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MONTRER QUE : ∀x ∈ E , P(x)

•Méthode 1 :
Soit x ∈ E.
On a . . . . . . donc . . . . . . donc . . . . . . donc P(x)

•Méthode 2 :
On peut aussi reformuler d’abord P(x) avant de commencer le raisonnement. On a

∀x ∈ E P(x)⇐⇒P1(x)⇐⇒ . . . . . .⇐⇒Q(x)

Il suffit alors
X soit de montrer Q(x) en appliquant la Méthode 1,
X soit, si Q(x) est évidente, de dire « comme Q(x) est vraie pour tout x ∈ E alors P(x) est aussi vraie

pour tout x ∈ E. »

• Variante 1 : montrer une implication
Cette méthode est utilisée également quand on veut montrer un énoncé du type

∀x ∈ E , P(x) =⇒ Q(x)

Dans ce cas on rédigera de la manière suivante :
Soit x ∈ E. On suppose que P(x) est vraie.
On a . . . . . . donc . . . . . . donc . . . . . . donc Q(x)

• Variante 2 : montrer une équivalence par double implication
Cette méthode est utilisée également quand on veut montrer, en utilisant la méthode de double implication,
un énoncé du type

∀x ∈ E , P(x)⇐⇒Q(x)

Dans ce cas on utilise deux fois la Variante 1 :
(⇒) Soit x ∈ E. On suppose que P(x) est vraie. Montrons Q(x)
(⇐) Soit x ∈ E. On suppose que Q(x) est vraie. Montrons P(x)

• Variante 3 : montrer une inclusion entre ensembles
Avec cette méthode on peut montrer que A ⊂ B quand A et B sont des éléments de P(E), ce qui revient à
établir

∀x ∈ E , x ∈ A =⇒ x ∈ B

Il s’agit de la Variante 1 en ayant posé « P(x) : x ∈ A » et « Q(x) : x ∈ B ».

• Variante 4 : montrer une égalité d’ensembles
Avec cette méthode on peut montrer que A = B quand A et B sont des éléments de P(E), ce qui revient à
établir

∀x ∈ E , x ∈ A⇐⇒ x ∈ B

Dans ce cas, si on souhaite prouver A = B par double inclusion (montrer A ⊂ B, puis B ⊂ A) alors on
applique la Variante 2 avec « P(x) : x ∈ A » et « Q(x) : x ∈ B ».
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MONTRER QUE : ∀x ∈ E , f (x) = g(x)

•Méthode 1 :
∀x ∈ E, f (x) = f1(x) = . . . · · ·= g(x)

•Méthode 2 :
Si on peut effectuer l’opération f (x)−g(x), on peut écrire

∀x ∈ E , f (x)−g(x) = . . . · · ·= 0

•Méthode 3 :
Si E = I ⊂ R et que f : I → R et g : I → R sont dérivables sur I (ou presque tout I) on peut étudier les
variations de u : I→ R définie par

∀x ∈ I , u(x) = f (x)−g(x)

Si on trouve u′ = 0 sur I intervalle alors on aura f (x) = g(x) pour tout x ∈ I.
Si on trouve u′ = 0 sur presque tout I il faudra utiliser la continuité de u sur I pour obtenir le même résultat.

RÉSOUDRE UNE ÉQUATION f (x) = 0 D’INCONNUE x ∈ I AVEC I ⊂ R

•Méthode 1 : en raisonnant directement par équivalences.

∀x ∈ E, f (x) = 0⇐⇒ . . . . . .⇐⇒ x ∈ A

L’ensemble solution de f (x) = 0 dans E est alors S = A.

•Méthode 2 : par analyse/synthèse.
Analyse : On suppose que x ∈ I vérifie f (x) = 0.
On a . . . . . .donc . . . . . .donc x ∈ A.
Synthèse : On suppose que x ∈ I vérifie x ∈ A.
On a . . . . . .donc . . . . . .donc f (x) = 0.

•Méthode 3 : par disjonction des cas.
Si on sait déterminer des ensembles E1, . . . ,En adaptés au problème vérifiant E =

n⋃
k=1

Ek on peut résoudre

f (x) = 0 sur chacun des Ek (attention à bien vérifier que les solutions trouvées sont bien dans Ek).

