1. Matrices

Chapitre 15 : Calcul matriciel

On note K =R ou C. On appellera scalaire un élément de K.

I. Matrices

I.1. Définitions et matrices particuliéres

Définition I.1. Une matrice A de taille n x p a coefficients dans K est une famille d’éléments indexée par
[1,n] x [1,p]l={G, ) li€[1,n]etje[1,p]} Onécrit:

ap  az arp

azy  azz azp
A= (ajjli<izn = .
1<j<p :

anl an2 ... a,,p

On pourra aussi noter a; j = [Al;;.
On dit que deux matrices sont égales ssi leurs coefficients sont égaux.
On note .4, (K) 'ensemble des matrices de taille n x p a coefficients dans K.

Remarque 1. » Lorsque la matrice a une seule ligne, on dit que c’est une matrice ligne.
¢ Lorsque la matrice a une seule colonne, on dit que c’est une matrice colonne.

» Lorsque n = p, on dit que c’est une matrice carrée de taille n, et on note .4/, (K) I'’ensemble de ces matrices.

Définition I.2. La matrice de taille n x p qui n'a que des 0 est la matrice nulle : 0, .

I.2. Sommes de matrices et multiplication par un scalaire

Définition 1.3. Soient A= (a;;) et B = (b;;j) € My p(K) et A, u € K. On définit la matrice A A+ uB par:
V(i,j) e [[l,n]] X [[l,p]], M,A+IUB]I']' = Aaij +,ub,-j.

C’est une combinaison linéaire des deux matrices A et B.

Remarques I.2. 1. Enprenant A =1 et g =1, on obtient la somme des deux matrices A et B.
2. Attention : on ne peut faire des combinaisons linéaires que des matrices de méme taille.
3. La matrice nulle est 'élément neutre pour la somme matricielle : pour tout A€ ., ,(K), A+ 0y, =0, +A=A.

4. Cette opération ales mémes regles de calcul que pour les vecteurs : pour A, B, C € My, (K), et A, p € K, A+B = B+ A,
(A+B)+C=A+B+C),A(A+B)=AA+AB, A+ wWA=AA+uAet A A= A(uA).

Définition I.4. On dit que la matrice C € .4}, , (K) est une combinaison lin€aire des matrices Ay, ..., Ay € My, p(K) s'il
existe Ay,...,AreKtelsque C=A1; A1 +---+ 1, A;.
On note Vect(Ay,..., A;) 'ensemble de toutes les combinaisons linéaires des matrices Ay, ..., A;.

Définition L.5. Pour tout (i, j) € [1, n] x [1, p], on note E; ; € .4, ,(K) la matrice dont le seul coefficient non nul vaut 1
et est sur la i-ieme ligne et j-éme colonne. C’est une matrice élémentaire.

Proposition I.1. Toute matrice A = (a;;) € My p(K) s'écrit comme une combinaison linéaire des mairices élémentaires :

k k
A=Y > a;jE; . Ainsi, My,,(K) = Vect(E1 1, ..., Enn).
i=1j=1
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1. Matrices

1.3. Produit matriciel

X1

X2
Définition 1.6. Soient A= (a;;) € My p(K) et X =| | | €.4lp1(K). Le produit de A et X estla combinaison linéaire des

X
p
colonnes de A avec les coefficients de X :
ap ae aip
azl az azp
AX=x1| . [+x2| . [+...+xp
an1 an2 Anp

Remarque I.3. 1l faut absolument que le nombre de colonnes de A soit le méme que le nombre de lignes de X.

Définition 1.7. Soient A = (a;;) € My p(K) et B = (b;j) € My 4(K). Le produit des matrices A et B est la matrice AB €

p
Mn,q(K) dont le coefficient (i, j) est [AB];j = ) a;kby;.
k=1

Remarques I.4. o Il faut absolument que le nombre de colonnes de A soit le méme que le nombre de lignes de B.

e La j-ieme colonne de AB est le produit de A avecla j-ieme colonne de B.

Proposition 1.2. Soit A€ 4y ,(K), i€ [1,n] et j€[1,p].
0

e Ax|1] (el en position j) est la j-ieme colonne de A.

e (0 -+ 1 -+ 0)xA(elenpositioni)est lai-ieme ligne de A.

Définition 1.8. La matrice identité de taille n estla matrice carrée I,, € .4, (IK) dont les seuls coefficients non nuls sont
sur la diagonale (i = j) et valent tous 1.

