 =p

unun+2.

II. Convergence

Exercice II.1. Déterminer les limites (si elles existent) des suites suivantes :

a) un = 5n2 +3n −1

(2n +1)(n +2)

b) un = 2n −1

4n −1

c) un = n2 −3n +1

1−n2

d) un = n2 +2

en −n

e) un =
n∑

k=0

1

2k

f) un = 1

n2

n∑
k=0

k

g) un =p
n +1−p

n

h) un = n
p

n

i) un =
√

n4 +n2 −2−n2 −n

Exercice II.2. Étudier les suites de terme général (convergence ou divergence, et limite éventuelle) :

a) un = n2 −1

1+n!

b) un = n!

nn

c) un = (−1)n +n

(−1)n −n

d) un = 3n2 +cosn

4(n +1)2 + sin3n

e) un = n(2+cosn)

f) un =
2n + sin

(
3exp

(
n!

(lnn)n

))
n2

g) un =
⌊

(3n − 1
2 )2

⌋⌊
(4n + 1

2 )2
⌋

h) un = 2+n(−1)n

n
+ (−1)n

i) un = n + (−1)nn

1+p
n

j) un = (−1)nn +cosn

n +1

k) un = (2n +3n)
1
n

l) un = 1

n6

n∑
k=1

k4

m) un =
n∑

k=1

np
n4 +k

n) un = 1

n
+cos

(nπ

8

)
o) un = 1

n2

n∑
k=1

bkxc, x ∈R

Exercice II.3. Soit A une partie de R non vide et majorée. Soit M un majorant de A.

1. On suppose que M = sup(A). Montrer qu’il existe une suite (un) d’éléments de A telle que un → M .

2. Réciproquement, on suppose qu’il existe une suite (un) d’éléments de A telle que un → M . Montrer que M = sup(A).

3. Déterminer sup([0,1[).
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II. Convergence

Exercice II.4. Soit (un)n∈N une suite à valeurs dans Z. Montrer que (un) converge si et seulement si (un) est stationnaire.

Exercice II.5. 1. Soit (un)n∈N∗ une suite de nombres complexes qui converge vers une limite finie ℓ. On pose pour

tout n > 0, vn = 1

n

n∑
k=1

uk . Montrer que (vn) converge vers ℓ.

2. Soit (un)n∈N∗ une suite à valeurs complexes telle que un+1 −un → ℓ ∈C. Montrer que
un

n
→ ℓ.

3. Soit (un)n∈N une suite de réels strictement positifs. Montrer que si

(
un+1

un

)
n∈N∗

converge vers ℓ, alors ( n
p

un)n∈N∗

converge vers ℓ.

4. Déterminer les limites de :

(
2n

n

) 1
n

et
n

npn!
.

Exercice II.6. Soit f la fonction définie sur l’intervalle [0,+∞[ par : f (x) = 6− 5

x +1
. On considère la suite (un)n∈N définie

par son premier terme u0 et pour tout n ≥ 0,un+1 = f (un).

1. Étudier les variations de f sur l’intervalle [0,+∞[. En déduire que la suite (un) est bien définie et tracer sa représen-
tation graphique lorsque u0 = 5.

2. Résoudre l’équation f (x) = x. On notera α la solution de cette équation dans l’intervalle [0,+∞[.

3. Déterminer f ([0,α]) et f ([α,+∞[).

4. On prend u0 ∈ [0,α]. Étudier la convergence de (un).

5. Même question avec u0 ∈ [α,+∞[.

6. En suivant le même schéma, étudier la suite (un) définie par


u0 ∈ [1,+∞[

un+1 =
√

u2
n +7un

2
−1

. Que dire si u0 ∈]0,1[ ?

Exercice II.7. On considère la suite (un)n∈N définie par son premier terme u0 ∈ R et par la relation de récurrence : ∀n ∈
N,un+1 = un −u2

n .

1. Soit f : x 7→ x −x2. Dresser le tableau de variations de f .

2. On suppose que u0 ∈ [0,1]. Montrer que (un) converge et déterminer sa limite.

3. On suppose maintenant que u0 < 0. Montrer que (un) tend vers −∞.

4. Étudier le cas où u0 > 1.

Exercice II.8. Soit x ∈R et soit (un)n∈N définie par un = b10n xc
10n . Étudier la convergence de la suite (un).

Exercice II.9. 1. Montrer que pour tout entier k > 1,
1

k2 ≤ 1

k −1
− 1

k
.

2. Montrer que la suite (un) de terme général un =
n∑

k=1

1

k2 converge.

Exercice II.10. On définit la suite (Hn)n∈N∗ par son terme général Hn =
n∑

k=1

1

k
.

1. Montrer que pour tout entier n ∈N∗, H2n −Hn ≥ 1

2
.

2. En déduire la limite de la suite (Hn).

Exercice II.11. 1. Soit n ∈N. Montrer que (2+p
3)n + (2−p

3)n est un entier pair.