La rédaction prendra alors la forme suivante sur chaque Ek pour k = 1 . . . ,n :

Cas où x ∈ Ek : On a
∀x ∈ Ek , f (x) = 0⇐⇒ . . . . . .⇐⇒ x ∈ Ak ⊂ Ek

L’ensemble solution de f (x) = 0 dans E est alors S =
n⋃

k=1
Ak.
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ÉTUDIER LE SIGNE DE f (x) POUR x ∈ I AVEC I ⊂ R

•Méthode 1 :
Factoriser f (x) et utiliser un tableau de signe.

•Méthode 2 :
Si f : I→ R est dérivable sur I (ou presque tout I) on peut étudier les variations de u : I→ R définie par

∀x ∈ I , u(x) = f (x)−g(x)

• Variante : montrer une inégalité
Avec cette méthode on peut montrer que f (x)6 g(x) pour tout x ∈ I en étudiant le signe de f (x)−g(x).

ÉTUDE DE x 7→ u(x)v(x)

La fonction s’écrit x 7→ f (x) = ev(x) ln(u(x)) définie sur D = {x ∈ R | u(x)> 0}.

CALCUL D’UNE SOMME SIMPLE

•Méthode 1 : avec une somme de référence
On utilise les opérations autorisées sur les sommes afin de faire apparaître les sommes classiques suivantes :

n

∑
k=1

k ;
n

∑
k=1

k2 ;
n

∑
k=p

xk

•Méthode 2 : avec une somme téléscopique
On introduit la bonne suite (ak) de manière à ce que la somme s’écrive de l’une des manières suivantes :

n

∑
k=p

(ak+1−ak) ;
n

∑
k=p

(ak−ak+1)

•Méthode 3 : pour les sommes de signes alternés
Pour les sommes faisant apparaître un (−1)k on pourra partitionner la somme en deux parties en utilisant

n

∑
k=0

ak =
bn/2c

∑
0

a2p +
b(n−1)/2c

∑
0

a2p+1 =
bn/2c

∑
0

a2p +
b(n+1)/2c

∑
0

a2p−1

•Méthode 4 : pour les sommes avec un coefficient binomial
On peut essayer de faire apparaître la formule du binôme, ou bien de faire apparaître une somme télésco-
pique en transformant le coefficient binomial avec la formule de Pascal.

•Méthode 5 : pour les sommes avec sin(kx) ou cos(kx)
On se ramènera souvent à une somme géométrique de nombres complexes en utilisant

cos(kx) = Re
(

eikx
)

; sin(kx) = Im
(

eikx
)

• Variante : pour les sommes téléscopique
On peut se ramener à un téléscopage partiel si on arrive à écrire la somme sous la forme

n

∑
k=p

(ak+q−ak)

Il s’agit ensuite de séparer en deux sommes et de faire le changement de variable k′= k+q dans la première
somme avant de télescoper partiellement.
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CALCUL D’UNE SOMME DOUBLE

On se ramène au calcul de deux sommes imbriquées l’une dans l’autre avec l’une des formules suivantes

∑
16i, j6n

ai, j =
n

∑
i=1

n

∑
j=1

ai, j =
n

∑
j=1

n

∑
i=1

ai, j ; ∑
16i6 j6n

ai, j =
n

∑
i=1

n

∑
j=i

ai, j =
n

∑
j=1

j

∑
i=1

ai, j

∑
16i< j6n

ai, j =
n−1

∑
i=1

n

∑
j=i+1

ai, j =
n

∑
j=2

j−1

∑
i=1

ai, j
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MONTRER QUE f : E→ F EST BIEN DÉFINIE

On vérifie que
X pour tout x ∈ E l’expression f (x) est bien définie,
X pour tout x ∈ E on a bien f (x) ∈ F

MONTRER QUE f : E→ F EST INJECTIVE

•Méthode 1 : avec la définition
Soit (x1,x2) ∈ E2 tels que f (x1) = f (x2). Montrons que x1 = x2.
Par contraposée il revient au même de montrer que si x1 6= x2 alors f (x1) 6= f (x2).

•Méthode 2 : avec une équation
Soit y ∈ F . On résout l’équation f (x) = y d’inconnue x ∈ E.
Si pour tout y ∈ F cette équation possède au plus une solution, alors f est injective.