Proposition I.3. 1. Le produit matriciel est associatif :
VA€ My pK),VBEe .M, K),VCe .My (K),ABC) = (AB)C.
2. Le produit matriciel est bilinéaire :
VA D€ MypK),VB,CeMpyqyK), VA, ue K, AAB+uC)=AAB+puAC et (AA+uD)B=AAB+uDB.
3. Le produit matriciel a un élément neutre :

VAE My pK), AL, = I,A= A.

Remarques1.5. Sin=2:
 Attention : le produit matriciel n'est pas commutatif!
 Attention : le produit matriciel n’est pas intégre : si on a AB = 0, cela ne signifie pas forcément que A=0ou B =0!

o Il existe des matrices N € .4, (K) non nulles dites nilpotentes : il existe k € N telles que N k— 0,.
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1. Matrices

Proposition 1.4. Soient E; j € My p(K) et By € My q deux matrices élémentaires. Alors E; jEx,; = 6 jxE;;, ot 6 =

1 sii—k
{ SI. / est le symbole de Kronecker.
0 sinon

Définition 1.9. Pour A€ .4, (K) et k€ N*, onnote AKX = Ax Ax...x A.
(S ——

k fois
On convient que Av=1,.
Théoréme 1.5
Soient A, B € ), (K) | telles que AB = BA |. Alors
" n
(A+B)" =Y | |A*B" K.
i=o\k

L.4. Transposée d’'une matrice

Définition 1.10. Si M = (m;j)1<isni<jsp € Hn,p(K). On appelle transposée de la matrice M la matrice M e Mp,n(K)
dont le coefficient d’indice (i, j) € [1, p] x [1, n] est [M '1;; = m;;.

Cette opération transforme les lignes d’'une matrice en colonnes et vice-versa.

Proposition 1.6. Soient A€ My, p(K), B € My 4(K) et ALpek.
1.(ANHT=A 2. Linéarité : (AA+uB)T = AAT + uB" 3.(AB)"=BTAT.

Définition I.11. Soit A€ #,(K). On ditque Aest:
o symétriquesi AT = A;
« antisymétriquesi A" = —A.

On note ., (K) I'ensemble des matrices symétriques de .4, (K) et <7, (K) I'’ensemble des matrices antisymétriques de
My (K).

Proposition 1.7. La combinaison linéaire de deux matrices symétriques (resp. antisymétriques) est une matrice symé-
trique (resp. antisymétrique).

I.5. Matrices diagonales et triangulaires
Définition I1.12. Une matrice A € 4, (K) est dite :
« diagonale si ses seuls coefficients non nuls sont sur la diagonale :
Vi, e[L,n]?aj£0=>i=j
« triangulaire supérieure si ses seuls coefficients non nuls sont au-dessus de la diagonale :
Vi, e[L,n]?a;j£0=>i<j
« triangulaire inférieure si ses seuls coefficients non nuls sont en-dessous de la diagonale :

V(i,j)E[[l,nﬂz,aij¢03i2j
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II. Ensemble des solutions d’un systéme linéaire

Remarques L.6. e Une matrice de la forme 11, est appelée matrice scalaire.
d 0 - 0
0 d
e On pourra écrire diag(d;, do, ...,d;,) = ) 2
o .0
0 - 0 dy

Proposition 1.8. Soient A,B € 4, (K) et A, ueK.

Si A et B sont diagonales (resp. triangulaires supérieures, resp. triangulaires inférieures) alors \A+ uB et AB sont diago-
nales (resp. triangulaire supérieures, resp. triangulaire inférieures).
De plus, Vi € [1,n], [AB];; = [Al;;[Bl;;.

Remarque I.7. En particulier, si D = diag(d, dy,...,d,), pour tout k € N, Dk = diag(d{c, df, ey d',i).

II. Ensemble des solutions d’un systeme linéaire

Remarque I1.1. On peut identifier 'ensemble .4, 1 (K) avec K.

Le systéme linéaire

a1,1x1+a1,2x2+...+a1,px,, = bl
a1X1tazpXp+...tazpXp = by
S o
An1 X1+ p2X2 +...+AppXp = by
al a2 ... al,p X1 bl

az az» v az,p

X2 b
peut s’écrire matriciellement: AX = B,ou A = X=| . |edlpr(K)= KPetB=| . |etln1(K) =

an1 Gp2 ... Adup Xp by,
Kﬂ
Lorsque le systéme esthomogene, c’est-a-dire lorsque B = 0,1, on a toujours 0,,; comme solution. On note Sy I'ensemble
des solutions de AX =0y,1.