2. Montrer que la suite de terme général un = sin
(π

2
(2+p

3)n
)

converge et déterminer sa limite.

Exercice II.12. 1. Étudier la convergence de la suite un = cos(nπ).

2. Soit θ ∈ ]0,π[. On pose cn = cos(nθ) et sn = sin(nθ).

(a) Exprimer cn+1 et sn+1 en fonction de cn et sn .

(b) En déduire que (cn) et (sn) divergent.

Exercice II.13. Soit (un) une suite telle que les suites extraites (u2n), (u2n+1) et (u3n) convergent. Montrer que (un) converge.
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II. Convergence

Exercice II.14. 1. Soit (un)n∈N une suite numérique et soit k ∈]0,1[ tels que pour tout n ∈N, on a |un+1| ≤ k|un |.
Montrer que la suite (un)n∈N converge vers 0.

2. Soit (un)n∈N une suite à valeurs dans R∗
+ telle que

(
un+1

un

)
n∈N

converge vers un réel ℓ. Montrer que :

(a) si ℓ< 1, alors un → 0;

(b) si ℓ> 1, alors un →+∞.

Exercice II.15. On définit la suite (Ln)n∈N∗ par son terme général Ln =
n∑

k=1

(−1)k

k
.

Montrer que les suites (L2n)n∈N∗ et (L2n+1)n∈N∗ sont adjacentes, puis en déduire la nature de la suite (Ln).

Exercice II.16. On considère les suites (un)n≥1 et (vn)n≥1 définies par :

un =
n∑

k=0

1

k !
et vn = un + 1

n ·n!
.

Montrer que (un) et (vn) sont adjacentes et que leur limite commune est irrationnelle.

Exercice II.17. 1. Soient an = n2,bn = (−1)n(n2 −2n +1),cn = ln(n) et dn = n2 − 5

2
n +p

3.

Vérifier que bn =O(an),cn = o(an) et dn ∼ an .

2. Soient (un), (vn) et (wn) trois suites de termes généraux :

un = n3 ln

(
1+ 1

n

)
, vn = 2n, wn = e−n

Montrer que wn = o(vn). A-t-on un =O(wn) ?

3. Dans les deux cas suivants, a-t-on un = o(vn) ou vn = o(un) ?

(a) un = n ln

(
1+ 1

n2

)
et vn = n ; (b) un = sin

(
1

n

)
et vn = 1

n2 .

4. (a) Soient un = ln

(
1+ 1

n2

)
et vn = 1

n2 . Montrer que un ∼ vn .

(b) Déterminer un équivalent de wn = ln

(
1+ 2

n2

)
.

Exercice II.18. Soit (un) une suite qui tend vers 0. Montrer les équivalents suivants :
1. ln(1+un) ∼ un ; 2. sin(un) ∼ un ; 3. eun −1 ∼ un ; 4. (1+un)λ−1 ∼λun (λ ∈R).

Exercice II.19. On considère les suites (un)n≥2 et (vn)n≥2 définies pour tout n ≥ 2 par

un =− lnn +
n−1∑
k=1

1

k
et vn =− lnn +

n∑
k=1

1

k
.

1. Montrer que (un) et (vn) sont adjacentes.

2. On pose Hn =
n∑

k=1

1

k
. Qu’en déduire sur la suite (Hn) ?

Exercice II.20. Déterminer un équivalent simple des suites suivantes et donner leurs limites :

a) un = n2 +2n +3

b) un = 2n5 −4n2 +3

3n2 −8n +7

c) un = 1

n +1

d) un = n

n +1

e) un = 1

n2 + 1

2n

f) un = 4n+1 +n3

2n +n

g) un = en −e−n

2

h) un =
n∑

k=1
k

i) un = n +p
n + (lnn)9

n2 +1

j) un = n3 +2n

n3 +2n

k) un = n +1

n!+5n

l) un =
√

n2 +1−n

m) un =p
n +1−p

n

n) un = 3
√

n2 +n +1

o) un = ln(n +1)

p) un =
√

ln(n +1)− ln(n)

Exercice II.21. On considère la suite de terme général un = n3 −6n2 +3n −1

2n3 −2n
définie pour n ≥ 2.

1. Montrer que (un) converge vers une limite ℓ à préciser.

2. Déterminer un équivalent de un −ℓ.

3. Déterminer des réels α et β tels que un = ℓ+ α

n
+ β

n2 +o

(
1

n2

)
.

Exercice II.22. Déterminer un équivalent simple de la suite de terme général : un =
2n∑

k=n+1

1

n2 +k
.
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II. Convergence

Indications - Solutions

Exercice I.1 :

1. un+1 −un = 1

(n +1)2
− 1

n(n +1)

n∑
k=1

1

k
≤ 1

(n +1)2
− 1

n(n +1)
≤ 0, donc (un ) décroissante.

