Contenus	Capacités & commentaires
Inégalités	
Valeur absolue. Inégalité triangulaire.	Interprétation sur la droite réelle d'inégalités du type $ x-a \le b$.
Dans R, parties majorées, minorées, bornées.	
Majorant, minorant; maximum, minimum. Partie entière d'un nombre réel.	Notation x
raite entiere d'un nomore reel.	Notation [x]
Trigonométrie	
Cercle trigonométrique. Paramétrisation par cosinus et sinus. Relation de congruence modulo 2π sur ${\bf R}$. Cosinus et sinus de $\pi \pm x$, de $\frac{\pi}{2} \pm x$. Cosinus et sinus des angles usuels.	Notation $a \equiv b[2\pi]$. Les étudiants doivent savoir retrouver ces résultats et résoudre des équations et inéquations trigonométriques simples en s'aidant du cercle trigonométrique.
Formules d'addition $\cos(a)$, $\sin(a\pm b)$. Cas particulier des formules de duplication : $\cos(2a)$, $\sin(2a)$. Fonctions circulaires cosinus et sinus.	On présente une justification géométrique de l'une de ces formules. Les étudiants doivent savoir retrouver rapidement les formules donnant $\cos(a)\cos(b)$, $\cos(a)\sin(b)$, $\sin(a)\sin(b)$.
Pour $x \in \mathbf{R}$, inégalité $ \sin(x) \le x $. Fonction tangente. Tangente de $\pi \pm x$. Tangente des angles usuels. Formule d'addition $\tan(a \pm b)$.	Notation tan. Dérivée, variations, représentation graphique. Interprétation sur le cercle trigonométrique.
Propriété de la borne supérieure	
Borne supérieure (resp. inférieure) d'une partie de ${\bf R}$. Toute partie non vide et majorée (resp. minorée) de ${\bf R}$ admet une borne supérieure (resp. inférieure).	Notations $\sup X$, $\inf X$. On convient que $\sup X = +\infty$ si X est non majorée.
Nombres complexes	
Parties réelle et imaginaire. Opérations sur les nombres complexes.	La construction de C est hors programme.
Brève extension du calcul de $\sum_{k=0}^{n} x^{k}$, de la factorisation de a^{n} –	
b^n , de la formule du binôme. Point du plan associé à un nombre complexe, affixe d'un point, affixe d'un vecteur.	On identifie C au plan usuel muni d'un repère orthonormé direct (« plan complexe »).
Conjugaison et module	
Conjugaison, compatibilité avec les opérations. Module. Relation $ z ^2=z\bar{z}$, module d'un produit, d'un quotient. Inégalité triangulaire, cas d'égalité.	Image du conjugué dans le plan complexe. Interprétation géométrique de $ z-z_0 $, cercles et disques.
Nombres complexes de module 1 et trigonométrie	
Identification du cercle trigonométrique et de l'ensemble des nombres complexes de module 1. Définition de e^{it} pour $t \in \mathbf{R}$.	Notation \mathbb{U} .
Exponentielle d'une somme. Formules d'Euler. Technique de l'angle moitié : factorisation de $1 \pm e^{it}$, de $e^{ip} \pm e^{iq}$.	Les étudiants doivent savoir retrouver les formules donnant $\cos(p) \pm \cos(q)$, $\sin(p) \pm \sin(q)$.
Formule de Moivre.	Linéarisation, calcul de $\sum_{k=0}^{n} \cos(kt)$ et de $\sum_{k=0}^{n} \sin(kt)$. Les étudiants doivent savoir retrouver les expressions de $\cos(nt)$ et $\sin(nt)$ en fonction de $\cos t$ et $\sin t$.

- 2025/2026 -

Contenus	CAPACITÉS & COMMENTAIRES
Forme trigonométrique	
Forme trigonométrique $r\mathrm{e}^{\mathrm{i}\theta}$ $(r>0)$ d'un nombre complexe non nul. Arguments. Arguments d'un produit, d'un quotient. Transformation de $a\cos t + b\sin t$ en $A\cos(t-\varphi)$.	
Équations algébriques	
Pour P fonction polynomiale à coefficients complexes admettant a pour racine, factorisation de $P(z)$ par $z-a$. Résolution des équations du second degré dans ${\bf C}$. Somme et produit des racines.	Calcul des racines carrées d'un nombre complexe donné sous forme algébrique.
Racines n-ièmes	
Description des racines n -ièmes de l'unité, d'un nombre complexe non nul donné sous forme trigonométrique.	Notation \mathbb{U}_n . Représentation géométrique.
Exponentielle complexe	
Définition de e^z pour z complexe : $e^z = e^{\operatorname{Re}(z)}e^{i\operatorname{Im}(z)}$. Exponentielle d'une somme. Pour tous z et z' dans \mathbf{C} , $\exp(z) = \exp(z')$ si et seulement si $z - z' \in 2i\pi\mathbf{Z}$.	Notations $\exp(z)$, e^z . Module et arguments de e^z .
Interprétation géométrique des nombres complexes	
Interprétation géométrique des module et arguments de $\frac{c-a}{b-a}$. Interprétation géométrique des applications $z\mapsto az$ et $z\mapsto z+b$ pour $(a,b)\in \mathbf{C}^*\times\mathbf{C}$. Interprétation géométrique de la conjugaison.	Traduction de l'alignement, de l'orthogonalité. Il s'agit d'introduire certaines transformations du plan : translations, homothéties, rotations. L'étude générale des similitudes est hors programme.

La colle sera constituée d'un des exercices "type" ci-dessous suivi éventuellement de différentes questions de cours, puis d'un ou deux exercices complémentaires.

Si l'exercice type n'est pas parfaitement maîtrisé, la note de pourra pas excéder 09/20, et cela peu importe l'efficacité constatée sur la résolution des autres exercices.

- 2025/2026 - -2-

Exercices "type"

• Soit a_1, \ldots, a_n et b_1, \ldots, b_n des réels. On suppose que $(b_1, \ldots, b_n) \neq (0, \ldots, 0)$. Montrer que

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leqslant \left(\sum_{i=1}^{n} a_i^2\right) \times \left(\sum_{i=1}^{n} b_i^2\right)$$

- Soit $x \in]0, 2\pi[$. Calculer $A_n = \sum_{k=0}^n \cos(kx)$ et $B_n = \sum_{k=0}^n \binom{n}{k} \sin(kx)$.
- Montrer par récurrence que pour tout $n \in \mathbb{N}$ il existe une fonction polynôme $T_n : \mathbb{R} \to \mathbb{R}$ telle que :

$$\forall x \in \mathbf{R} , \cos(nx) = T_n(\cos x)$$

• Soit $n \in \mathbb{N}^*$. Déterminer explicitement une fonction polynôme à coefficients réels T_n vérifiant :

$$\forall \theta \in \mathbf{R} , \cos(n\theta) = T_n(\cos\theta)$$

- Linéariser l'expression $\cos^2 x \sin^3 x$, puis écrire sous forme d'un polynôme trigonométrique l'expression $\sin(4x)$.
- Soit $n \in \mathbb{N}^*$. On considère

$$S_0 = \sum_{k=0}^{n} {3n \choose 3k}$$
 ; $S_1 = \sum_{k=0}^{n-1} {3n \choose 3k+1}$; $S_2 = \sum_{k=0}^{n-1} {3n \choose 3k+2}$

Calculer $S_0 + S_1 + S_2$ et $S_0 + jS_1 + j^2S_2$ où $j = e^{2i\pi/3}$. En déduire les valeurs de S_0, S_1 et S_2 .

- 2025/2026 -