Théoréme II.1

Soient A€ My,,(K) de colonnes Ay,...,Ap et BEK".
Le systeme AX = B est compatible ssi B € Vect(Ay,..., Ap). Dans ce cas, si Xq € IK” est une solution particuliére du
systéme, I'ensemble des solutions du systeme est

S= {X0+XH,XH€SH}.

En pratique, on utilise le pivot de Gauss pour résoudre un systeme.

III. Matrices inversibles

III.1. Systemes de Cramer

Définition III.1. Une matrice A € /4, (K) est dite inversible s’il existe B € .4, (K) telle que AB=BA = I,,.
La matrice B est alors unique et s’appelle Pinverse de A et est notée A™".
On note GL, (K) I'ensemble des matrices inversibles de .4/, (K) : c’est le groupe linéaire.

RemarqueIIL1. Si A€ GL,(K) et AB = AC, alors A”*AB = A"' AC, donc B = C.
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III. Matrices inversibles

Théoréme I11.1

Soit A € 4, (K). Si une colonne (resp. une ligne) de A est combinaison linéaire des autres colonnes (resp. des autres
lignes), alors A n’est pas inversible.
En particulier, si une des colonnes (resp. lignes) de A est nulle, alors A n’est pas inversible.

Remarque II1.2. Laréciproque est vraie, mais on ne verra la démonstration que plus tard dans I’année.

Proposition I11.2. Une matrice diagonale A = diag(ay, a, ..., ay) est inversible si et seulement si tous ses coefficients
diagonaux sont non nuls.

, _ . 1 1 1
Dans ce cas son inverse est A l:dlag(—,—,...,— .
ay ap ap

Dans le cas général, on utilise le théoréme suivant :

Théoreme II1.3

Soit A € #,(K). La matrice A est inversible si et seulement si pour tout Y € K", le systtme AX = Y a une unique
solution.
On dit dans ce cas que le systéeme est de Cramer.

Méthode. Pour trouver I'inverse d’'une matrice carrée A, on essaye de résoudre le systéme AX =Y :

« sile systeme est toujours compatible quel que soit Y, alors en le résolvant, on obtient X en fonction de Y, c’est-a-
dire, X = A7'Y : onlitles coefficients de A~! dansle systéme renversé.

 sinon, la matrice A n’est pas inversible.

II1.2. Matrices inversibles de taille 2

Proposition I11.4. Soit A= (Z 2) € > (K). On posedet(A) = ad — bc.
. . . . 1 1 d -b
A est inversible si et seulement si det(A) #0 et alors A~ = .
det(A) \-¢ a

I11.3. Un outil : le déterminant

On admet pour l'instant qu’on peut définir une application det : .4, (K) — K qui vérifie la propriété : M € GL,(K) <
det(M) # 0. On peut donc tester si une matrice est inversible en calculant son déterminant.

On a déja donné son expression pour une matrice de taille 2. Dans le cas général, il n'y a pas de formule simple, mais on
a des outils de calcul.

Proposition I11.5. Soit M € 4, (K).

» Sion ajoute a une ligne (ou a une colonne) de M une combinaison linéaire des autres lignes (ou colonnes), on ne
change pas le déterminant.

» Sion échange deux lignes (ou deux colonnes) de M, on change le signe du déterminant.
n

o Si M est triangulaire, det(M) = [ [ [M];;.
i=1

Grace a cette propriété, on se rameéne a une matrice avec une ligne (ou une colonne) n’ayant qu'un seul coefficient non
nul. On peut alors développer par rapport a cette ligne (ou colonne) pour se ramener a un déterminant de taille 1 de
moins, et on recommence jusqu’a arriver a un déterminant 2 x 2.
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III. Matrices inversibles

Proposition I11.6. Soit M € .4, (K) avec n = 2. Pour (i, j) € [1, n]]z, on note A;,j le déterminant obtenu en supprimant la
i-ieme ligne et la j-ieme colonnede M.Ona:
n . .
« développement par rapport a une ligne : Vi € [1, n], det(M) = Z (-1t [M]; ;A5
j=1

n . .
o développement par rapport a une colonne :V j € [1, n], det(M) = Z (=DM ijlijs
i=1

III.4. Inverse et opérations

Proposition II.7. Soient A, B € GL, (K).
1. AV estinversibleet (A1) = A.
2. AB estinversibleet (AB)"' =B~ 1A
3. Pour tout k € N, AX est inversible et (A¥)™! = (A7h*,

4. AT estinversibleet(AT)"! = (A_I)T.

Remarque I11.3. Les deux premieres propriétés nous assurent que GLj, (K) est un groupe.