2. La suite (vn ) est strictement positive et
vn+1

vn
= 2(n +1)−1

2(n +1)
< 1, donc (vn ) est décroissante.

3. wn+1 −wn = 1

2n +1
+ 1

2(n +1)
− 1

n +1
= 1

2n +1
− 1

2(n +1)
≥ 0, donc (wn ) est croissante.

4. Soit x ∈R. La suite (zn ) est strictement positive et
zn+1

zn
= ch

( x

n +1

)
≥ 1, donc (zn ) est croissante.

Exercice I.2 : Pour tout n > p,
n!

p !
= n(n −1) · · · (n −p) ∈N, donc un = 1 car cos est 2π périodique.

Exercice I.3 :

1. Soient (un ) et (vn ) deux suites stationnaires. Il existe Nu et Nv deux entiers et Cu , Cv dans K tels que : ∀n ≥ Nu ,un = Cu et
∀n ≥ Nv , vn =Cv .
Ainsi, ∀n ≥ max(Nu , Nv ),un + vn =Cu +Cv : la suite u + v est stationnaire.

2. La somme de deux suites croissantes est croissantes : soient (un ) et vn deux suites croissantes. Alors : ∀n ∈ N,un+1 ≥ un et
vn+1 ≥ vn , donc un+1 + vn+1 ≥ un + vn .

Exercice I.4 :

1. On procède par récurrence (attention à la rédaction). Initialisation : u1 = u0

2
+

√
|u0| = −3

2
+p

3 ≥ 0. Hérédité : un+1 = un

2
+√

|un |, et comme un et
√
|un | sont positifs, un+1 aussi.

On procède encore par récurrence. On vérifie que u1 ≤ 4. Puis, pour l’héridité, un+1 = un

2
+p

un ≤ 4

2
+p

4 = 4.

2.
x2

4
≤ x ⇐⇒ x2 −4x ≤ 0. On dresse le tableau de signes de x2 −4x.

3. un+1 −un =−un

2
+

√
|un |. Or pour tout x ∈ [0,4],

x

2
≤p

x car
x2

4
≤ x. Donc, pour tout n ≥ 1, un+1 −un ≥ 0. De plus, u1 −u0 ≥ 0.

Ainsi, la suite est croissante.

Exercice I.5 :

1. La fonction f est croissante de [−1,+∞[ dans [0,+∞[.

2. Comme l’intervalle [0,+∞[ est stable par f et u0 ∈ [0,+∞[, la suite est bien définie.

3. Montrons par récurrence que pour tout n ∈ N, un+1 ≤ un . Initialisation : u1 = p
2 ≥ 1 = u0. Hérédité : par HR, un+1 ≥ un et

comme f est croissante, f (un+1) ≥ f (un ) d’où un+2 ≥ un+1.

4. On montre par récurrence que un ≤ 2, en remarquant que f (2) =p
3 ≤ 2.

Exercice I.6 :

1. un = n2 −3n +2. On calcule les premiers termes pour voir que non.

2.

u0 = 3

un+1 = 1

4
un +3

et vn = un −4. La première n’est rien, mais la deuxième est géométrique de raison
1

4
.

3.

{
u0 = 2

un+1 = 2+un
. C’est une suite arithmétique.

4. un = 3n +1

2
. C’est une suite arithmétique.

5.

u0 = 1

un+1 = 2un

2+3un

. Non.

6. un = (−1)n ×23n+1. C’est une suite géométrique.

Exercice I.7 : Pour tout n ∈N, on a zn+1 = 1+ i

2
zn . Donc zn = i

(
1+ i

2

)n
= 1p

2
n ei

( nπ
4 + π

2

)
. Donc un =− 1p

2
n sin

( nπ

4

)
et vn = 1p

2
n cos

( nπ

4

)
.

Exercice I.8 :

1. f est définie et dérivable sur R\{−4}. Sa dérivée vaut f ′(x) = 5

(x +4)2
≥ 0, donc f est croissante sur ]−∞,−4[∪]−4,+∞[. f ([0,1[) =

[ f (0), f (1)[=
[

3

4
,1

[
car f est croissante.

2. On raisonne par récurrence. Initialisation : w0 = 0 ∈ [0,1[. Hérédité : wn 6= −4 et wn+1 = f (wn ) et comme wn ∈ [0,1[, f (wn ) ∈[
3

4
,1

[
⊂ [0,1[.
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II. Convergence

3. Montrons par récurrence que wn+1−wn ≥ 0. Initialisation : w1−w0 = 3

4
≥ 0. Hérédité : Comme wn+1 ≥ wn et que la fonction f

est croissante, f (wn+1) ≥ f (wn ), donc wn+2 ≥ wn+1.

4. zn+1 = wn+1 −1

wn+1 +3
=

2wn+3
wn+4 −1

2wn+3
wn+4 +3

= 2wn +3−wn −4

2wn +3+3wn +12
= wn −1

5wn +15
= 1

5

wn −1

wn+1 +3
, donc (zn ) est géométrique de raison

1

5
.

