Contenus	Capacités & commentaires
Généralités sur les suites réelles	
Suite majorée, minorée, bornée. Suite stationnaire, monotone, strictement monotone. Mode de définition d'une suite réelle : explicite, implicite, par récurrence.	Une suite $(u_n)_{n\in\mathbb{N}}$ est bornée si et seulement si $(u_n)_{n\in\mathbb{N}}$ est majorée.
Suites particulières	
Suites arithmétiques, géométriques, arithmético- géométriques. Suites récurrentes linéaires homogènes d'ordre 2 à coeffi-	Pour une relation de récurrence $u_{n+1} = au_n + b$ où $a \in \mathbb{C} \setminus \{1\}$ et $b \in \mathbb{C}$, recherche d'une solution constante, détermination des solutions.
cients constants. Présentation de l'étude des suites définies par une relation de récurrence $u_{n+1} = f(u_n)$ sur quelques exemples simples. Représentation géométrique. Si (u_n) converge vers un élément ℓ en lequel f est continue, alors $f(\ell) = \ell$.	Cette étude est l'occasion d'introduire la notion d'intervalle stable par une fonction. Pour l'étude de la monotonie de (u_n) , on souligne l'intérêt, d'une part, de l'étude du signe de $f(x) - x$, et, d'autre part, de l'utilisation de la croissance éventuelle de f .
Limite d'une suite réelle	
Limite finie ou infinie d'une suite. Unicité de la limite. Suite convergente, divergente. Toute suite convergente est bornée. Opérations sur les limites : combinaison linéaire, produit, quotient. Passage à la limite d'une inégalité large. Si (u_n) converge vers $\ell > 0$, alors $u_n > 0$ à partir d'un certain rang. Existence d'une limite par encadrement (limite finie), par minoration (limite $+\infty$), par majoration (limite $-\infty$). Utilisation d'une majoration de la forme $ u_n - \ell \leqslant v_n$, où (v_n) converge vers 0 .	Les définitions sont énoncées avec des inégalités larges. Notations $u_n \to \ell$, $\lim u_n$. Produit d'une suite bornée et d'une suite de limite nulle.
Suites monotones	
Théorème de la limite monotone. Théorème des suites adjacentes. Approximations décimales d'un réel.	Valeurs décimales approchées à la précision 10^{-n} par défaut et par excès. Tout réel est limite d'une suite de rationnels.
Suites extraites	
Suite extraite. Si une suite possède une limite, toutes ses suites extraites possèdent la même limite.	Tout développement théorique sur les suites extraites est hors programme. Utilisation pour montrer la divergence d'une suite. Si (u_{2n}) et (u_{2n+1}) tendent vers ℓ , alors (u_n) tend vers ℓ . Le théorème de Bolzano-Weierstrass est hors programme.
Suites complexes	
Brève extension des définitions et résultats précédents.	Caractérisation de la limite en termes de parties réelle et imaginaire.

-2025/2026 -1

Contenus	CAPACITÉS & COMMENTAIRES
Relations de comparaison pour les suites	
Relations de domination, de négligeabilité, d'équivalence. Liens entre ces relations Règles usuelles de manipulation des équivalents et des symboles o et O.	La relation $u_n = o(v_n)$ est définie à partir du quotient sous l'hypothèse que la suite ne s'annule pas à partir d'un certain rang. Pour la relation $u_n \sim v_n$, on donne les deux formes $u_n/v_n \to 1$ et $u_n = v_n + o(v_n)$, en insistant sur l'intérêt de la seconde dans les calculs. Traduction à l'aide du symbole o des croissances comparées de $(\ln n)^{\beta}$, n^{α} , $e^{\gamma n}$, a^n et $n!$.
Obtention d'un équivalent par encadrement : si $a_n \le u_n \le b_n$ et que $a_n \sim b_n$ alors $u_n \sim a_n$. Propriétés conservées par équivalence : signe, limite. Équivalents usuels.	

La colle sera constituée d'un des exercices "type" ci-dessous suivi éventuellement de différentes questions de cours, puis d'un ou deux exercices complémentaires.

Exercices "type"

• Déterminer l'expression explicite des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies pas

$$\begin{cases} \forall n \in \mathbf{N} \ , \ u_{n+2} = \sqrt{u_n u_{n+1}} \\ u_0 = e^5 \ , \ u_1 = e^{-1} \end{cases} ; \qquad \begin{cases} \forall n \in \mathbf{N} \ , \ u_n + 2u_{n+1} = -2 \\ u_1 = 3 \end{cases}$$

• Lemme de Césaro : si $(u_n) \in \mathbf{R}^{\mathbf{N}}$ converge vers $\ell \in \mathbf{R}$ alors

$$c_n = \frac{1}{n+1} \sum_{k=1}^n u_k \xrightarrow[n \to +\infty]{} \ell$$

- Si (u_n) est croissante et majorée elle converge, et si elle est non majorée elle diverge vers $+\infty$. Application à l'étude de (u_n) définie par $u_{n+1} = \sqrt{1 + u_n}$ avec $u_0 = 2$.
- Démonstration du théorème des suites adjacentes. Application à la convergence de (S_n) où $S_n = \sum_{k=1}^n \frac{(-1)^n}{n^{\alpha}}$ si $\alpha > 0$.
- Preuve de $H_n = \ln n + \gamma + o(1)$ pour $H_n = \sum_{k=1}^n 1/k$.
- Preuve des équivalents suivants quand (u_n) tend vers 0:

$$\sin(u_n) \sim u_n$$
 ; $\tan(u_n) \sim u_n$; $\cos(u_n) - 1 \sim -\frac{(u_n)^2}{2}$

$$e^{u_n}-1\sim u_n$$
 ; $\ln(1+u_n)\sim u_n$; $(1+u_n)^{\alpha}-1\sim \alpha u_n$

- 2025/2026 -