•Méthode 3 : composition
La composée de deux fonctions injectives et injective.

• Variante :
Pour montrer que f n’est pas injective il suffit de trouver un seul y0 ∈ F tel que f (x) = y0 possède au moins
deux solutions dans E.

MONTRER QUE f : E→ F EST SURJECTIVE

•Méthode 1 : avec la définition
Soit y ∈ F . Montrons : ∃x ∈ E , f (x) = y
Il revient au même de montrer que F ⊂ f (E).

•Méthode 2 : avec une équation
Soit y ∈ F . On résout l’équation f (x) = y d’inconnue x ∈ E.
Si pour tout y ∈ F cette équation possède au moins une solution, alors f est surjective.

•Méthode 3 : composition
La composée de deux fonctions surjectives est surjective.

• Variante :
Pour montrer que f n’est pas surjective il suffit de trouver un seul y0 ∈ F tel que f (x) = y0 ne possède
aucune solution dans E.
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MONTRER QUE f : E→ F EST BIJECTIVE

•Méthode 1 : avec la définition
Soit y ∈ F . Montrons que : ∃ ! x ∈ E , f (x) = y
Il revient au même de montrer que f est injective et surjective.

•Méthode 2 : avec une équation
Soit y ∈ F . On résout l’équation f (x) = y d’inconnue x ∈ E.
Si pour tout y ∈ F cette équation a une unique solution, alors f est bijective.
Par définition de la réciproque l’unique solution de f (x) = y est x = f−1(y).
Cette méthode est principalement utilisée quand on cherche une expression de f−1.

•Méthode 3 : cas où f : I→ R avec I intervalle
On applique le théorème de la bijection : si f est continue et strictement monotone sur I alors f réalise une
bijection de I sur f (I).

• Variante 1 : f réalise une bijection de A⊂ E sur B⊂ F
On montre d’abord que f (A)⊂ B, puis que : ∀y ∈ B , ∃ ! x ∈ A , f (x) = y

• Variante 2 :
Pour montrer que f n’est pas bijective il suffit de montrer que f n’est pas injective, ou bien de montrer que
f n’est pas surjective.
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MONTRER QUE

b∫
a

f (x)dx EST BIEN DÉFINIE

La fonction f est continue sur le segment [a,b] donc l’intégrale est bien définie.

CALCUL DE

b∫
a

f (x)dx

•Méthode 1 : primitive "à vue"
Si on reconnaît une primitive usuelle F de f on écrira

b∫
a

f (x)dx = [F(t)]ba = F(b)−F(a)

•Méthode 2 : intégration par parties
On déterminera u : [a,b]→ R et v : [a,b]→ R de classe C 1 pour appliquer la formule d’ IPP.
Ces fonctions sont celles intervenant dans le crochet dans la formule.

•Méthode 3 : changement de variable
On peut poser le changement de variable de classe C 1 défini par x = ϕ(t) . On aura dx = ϕ ′(t)dt.
On fera parfois un changement de variable du type t = ψ(x). Si ψ est bijective cela équivaut à x = ψ−1(t).
On veillera à ne jamais mélanger les nouvelles et anciennes variables dans le calcul de l’intégral.

•Méthode 4 : cas d’un quotient de polynômes
Si f (x) = P(x)/Q(x) on pourra décomposer cette fraction en éléments simples pour primitiver avec du
logarithme (pour 1/(x+a)) ou de l’arctangente (pour 1/(a2 + x2)). On retiendra

1
(x+a)(x+b)

=
1

b−a
×
(

1
x+a

− 1
x+b

)

EXISTENCE ET CALCUL D’UNE PRIMITIVE

Le théorème fondamental de l’intégration (TFI) assure que si f est continue sur le segment [a,b] alors f
possède une primitive sur [a,b].
De plus, une de ces primitives est (par exemple) donnée par

F(x) =
x∫

a

f (t)dt
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ÉTUDE DE x 7→ g(x) =

v(x)∫
u(x)

f (t)dt

On suppose que u : I→ J et v : I→ J sont de classe C 1 avec I et J intervalles de R, et f continue sur J.