5. zn = z0
1

5n =− 1

3×5n . On a de plus : wn = 3zn +1

1− zn
.

Exercice I.9 : On applique la méthode du cours : on cherche une suite constante ℓ vérifiant ℓ= 3ℓ−4. Donc ℓ= 2. Puis, on pose pour
tout n ∈N, vn = un −2, et on a vn+1 = 3vn , donc vn = v03n . Comme v0 = u0 −2 = 3, on a vn = 3n+1, et un = 3n+1 +2.
Exercice I.10 :

1. Équation caractéristique : x2 −2x −3 = 0 dont les racines sont −1 et 3. Donc un = A(−1)n +B3n . On trouve A = 3

4
et B = 1

4
avec

les conditions initiales.

2. Équation caractéristique : x2−6x+9 = 0 dont la racine est 3. Donc un = (An+B)3n . On trouve A =−1 et B = 1 avec les conditions
initiales.

3. Équation caractéristique : x2 −4x +5 = 0 dont les racines sont 2+ i et 2− i . Donc un = A(2+ i )n +B(2− i )n . On trouve A = 1

2
+ i

et B = 1

2
− i avec les conditions initiales.

On peut aussi utiliser les formules pour obtenir l’expression réelle : 2+ i =p
5ei arcsin(1/

p
5. Donc un = (A cos(n arcsin(1/

p
5))+

B sin(n arcsin(1/
p

5)))
p

5
n

. Pour n = 0, A+B = 1 et pour n = 1, (A
p

4/5+B/
p

5)
p

5 = 0 ⇐⇒ 2A+B = 0. Donc A =−1 et B = 2.

Exercice I.11 : On commence par montrer par récurrence que pour tout n ∈N,un > 0. Puis, on pose vn = ln(un ). Alors vn+1 = βvn +
ln(α). On a une suite arithmético-géométrique. Si β = 1, vn = v0 +n ln(α), donc un = u0α

n . Sinon, on cherche la suite constante ℓ

vérifiant ℓ=βℓ+ln(α). On trouve ℓ= ln(α)

1−β
. Puis, wn = vn −ℓ est géométrique de raison β : wn = (v0−ℓ)βn et enfin vn = ℓ+(v0−ℓ)βn

et un = eℓ e(ln(u0)−ℓ)βn =α
1

1−β e(ln(u0)−ℓ)βn
.

Exercice I.12 :

1. Notons α la deuxième racine du trinôme. Alors αγ=−1 donc α< 0 et α=− 1

γ
. De plus, α+γ= 1, donc γ= 1−α> 1.

2. (a) Soit n ∈N∗. bn+1 = an +bn = bn−1 +bn .

(b) En prenant n = 0, la première expression ne donne pas 0, les deux autres donnent 0. En prenant n = 1, les deux dernières

expressions donnent 1. Toutefois, on sait que l’expression de bn doit être de la forme Aγn +B
(−1)n

γn , donc la troisième

expression est la bonne.

(c) On le montre par récurrence double : l’initialisation découle de b0 = 0 et b1 = 1. Pour l’hérédité : si bn et bn−1 sont des
entiers, alors bn+1 = bn +bn−1 aussi.

(d) Pour n > 0, an = bn−1 = γn−1
p

5
+ (−1)n

γn−1
p

5
, et on vérifie que cette expression convient encore pour n = 0.

(e) On peut soit procéder par récurrence, ou bien utiliser les expressions trouvées précédemment : soit n ∈N,

an +bnγ= γn−1
p

5
+ (−1)n

γn−1
p

5
+ γn+1

p
5

+ (−1)n+1

γn−1
p

5

= γn−1
p

5
+ γn+1

p
5

= γn
p

5

(
γ+ 1

γ

)
= γn

Exercice I.13 :

1. Supposons qu’un tel c existe. Alors pour tout n ∈N, c2n+1 = 3c2n +2n . Donc 2c = 3c +1 et c = −1. Réciproquement, on vérifie
que c =−1 convient.

2. Les deux suites ne sont pas égales car a0 =−1 et u0 = 1.

3. La suite vn = un −an est géométrique de raison 3 : pour tout n ∈N, vn = 2 ·3n . Donc un = 2 ·3n −2n pour tout n ∈N.

Exercice I.14 :

1. Si (un ) est arithmétique, alors il existe r ∈ R tel que pour tout n ∈ N, un+1 = un + r . Donc
un +un+2

2
= un+1 − r +un+1 + r

2
=

un+1.
Réciproquement, pour tout n ∈N, 2un+1 = un +un+2, donc un+1 −un = un+2 −un+1. Ainsi la suite est arithmétique.

2. Si (un ) est géométrique, il existe q ∈R tel que pour tout n ∈N, un+1 = qun , donc
p

un+2un =
√

qun+1
un+1

q
= un+1 car la suite

est positive.

