Programme de colle \$04 du 10/10 au 14/10

Chapitre 1 : Structure des molécules

II. La liaison covalente localisée

- 1) Le modèle de Lewis
- 2) Règle de l'octet
- 3) Limites : composés déficitaires et hypervalence
- 4) Charges formelles
- 5) Paramètres de liaison

III. La liaison covalente délocalisée

- 1) Formules mésomères
- 2) Poids d'une formule mésomère

IV. Prévision de la géométrie des molécules : modèle VSEPR

- 1) Principe
- 2) Géométrie de l'environnement d'un atome
- 3) Distorsion angulaire
- 4) Moment dipolaire

Chapitre 2 : Description des molécules organiques

cours et application directe seulement

I.Représentations des molécules

- 1) Formules brutes
- 2) Formules planes
 - a. Formule développée
 - b. Formule semi-développée
 - c. Formule topologique
- 3) Structures spatiales
 - a. Représentation de Cram
 - b. Projection de Newman

II.Nomenclature

- 1) Nomenclature des hydrocarbures
 - a. Les alcanes
 - b. Les alcènes et les alcynes
 - c. Les cycloalcanes
- 2) Nomenclature de diverses fonctions

III.Stéréoisomérie

- 1) Isomérie de constitution et stéréoisomérie
- 2) Stéréoisomérie de configuration
 - a. Énantiomérie et diastéréoisomérie
 - b. Diastéréoisomérie Z ou E
 - c. Règles CIP (Cahn, Ingold et Prelog) (1966)
 - d. Stéréoisomérie R/S et chiralité

Chapitre 1 : Structure des molécules

Notions et contenus	Capacités exigibles
Modèle de Lewis de la liaison covalente Liaison covalente localisée ; longueur et énergie de la liaison covalente. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou polyatomique (étude limitée aux éléments des blocs s et p). Liaison covalente délocalisée : mésomérie	Citer l'ordre de grandeur de longueurs et d'énergies de liaison covalente. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Citer les éléments des périodes 1 à 3 du tableau périodique (nom, symbole, numéro atomique). Établir un ou des schémas de Lewis pertinent(s) pour une molécule ou un ion. Identifier et représenter les enchaînements donnant lieu à une délocalisation
	électronique. Mettre en évidence une éventuelle délocalisation électronique à partir de données expérimentales.
Géométrie et polarité des entités chimiques Structure géométrique d'une molécule ou d'un ion polyatomique. Modèle VSEPR. Représentation de Cram. Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.	Associer qualitativement la géométrie d'une entité à la minimisation de son énergie.Prévoir et interpréter les structures de type AX _n avec n ≤ 4 et AX _p E _q , avec p+q = 3 ou 4. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique. Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique d'une molécule. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule.

Chapitre 2 : Description des molécules organiques

Chapitre 2 . Description des molecules organiques	
Notions et contenus	Capacités exigibles
Structure des entités chimiques organiques Isomérie de constitution. Stéréo-isomérie de conformation en série aliphatique non cyclique ; ordre de grandeur de la barrière conformationnelle. Représentation de Newman. Représentation topologique	Comparer la stabilité de plusieurs conformations. Interpréter la stabilité d'un conformère donné.
Stéréoisomérie de configuration : chiralité, énantiomérie, diastéréoisomérie, descripteurs stéréochimiques <i>R, S, Z, E</i>	Attribuer les descripteurs stéréochimiques aux centres stéréogènes. Déterminer la relation d'isomérie entre deux structures. Représenter une molécule à partir de son nom, fourni en nomenclature systématique, en tenant compte de la donnée d'éventuelles informations stéréochimiques, en utilisant un type de représentation donné.