X g est bien définie sur I car f est continue sur [u(x),v(x)] (ou [v(x),u(x)]) pour tout x ∈ I.
Il faut bien vérifier que ces intervalles sont contenus dans J, où f est continue.

X Soit F une primitive de f sur J. On a

∀x ∈ I , g(x) = F(v(x))−F(u(x))

X L’expression précédente montre que g est de classe C 1 sur I (composées bien définies et sommes de
fonctions de classe C 1) et que

∀x ∈ I , g′(x) = v′(x) f (v(x))−u′(x) f (u(x))

X Pour étudier la parité de g on fera le changement de variable de classe C 1 défini par t =−w.
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DÉTERMINER LA BORNE SUPÉRIEURE OU LA BORNE INFÉRIEURE DE A⊂ B

X Existence :
Si A est une partie de R non vide et majorée alors A possède une borne supérieure.
Si A est une partie de R non vide et minorée alors A possède une borne inférieure.

X Calcul de sup(A) :
On suppose que l’on a identifié un "meilleur" majorant potentiel M.
. Si M ∈ A alors M est un majorant de A et M ∈ A, donc M = max(A) et en particulier M = sup(A).
. Si M /∈ A alors on montre l’existence d’une suite (an) d’éléments de A telle que an −−−−→

n→+∞
M, et

on a donc M = sup(A) par caractérisation séquentielle de la borne supérieure.
Dans le second cas max(A) n’existe pas (preuve par l’absurde).

X Calcul de inf(A) :
On suppose que l’on a identifié un "meilleur" minorant potentiel m.
. Si m ∈ A alors m est un minorant de A et m ∈ A, donc m = min(A) et en particulier m = inf(A).
. Si m /∈ A alors on montre l’existence d’une suite (an) d’éléments de A telle que an −−−−→

n→+∞
m, et on

a donc m = inf(A) par caractérisation séquentielle de la borne inférieure.
Dans le second cas min(A) n’existe pas (preuve par l’absurde).

LINÉARISER (cosx)n OU (sinx)n

Il s’agit de transformer ces expressions en combinaisons linéaires de cos(px) et de sin(px).

•Méthode :
On utilise les formules d’Euler puis la formule du binôme :

(cosx)n =
(eix + e−ix)n

2n =
1
2n

n

∑
k=0

(
n
k

)
ei(n−2k)x ; (cosx)n =

(eix− e−ix)n

2nin
=

1
2nin

n

∑
k=0

(
n
k

)
(−1)kei(n−2k)x

Ensuite à regrouper les eipx de manière à refaire apparaître les cos(px) et sin(px) avec les formules d’Euler.

• Variante :
La même méthode s’utilise pour linéariser une expression du type (cos px)n(sinqx)m. On décomposera
chaque terme en exponentielles puis on fera les produits entre les exponentielles avant d’utiliser les for-
mules d’Euler.

EXPRIMER cos(nx) OU sin(nx) COMME UN POLYNÔME EN cosx ET sinx

•Méthode :
On utilise la formule de Moivre puis le binôme, puis de récupérer les termes d’indices pairs ou impairs
suivant le cas

cos(nx) = Re((cosx+ i sinx)n) = Re

(
n

∑
k=0

(
n
k

)
ik(sinx)k(cosx)n−k

)

sin(nx) = Im((cosx+ i sinx)n) = Im

(
n

∑
k=0

(
n
k

)
ik(sinx)k(cosx)n−k

)
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DÉMONTRER QU’UN NOMBRE COMPLEXE EST RÉEL, OU IMAGINAIRE PUR,
OU UNITAIRE

•Méthode 1 : avec la forme algébrique
Si z = a+ ib avec (a,b) ∈ R2 on a

z ∈ R⇐⇒ b = 0 ; z ∈ iR⇐⇒ a = 0 ; z ∈ U⇐⇒ a2 +b2 = 1

•Méthode 2 : avec le conjugué

z ∈ R⇐⇒ z = z ; z ∈ iR⇐⇒ z =−z ; z ∈ U⇐⇒ z =
1
z

•Méthode 3 : avec une forme exponentielle
Si z = reiθ avec r > 0 et θ ∈ R on a

z ∈ R⇐⇒ θ ≡ 0[π] ; z ∈ iR⇐⇒ θ ≡ π

2
[π] ; z ∈ U⇐⇒ r = 1

DÉTERMINER LA FORME EXPONENTIELLE D’UN NOMBRE COMPLEXE

•Méthode directe :
À partir de la forme algébrique, on reconnaît "à vue" un argument classique.
Il pourra être utile de diviser z par son module pour faire apparaître cet angle.