Réciproquement, pour tout n ∈N, u2
n+1 = un un+2, donc

un+1

un
= un+2

un+1
. Ainsi la suite est géométrique.

Exercice II.1 : Pour les quatre premières, on factorise par le terme de plus haut degré.
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II. Convergence

a) lim
n→+∞

5n2 +3n −1

(2n +1)(n +2)
= 5

2

b) lim
n→+∞

2n −1

4n −1
= 0

c) lim
n→+∞

n2 −3n +1

1−n2
=−1

d) lim
n→+∞

n2 +2

en −n
= 0

e) lim
n→+∞

n∑
k=0

1

2k
= lim

n→+∞
1− 1

2n+1

1− 1
2

= 2

f) lim
n→+∞

1

n2

n∑
k=0

k = lim
n→+∞

n(n +1)

2n2
= 1

2

g) lim
n→+∞

p
n +1−p

n = 0 (quantité conjuguée)

h) lim
n→+∞

npn = lim
n→+∞e

1
n lnn = 1 (croissances comparées)

i) lim
n→+∞

√
n4 +n2 −2 − n2 − n = −∞ (quantité conjuguée +

terme de plus haut degré)

Exercice II.2 : Étudier les suites de terme général (convergence ou divergence, et limite éventuelle) :

a) lim
n→+∞

n2 −1

1+n!
= 0

b)
n!

nn = 1×2× . . .×n

n ×n × . . .n
≤ 1

n
, donc la limite vaut 0.

c) lim
n→+∞

(−1)n +n

(−1)n −n
=−1

d) lim
n→+∞

3n2 +cosn

4(n +1)2 + sin3n
= 3

4
.

e) lim
n→+∞n(2+cosn) =+∞ car 2+cosn ≥ 1.

f) lim
n→+∞

2n + sin
(
3exp

(
n!

(lnn)n

))
n2

= 0.

g) lim
n→+∞

E
[

(3n − 1
2 )2

]
E

[
(4n + 1

2 )2
] = 9

4
(utiliser les encadrements des parties entières pour encadrer la suite).

h) u2n = 2+2n

2n
+1 = 3+ 1

n
−−−−−→
n→+∞ 3 et u2n+1 = 2− (2n +1)

2n +1
−1 = 2

2n +1
−2 −−−−−→

n→+∞ −2, donc la suite diverge.

i) lim
n→+∞u2n =+∞ et lim

n→+∞u2n+1 = 0, donc la suite diverge.

j) lim
n→+∞u2n = 1 et lim

n→+∞u2n+1 =−1, donc la suite diverge.

k) lim
n→+∞(2n +3n )

1
n = lim

n→+∞3

(
2n

3n +1

) 1
n = 3 lim

n→+∞e
1
n ln

(
2n

3n +1
)
= 3.

l) 0 ≤ un ≤ n ×n4

n6
, donc avec les gendarmes, lim

n→+∞
1

n6

n∑
k=1

k4 = 0.

m)
n ×n√
n4 +n

≤ un ≤ n ×n√
n4 +1

, donc d’après les gendarmes, lim
n→+∞un = 1.

n) u16n = 1

16n
+cos(2nπ) = 1

16n
+1 −−−−−→

n→+∞ 1 et u8n = 1

8n
+cos(nπ) = 1

8n
−1 −−−−−→

n→+∞ −1, donc la suite diverge.

o) Pour x ∈R et k ∈N∗, kx −1bkxc ≤ kx, donc
x

n2

n(n +1)−2n

2
< un ≤ x

n2

n(n +1)

2
, et les deux côtés tendent vers

x

2
.

Exercice II.3 :

1. Soit n ∈ N∗. Comme M est la borne supérieure de A, il existe un ∈ A tel que M − 1

n
≤ un ≤ M . On définit ainsi une suite (un )

d’éléments de A qui vérifie par encadrement que un → M .

2. Soit a < M et posons ε = M −a

2
> 0. Comme un → M , et pour tout n ∈ N, un ≤ M , il existe N ∈ N tel que pour tout n ≥ N ,

M −un ≤ M −a

2
. Donc uN − a ≥ M −a

2
> 0. Ainsi, a n’est pas un majorant de A. Donc M est le plus petit majorant de A :

M = sup(A).

3. 1 est un majorant de [0,1[, et 1− 1

n
→ 1.

Exercice II.4 : Supposons que un → ℓ. Prenons ε= 1

3
. Il existe N ∈N tel que pour n ≥ N , |un−ℓ| ≤ 1

3
. Prenons alors n ≥ N , et |un−uN | ≤

|un −ℓ|+ |el l −uN | ≤ 2

3
< 1. Comme un et uN sont des entiers, ils sont égaux.

Exercice II.5 :

1. Prenons ε> 0. Il existe N ∈N tel que pour n ≥ N , |un −ℓ| ≤ ε

2
.