Proposition I11.8 (Admis pour I'instant). Soit A€ 4, (K).
1. S’il existe B € M, (K) telle que BA = I,, alors A est inversible et A7l =B.
2. Slilexiste C € M, (K) telle que AC = I,,, alors A est inversible et Al=cC.

II1.5. Opérations élémentaires sur les lignes et sur les colonnes

IIL5.1 Echange de lignes ou de colonnes

Définition IIL.2. Soit n = 1. Pour tout (i, j) € [1, n]]z, on appelle matrice de transposition la matrice :

:
|
Pi,j:In+Ei,j+Ej,i_Ei,i_Ej,j= :
|
|

P [P 0-----mm-

Proposition II1.9. SoirneN* et (i, j) €1, n]]z.
1. Pour toute matrice M € My, (K), la matrice P; j M est obtenue a partir de M en échangeant les lignes i et j.
2. Pour toute matrice N € M4, (K), la matrice NP;,j est obtenue a partie de N en échangeant les colonnesi et j.

3. Lamatrice P; ; est inversible et son inverse est elle-méme : P? i=1In
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III. Matrices inversibles

I11.5.2 Dilatation

Définition I11.3. Soit 7 = 1. Pour tout i € [1, n], et 1 e K*, on appelle matrice de dilatation la matrice :

Di(ﬂ,):]n‘F(A—l)Ei’i: 777777777 A= —i

Proposition I11.10. SoitneN*, i€ [1,n] etAeK*.
1. Pour toute matrice M € My, (K), la matrice D;(A) M est obtenue a partir de M en multipliant la ligne i par A.

2. Pour toute matrice N € My, (K), la matrice ND;(A) est obtenue a partie de N en multipliant la colonne i par A.

1
3. La matrice D;(A) est inversible et son inverse est D; (X )

1I1.5.3 Transvections

Définition I11.4. Soit n = 1. Pour tout (i, j) € [1, n]]z avec i # j, et A € K, on appelle matrice de transvection la matrice :

T; jA) =1+ AE; j =

Proposition IIL.11. SoitneN*, (i, j) € [1, nﬂz aveci# jetAekK.
1. Pour toute matrice M € My p(K), la matrice T; j(A) M est obtenue a partir de M en ajoutant A fois la ligne j a la
lignei.
2. Pour route matrice N € M4, (K), la matrice NT; (1) est obtenue a partie de N en ajoutant A fois la colonnei a la
colonne j.

3. La matrice T; j(A) est inversible et son inverse est T;, j(=A).

Remarque II1.4. Soit A € My, ,(K) et B € K". Si M € ., (K) est une matrice d’opération élémentaire, alors X € IK” est
solution de AX = B si et seulement si il est solution de MAX = M B, car M est inversible. C’est le principe de base du pivot
de Gauss.

II1.5.4 Calcul de I'inverse par opérations élémentaires

Proposition II.12. Soit A € 4, (K) et M € 4, (K) une matrice d’opération élémentaire. Alors A€ GL,(K) <= MAe€
GL,(K) <= AM € GL,(K).
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III. Matrices inversibles

Méthode. Si A est une matrice de .4, (K), on peut déterminer si elle est inversible sans passer par les systemes. En effet,
en multipliant A par une matrice d’opération élémentaire, la matrice obtenue sera inversible ssi A était inversible. On
applique donc 'algorithme du pivot et deux cas se présentent :

e siau cours de I'algorithme on arrive a une matrice qui n’est pas inversible (car elle a une ligne/colonne qui est CL
des autres), alors A n’est pas inversible;

 sinon, on a trouvé des matrices E1, Ey, ..., E; € 4, (K) telles que E;--- E2E} A = I, (si on fait les opérations sur les
lignes). Autrement dit, la matrice E, - -- Eo E; est'inverse de A.
En pratique, on applique le pivot de Gauss sur (A|I,,) pour obtenir 2 la fin (I,,]A™%).

II1.6. Matrices triangulaires inversibles

Proposition I11.13. Soit A € 4, (KK) une matrice triangulaire. Alors A € GL,(K) < Vi € [1,n],a;; # 0. Dans ce cas,
A7 est aussi triangulaire du méme type et ses coefficients diagonaux sont les inverses de ceux de A.
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