•Méthode pour zn :
On utilise la forme exponentielle de z :

zn =
(

reiθ
)n

= rneinθ

•Méthode pour eiθ ± eiθ ′ :
Utiliser les formules de l’angle moitié (et si besoin i = eiπ/2) :

eiθ +eiθ ′ = 2cos
(

θ −θ ′

2

)
ei
(

θ+θ ′
2

)
; eiθ−eiθ ′ = 2isin

(
θ −θ ′

2

)
ei
(

θ+θ ′
2

)
= 2sin

(
θ −θ ′

2

)
ei
(

θ+θ ′+π

2

)

On peut toujours se ramener au premier cas en écrivant eiθ − eiθ ′ = eiθ + ei(θ ′+π).
On doit ensuite examiner le signe des cos et sin devant l’exponentielle : si ils sont positifs on a bien une
forme exponentielle, et si ils sont négatifs on écrit 1 =−eiπ pour obtenir le bon module et le bon argument.

• Pour un quotient : méthode 1
On met z1 et z2 sous forme exponentielle puis on utilise les règles de calculs

z1

z2
=

r1eiθ1

r2eiθ2
=

r1

r2
× ei(θ1−θ2)

• Pour un quotient : méthode 2
On trouve une forme algébrique du quotient (avec expression conjuguée) puis on cherche une forme expo-
nentielle "à vue".

• Variante :
Déterminer une forme exponentielle de zn

1/zp
2 .
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RÉSOUDRE UNE ÉQUATION DANS C

•Méthode pour zn = a :
X Le cas a = 1 doit être connu ♥♥ :

zn = 1⇐⇒ z ∈
{

e2ikπ/n ; k ∈ J0,n−1K
}

X Dans le cas général : on écrit a = ρeiα et on se ramène au cas précédent

zn = a⇐⇒ zn =
(

ρ
1/neiα/n

)n
⇐⇒

(
z

ρ1/neiα/n

)n

= 1⇐⇒ z ∈
{

ρ
1/neiα/n× e2ikπ/n ; k ∈ J0,n−1K

}
X Dans le cas particulier n = 2 (recherche d’une racine carrée) : on pourra chercher z sous forme algébrique
en identifiant les parties réelles et imaginaires (on tombera sur une équation bicarrée x4 +αx2 +β = 0 que
l’on résolvera en posant y = x2).
X Une variante : résoudre (az+b)n = α(cz+d)n avec (a,b,c,d,α) ∈ C5 fixés et z inconnue.

• Autres équations :
X Une équation du second degré est résolue en appliquant le cours.
X Si l’équation utilise des puissances on pourra utiliser la forme exponentielle (exemple : zn = (z̄)p).
X Si l’équation fait intervenir uniquement |z|,Re(z)Im(z) ou z̄ on pourra utiliser la forme algébrique.
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SUITES SE RAMENANT À UNE SUITE CLASSIQUE

Quand on veut déterminer une formule explicite (c’est à dire du type un = f (n)) pour une suite arithmético-
géométrique ou récurrente linéaire d’ordre 2 on applique directement les formules du cours.

•Méthode pour les suites du type uα
n+1 = λuβ

n ou uα
n+2 = uβ

n+1uγ
n :

Après avoir justifié que un > 0 pour tout n (par récurrence) on posera vn = lnun pour se ramener aux suites
classiques.

•Méthode pour les suites du type un+1 = aun +P(n) où P ∈ R[X ] :
X On cherche Q ∈ R[X ] de même degré que P tel que (Q(n))n∈N vérifie la relation de l’énoncé (on

utilise alors la méthode d’identification des coefficients d’un polynôme).
Si a = 1 on cherchera Q de degré deg(P)+1.