Alors |vn −ℓ| = 1

n
|

n∑
k=1

(un −ℓ)| ≤ 1

n

N−1∑
k=1

|uk −ℓ|+ 1

n

n∑
k=N

|uk −ℓ| ≤ 1

n

N−1∑
k=1

|uk −ℓ|+ n −N +1

n

ε

2
≤ 1

n

N−1∑
k=1

|uk −ℓ|++ε

2
.

Il existe N1 ∈N tel que pour n ≥ N1,
1

n

N−1∑
k=1

|uk −ℓ| ≤ ε

2
.

Pour n ≥ max(N , N1), |vn −ℓ| ≤ ε.
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II. Convergence

2. D’après la question précédente, la suite vn = 1

n −1

n−1∑
k=1

(uk+1 −uk ) tend vers ℓ. Donc
un −u1

n −1
tend vers ℓ. D’où

un

n −1
→ ℓ. Or

un

n
= un

n −1

n −1

n
→ ℓ.

3. Si ℓ> 0, alors ln(un+1)− ln(un ) → ln(ℓ) et on applique la question précédente.

Si ℓ= 0, on prend ε> 0. Il existe N tel que pour n ≥ N ,
un+1

un
≤ ε, donc un+1 ≤ εun . Par récurrence, pour n ≥ N , un ≤ uN εn−N ,

puis u
1
n
n ≤ (uN ε−N )

1
n ε. On utilise ensuite que (uN ε−N )

1
n → 1, donc il existe N ′ ≥ N tel que pour n ≥ N ′, (uN ε−N )

1
n ≤ 2, d’où

u
1
n
n ≤ 2ε, et u

1
n
n → 0.

4. On calcule

(2(n+1)
n+1

)(2n
n

) = 2(2n +1)

n +1
→ 4, donc

(
2n

n

) 1
n

→ 4.

En posant un = nn

n!
, on a

un+1

un
=

(
1+ 1

n

)n
→ e, donc

n
npn!

→ e.

Exercice II.6 :

1. f ′(x) = 5

(x +1)2
> 0, donc f est strictement croissante sur [0,+∞[. De plus, f (0) = 1 et lim

x→+∞ f (x) = 6, donc on vérifie par

récurrence que : ∀n ∈N,un ≥ 0.

2. f (x) = x ⇐⇒ x = 5±p
29

2
, donc α= 5+p

29

2
> 1.

3. f ([0,α]) = [1,α] ⊂ [0,α] et f ([α,+∞[) = [α,6[⊂ [α,+∞[.

4. Comme f est croissante sur [0,α] qui est stable par f , (un ) est monotone et reste dans [0,α]. On remarque ensuite que f (x)− x
est positif sur [0,α], donc u1 ≥ u0 et (un ) est croissante. Elle converge donc vers une limite ℓ qui vérifie f (ℓ) = ℓ. Comme ℓ> 0,
on a ℓ=α.

5. Même chose mais (un ) est décroissante car f (x)−x est négatif sur [α,+∞[.

6. On pose f (x) =
√

x2 +7x

2
−1 définie sur [1,+∞[. La fonction f est croissante sur [1,+∞[ et f (1) = 1, donc [1,+∞[ est stable par

f et (un ) est bien définie et monotone.
On remarque ensuite que f (x) = x ⇐⇒ x ∈ {1,2}, donc les intervalles [1,2] et [2,+∞[ sont stables par f . De plus, f (x)− x est
postif sur [1,2] et négatif sur [2,+∞[.
Ainsi, si u0 ∈]1,2], la suite est croissante et majorée donc converge vers ℓ qui vérifie f (ℓ) = ℓ et ℓ> 1. Donc ℓ= 2.
De même si u0 ≥ 2 mais (un ) est décroissante.
Si u0 = 1, la suite est stationnaire.
Si u0 ∈ [0,1[, il pourrait arriver que la suite n’est pas bien définie à partir d’un certain rang car f prend des valeurs négatives. Si
on suppose le contraire, on montre alors par récurrence que un ∈ [0,1[. La suite (un ) est toujours monotone et on vérifie qu’elle
est décroissante. Comme elle est minorée, elle converge vers ℓ = 1 ou 2, mais ce n’est pas possible. Ainsi, dans ce cas, la suite
n’est pas bien définie.

Exercice II.7 :

1. f est croissante sur ]−∞,1/2] et décroissante sur [1/2,+∞[.

2. L’intervalle [0,1] est stable par f . Donc on montre par récurrence que pour tout n ∈N, un ∈ [0,1]. Puis, (un ) est décroissante car
un+1 −un =−u2

n . Donc (un ) converge vers une limite ℓ. De plus, f (ℓ) = ℓ, donc ℓ2 = 0 et ℓ= 0.

3. La suite (un ) est toujours décroissante. De plus, si elle convergeait, alors ℓ vaudrait 0 (voir question précédente. Or ℓ ≤ u0 < 0,
ce qui est une contradiction. Donc (un ) tend vers −∞.

4. On remarque que u1 < 0, et on peut refaire comme avant, donc (un ) tend encore vers −∞.

Exercice II.8 : On encadre un : 10n x −1 < ⌊
10n x

⌋≤ 10n x, donc x − 1

10n < un ≤ x. Ainsi lim
n→+∞un = x.

Exercice II.9 :

1. Pour k > 1,
1

k2
≤ 1

k(k −1)
= 1

k −1
− 1

k
.

2. La suite (un ) est croissante car un+1 −un = 1

(n +1)2
≥ 0, et un ≤ 1+

n∑
k=2

1

k −1
+ 1

k
= 1+1− 1

n
≤ 2.

Exercice II.10 :

1. H2n −Hn =
2n∑

k=n+1

1

k
≥ n

2n
= 1

2
.

2. La suite (Hn ) est croissante. Si elle convergeait vers une limite finie, alors (H2n ) convergerait vers la même limite. Or avec la
question précédente, ce n’est pas le cas. Donc lim

n→+∞Hn =+∞.

Exercice II.11 :

1. On utilise Newton : (2+p
3)n + (2−p

3)n =
n∑

k=0

(
n

k

)
2k (

p
3

n−k + (−p3)n−k ) = 2
n∑

k=0
n−k pair

(
n

k

)
2k 3

n−k
2 qui est bien un entier pair.
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II. Convergence

2. |un | = |sin
(π

2
((2+p

3)n + (2−p
3)n )− π

2
(2−p

3)n
)
| = |sin(kπ− π

2
(2−p

3)n )| = |sin(π(2−p
3)n /2)|→ 0 car 0 ≤ 2−p

3 < 1.

Exercice II.12 :

1. u2n = cos(2nπ) = 1 −−−−−→
n→+∞ 1 et u2n+1 = cos((2n +1)π) =−1 −−−−−→

n→+∞ −1. Donc (un ) diverge.

2. (a) cn+1 = cn cosθ− sn sinθ et sn+1 = cn sinθ+ sn cosθ.

(b) Supposons que (cn ) converge. Alors (sn ) converge aussi à cause de la première égalité, car sinθ 6= 0. Les deux limites c et s

vérifient c = c cos(θ)− s sin(θ) et s = c sin(θ)+ s cos(θ). En résolvant le système, on trouve c
2−2cos(θ)

sin(θ)
= 0. Or cos(θ) 6= 1,

donc c = 0. Puis, s(1−cos(θ) = 0, donc s = 0. Or c2 + s2 = 1 ce qui donne une contradiction.
Si on suppose que (sn ) converge, (cn ) aussi à cause de la deuxième égalité et on retombe sur la même contradiction.

Exercice II.13 : Notons ℓ1, ℓ2 et ℓ3 les limites des trois suites extraites. Comme (u6n ) est une suite extraite de (u2n ) et (u3n ), elle
converge vers ℓ1 et ℓ3, donc ℓ1 = ℓ3. De même la suite (u6n+3) est extraite de (u2n+1) et (u3n ), donc ℓ1 = ℓ2 = ℓ3. D’après le résultat
du cours, la suite (un ) converge aussi vers ℓ1.
Exercice II.14 :

1. On commence par montrer par récurrence que |un | ≤ kn |u0|, puis on utilise les gendarmes.

2. (a) Prenons ε = 1−ℓ

2
> 0. Il existe N ∈N tel que pour n ≥ N ,

un+1

un
−ℓ ≤ 1−ℓ

2
, donc

un+1

un
≤ 1+ℓ

2
< 1. On applique alors la

question précédente.

(b) La suite

(
1

un

)
vérifie les conditions de la question précédente, donc

1

un
→ 0+, et un →+∞.

Exercice II.15 : L2n+2 −L2n = (−1)2n+2

2n +2
+ (−1)2n+1

2n +1
= −1

(2n +2)(2n +1)
≤ 0, donc (L2n ) est décroissante. L2n+3 −L2n+1 = (−1)2n+3

2n +3
+

(−1)2n+2

2n +2
= 1

(2n +3)(2n +2)
≥ 0, donc (L2n+1) est croissante. L2n+1−L2n = −1

2n +1
−−−−−→
n→+∞ 0. Ainsi les deux suites sont adjacentes. Elles

convergent donc toutes les deux vers la même limite. D’après la question précédente, la suite (Ln ) converge.
Exercice II.16 :

• Pour n ≥ 1, un+1 −un = 1

(n +1)!
> 0, donc (un ) est strictement croissante.

• Pour n ≥ 1, vn+1 − vn = 1

(n +1)!
+ 1

(n +1)(n +1)!
− 1

n ·n!
= 1

n!

(
1

(n +1)2
− 1

n(n +1)

)
< 0, donc (vn ) est strictement décroissante.