X On montre que (un−Q(n))n∈N est géométrique de raison a, ce qui donne

un = (u0−Q(0))an +Q(n)

•Méthode pour des suites définies par un système linéaire de taille 2 :{
un+1 = aun +bvn

vn+1 = cun +dvn

On établira une relation de récurrence simple pour (un) est (idem pour (vn) ou (wn)) :

un+2 = aun+1+b(cun+dvn)= aun+1+bcun+d(bvn)= aun+1+bcun+d(un+1−aun)= (a+d)un+1+(bc−ad)un
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SUITES DÉFINIES PAR UN SYSTÈME LINÉAIRE

•Méthode 1 :
On suppose que (un),(vn) et (wn) sont définies par

un+1 = a11un +a12vn +a13wn

vn+1 = a21un +a22vn +a23wn

wn+1 = a31un +a32vn +a33wn

X On remarque que Xn+1 = AXn avec

Xn =

un
vn
wn

 ; A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈M3(K)

X On montre que Xn = AnX0 (par récurrence).
X On calcule An ce qui donne Xn et donc un,vn et wn.

(cf. méthode Calcul de la puissance d’une matrice)

•Méthode 2 : cas simples
Dans certains cas simples on peut trouver (comme dans le cas de la taille 2) une relation de récurrence entre
un+2,un+1 et un ce qui évite de passer par les matrices.

• Variante 1 : taille générale
Cette méthode se généralise en toute taille de matrice (avec p suites on aura une matrice A ∈Mp(K)).

• Variante 2 : suites récurrentes linéaires d’ordre p
On applique une méthode similaire pour étudier une suite récurrente linéaire vérifiant la relation

un+p = ap−1un+p−1 + · · ·+a1un+1 +a0un

On a Xn+1 = AXn en posant

Xn =

 un
...

un+p−1

 ∈Mp,1(K) ; A =


0 1 0 . . . 0
... . . . . . . . . . ...
... . . . . . . 0
0 . . . . . . 0 1
a0 a1 . . . . . . ap−1

 ∈Mp(K)

La matrice A est alors appelée la matrice compagnon du polynôme P(X) = X p−
p−1
∑

k=0
akXk. Les racines du

polynômes sont alors les scalaires qui apparaissent à la puissance n dans l’expression finale de (un).
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MONTRER QU’UNE SUITE CONVERGE OU DIVERGE

•Méthode 1 : calcul explicite de la limite
Dans le cas d’une suite donnée par une formule explicite un = f (n) on peut essayer de déterminer la limite
quand n→+∞ avec les opérations usuelles, les croissances comparées ou les équivalents usuels.

•Méthode 2 : théorème de limite monotone
Si la suite (un) est croissante et majorée (ou décroissante et minorée) alors elle converge.
On obtient au mieux un encadrement de la limite (si un ∈]a,b[ on aura ` ∈ [a,b] : inégalités larges).

•Méthode 3 : théorème des gendarmes
Si an 6 un 6 bn et que (an) et (bn) convergent vers la même limite alors (un) converge vers cette limite
commune.
Pour "passer à la limite" dans une inégalité il faut avoir auparavant justifié que toutes les suites en jeu pos-
sèdent une limite.

•Méthode 4 : suites extraites
Si (u2n) et (u2n+1) convergent vers la même limite alors (un) converge vers cette limite commune.

•Méthode 5 : suites adjacentes (cas de deux suites)
Si deux suites (un) et (vn) sont adjacentes (cf. définition) alors elles convergent vers la même limite.
On peut appliquer ceci aux suites (u2n) et (u2n+1) puis obtenir la convergence de (un) (méthode précédente).

• Variante : montrer qu’une suite diverge
X Si (un) est croissante on peut raisonner par l’absurde : si elle converge on peut espérer trouver une

équation sur la limite qui donnerait une contradiction. Dans ce cas (un) tend vers +∞ (cours).
X Si un > an et (an) tend vers +∞ alors (un) tend vers +∞.

Si un 6 an et (an) tend vers −∞ alors (un) tend vers −∞.
X Si on trouve deux suites extraites qui tendent vers des limites différentes alors la suite diverge

(contraposée d’un résultat du cours).

– – –15–



PCSI2 Fiches méthodes Lycée Thiers

DÉTERMINER UN ÉQUIVALENT D’UNE SUITE

•Méthode avec une formule explicite un = f (n) :
Utiliser les opérations autorisées sur les équivalents (produit, quotient, puissance, changement de variable).
Dans le cas d’une somme justifier qu’on peut écrire un = an +o(an) en identifiant le terme dominant an.

•Méthode pour une série un =
n
∑

k=0
f (k) :

Si f est monotone sur [N,+∞[ on fera une comparaison série-intégrale.
Si f est décroissante on écrira (à savoir redémontrer ♥♥) :

∀k > N +1 ,

k+1∫
k

f (t)dt 6 f (k)6
k∫

k−1

f (t)dt ou bien ∀k > N , f (k+1)6
k+1∫
k

f (t)dt 6 f (k)

Puis on passera à la somme pour k ∈ JN+1,nK et on encadrera un par des quantités équivalentes entre elles.

•Méthode pour suites récurrente ou implicite :
Dans le cas des suites récurrente ou implicites qui tend vers 0 ou +∞, on pourra utiliser les équivalents
usuels à partir d’une équation vérifiée par la suite.

• Variante 1 : montrer que un ∼ vn ou un = o(vn) ou un = O(vn)
On pourra utiliser le quotient (cf. cours).
Dans les deux derniers cas on peut aussi utiliser les opérations usuelles sur les négligeables (cf. remarque
du cours).

• Variante 2 : déterminer un développement asymptotique à deux termes de un
X On commence par déterminer un équivalent de un : si un ∼ an on a un = an +o(an).

X On cherche ensuite un équivalent de un−an : si un−an ∼ bn on a

un−an = bn +o(bn) donc un = an +bn +o(bn)
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ÉTUDE D’UNE SUITE RÉCURRENTE un+1 = f (un)

On suppose que f : I→ R et u0 ∈ I et un+1 = f (un) pour tout n > 0. On traite le cas où I = [a,b] (cas où
l’on se ramène quasi systématiquement).

X Pour montrer que (un) est bien définie :
On montre par récurrence que un ∈ I pour tout n.
Dans l’hérédité on utilisera que f (I)⊂ I (ce qu’il faudra au besoin démontrer).

X Pour montrer que un ∈ [α,β ] (ou un > α , ou un 6 β ) :
Par récurrence comme ci-dessus.

X Pour étudier la monotonie de (un) :
. Si f est croissante sur I et u0 6 u1 on montre par récurrence que "un 6 un+1" pour tout n ∈ N.
. Si f est croissante sur I et u1 6 u0 on montre par récurrence que "un+1 6 un" pour tout n ∈ N.
. Dans tous les cas on peut essayer d’étudier directement le signe de f (x)− x sur I :
Si f (x)− x 6 0 pour tout x ∈ I alors avec x = un on obtient (un) décroissante.
Si f (x)− x > 0 pour tout x ∈ I alors avec x = un on obtient (un) croissante.

X Pour étudier la limite :
Il est souvent utilise pour aborder cette question de déterminer les points fixes de f sur I : cela peut
se faire par la résolution directe d’une équation ou par l’étude du signe de g(x) = f (x)− x (directe-
ment ou en utilisant les variations). On rappelle que f (α) = α équivaut à g(α) = 0.
En général on trouvera un unique point fixe sur I.

. On suppose que f est continue, croissante, et possède un unique point fixe α ∈ I.
On a alors (un) monotone et bornée (cf. ci-dessus) donc converge vers ` ∈ I. Comme f est continue
on a f (`) = ` et par unicité du point fixe on a `= α .

. On suppose que f est dérivable, que | f ′|6 λ ∈ [0,1[, et que f possède un point fixe α ∈ I.
On montre par récurrence (avec l’inégalité des accroissements finis) que

∀n ∈ N , |un−α|6 λ
n|u0−α|

ce qui montre (comme λ n −−−−→
n→+∞

0) que (un) converge vers α .