• vn −un = 1

n ·n!
→ 0.

Les deux suites sont bien adjacentes et tendent vers une limite ℓ telle que pour tout n ∈N, un < ℓ< vn (les inégalités sont strictes car

les suites sont strictement monotones). Supposons par l’absurde que ℓ= p

q
avec q ∈N∗. Alors q !uq < p · (q −1)! < q !uq +1, or q !uq ∈N

et p · · · (q −1)! ∈N, ce qui est absurde car on a un entier coincé entre deux autres qui sont consécutifs.
Exercice II.17 :

1.

∣∣∣∣ bn

an

∣∣∣∣= ∣∣∣∣1− 2

n
+ 1

n2

∣∣∣∣≤ 4 donc bn =O(an ).

cn

an
= ln(n)

n2
→ 0 par croissances comparées donc cn = o(an ).

dn

an
= 1− 5

2n
+
p

3

n2
→ 1 donc dn ∼ an .

2.
wn

vn
= e−n

2n
→ 0 et

un

wn
= en n3 ln

(
1+ 1

n

)
→+∞.

3. (a) un = o(vn ) ; (b) vn = o(un ).

4. (a)
un

vn
→ 1 car

ln(1+x)

x
→ 1.

(b) ln

(
1+ 2

n2

)
∼ 2

n2
.

Exercice II.18 : On utilise les limites :

1. lim
x→0

ln(1+x)

x
= (ln)′(1) = 1

2. lim
x→0

sin(x)

x
= (sin)′(0) = 1

3. lim
x→0

ex −1

x
= (e)′(0) = 1

4. lim
x→0

(1+x)λ−1

x
= ((1+x)λ)′(0) =λ

Exercice II.19 :
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II. Convergence

1. un+1−un =− ln(n+1)+ lnn+ 1

n +1
=− ln

(
1+ 1

n

)
+ 1

n
et vn+1−vn =− ln

(
1+ 1

n

)
+ 1

n +1
. Définissons f : [2,+∞[→R par f (x) =

− ln

(
1+ 1

x

)
+ 1

x
. Sa dérivée vaut f ′(x) = −

− 1
x2

1+ 1
x

− 1

x2
= 1

x2 +x
− 1

x2
≤ 0, donc f est décroissante et (un+1 −un ) aussi. Comme

lim
n→+∞un+1 −un = 0, pour tout n ≥ 2, un+1 −un ≥ 0 et la suite (un ) est croissante. On procède de même avec (vn ) qui est

décroissante. De plus, vn −un = 1

n
−−−−−→
n→+∞ 0, donc les deux suites sont adjacentes.

2. On en déduit que (un ) et (vn ) convergent toutes les deux vers un même réel γ (qu’on appelle constante d’Euler). Or, vn =
− lnn +Hn , donc

Hn

lnn
= 1+ vn

lnn
−−−−−→
n→+∞ 1, donc Hn ∼ lnn. On a même mieux : Hn = lnn + vn = lnn +γ+o(1).

Exercice II.20 :

a) un = n2 +2n +3 ∼ n2

b) un = 2n5 −4n2 +3

3n2 −8n +7
∼ 2

3
n3

c) un = 1

n +1
∼ 1

n

d) un = n

n +1
∼ 1

e) un = 1

n2
+ 1

2n ∼ 1

n2

f)
4n+1 +n3

2n +n
∼ 4×2n

g)
en −e−n

2
∼ en

2

h)
n∑

k=1
k ∼ n2

2

i)
n +p

n + (lnn)10

n2 +1
∼ 1

n

j)
n3 +2n

n3 +2n
∼ 2n

n3

k)
n +1

n!+5n ∼ 1

(n −1)!

l)
√

n2 +1−n = 1√
n2 +1+n

∼ 1

2n

m) un =p
n +1−p

n = 1p
n +1+p

n
=∼

1

2
p

n

n) un = 3
√

n2 +n +1 ∼ n2/3

o) un = ln(n +1) = ln(n)+ ln(1+1/n) ∼
ln(n)

p) un =
√

ln(n +1)− ln(n) =√
ln(1+1/n) ∼ 1p

n

Exercice II.21 :

1. lim
n→+∞un = 1

2
.

2. un − 1

2
= −6n2 +4n −1

2n3 −2n
∼− 3

n
.

3. un − 1

2
+ 3

n
= 4n −7

2n3 −2n
∼ 2

n2
, donc un − 1

2
+ 3

n
= 2

n2
+o

(
1

n2

)
Exercice II.22 : On remarque que pour tout k ∈ Jn+1,2nK,

1

n2 +2n
≤ 1

n2 +k
≤ 1

n2 +n +1
, donc

n

n2 +2n
≤ un ≤ n

n2 +n +1
. Or les deux

termes qui encadrent sont équivalents à
1

n
, d’où un ∼ 1

n
.
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