X Variante : le cas où f est continue et décroissante
Si f est continue et décroissante sur I alors h = f ◦ f est croissante sur I et (u2n) et (u2n+1) sont des
suites récurrentes vérifiant u2n+2 = h(u2n) et u2n+3 = h(u2n+1).
Le raisonnement précédent s’applique et on trouve que (u2n) et (u2n+1) sont monotones et bornées
donc convergent vers `1 ∈ I et `2 ∈ I.
Si de plus h = f ◦ f possède un unique point fixe sur I le raisonnement précédent montre que l1 = l2
(car l1 et l2 sont des points fixes de h).
Les suites (u2n) et (u2n+1) sont donc convergentes vers la même limite donc (un) converge vers cette
limite commune (cours).
Dans ce cas les suites (u2n) et (u2n+1) sont en fait adjacentes.
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ÉTUDE D’UNE SUITE IMPLICITE f (un) = an OU fn(an) = 0

X Montrer que un est bien définie.
. Dans le cas f (un) = an : on applique le théorème de la bijection à f pour montrer que, pour tout
n ∈ N, la valeur an possède un unique antécédent par f (que l’on note un). Dans ce cas on a

un = f−1(an)

. Dans le cas fn(un) = 0 : on applique le théorème de la bijection à fn pour montrer que l’équation
fn(x) = 0 possède une unique solution (que l’on note un). Dans ce cas on a

fn(un) = 0

X Montrer que α 6 un 6 β .
On calcule les images de α et β par f ou fn et on utilise la strictement monotonie de ces fonctions.

X Étudier la monotonie de (un).
. Dans le cas f (un) = an : l’expression un = f−1(an) permet de déduire (par composition) le sens de
variation de (un) du sens de variation de (an) et du sens de variation de f−1 (donné par le théorème
de la bijection).

. Dans le cas fn(un) = 0 : on sait que fn+1(un+1) = 0 et que fn+1 est strictement monotone donc il
suffit de trouver le signe de fn+1(un) (puis d’appliquer le raisonnement du point précédent).
Si un téléscopage semble possible une astuce utile est d’écrire fn+1(un) = fn+1(un)− fn(un) pour
trouver le signe cherché. Une variante est de déterminer le signe de fn(un+1) en écrivant au besoin
fn(un+1) = fn(un+1)− fn(un).

X Déterminer la limite de (un).
. Dans le cas f (un) = an : l’expression un = f−1(an) permet de déduire (par composition) la limite
de (un) de la limite de (an) et des limites de f−1 (données par le théorème de la bijection).

. Dans le cas fn(un) = 0 : on essaye de passer proprement à la limite dans l’équation fn(un) = 0
(sachant que la fonction elle même dépend de n !).
Lorsque qu’on croise un

n avec un ∈]0,1[ rien n’assure que un
n→ 0 ! si on veut établir ce fait il faut

réussir à montrer que un ∈ [0,λ ] avec λ ∈]0,1[ ce qui montrera que 0 6 un
n 6 λ n et qui permettra

de conclure avec les gendarmes. Dans le cas où on n’arrive pas à trouver ce fameux λ , il faut
commencer à envisager que un −→ 1, ce qui peut souvent s’établir en raisonnement par l’absurde.
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RÉSOUDRE UN SYSTÈME LINÉAIRE

On suppose qu’on doit résoudre un système (avec ou sans paramètre) d’inconnues x1, . . . ,xn.
a1,1x1 +a1,2x2 + · · ·+a1,pxp = b1
a2,1x1 +a2,2x2 + · · ·+a2,pxp = b2

...
...

...
...

an,1x1 +an,2x2 + · · ·+an,pxp = bn

•Méthode 1 : méthode de Gauss

X On place en première ligne une équation dont le coefficient de x1
X On supprime les x1 des lignes suivantes en utilisant Li← αLi−βL1 avec α 6= 0 pour i = 2, . . . , p.
X Suite à l’étape précédente, le sous-système constitué des lignes 2 à p ne comporte que les inconnues

x2, . . . ,xn. On ne touche plus à la première ligne et on itère le procédé pour supprimer successivement
les inconnues x2, . . . ,xp−1 des différents sous-systèmes obtenus.

X On obtient alors un système échelonné (parfois triangulaire) que l’on résout en partant de la dernière
ligne et en remontant.
On pourra représenter la matrice du système échelonné trouvé pour visualiser s’il s’agit d’un sys-
tème triangulaire. Pour savoir si un système est de Cramer on a en général besoin de l’échelon-
ner : si la matrice associée au système échelonné obtenu est triangulaire avec tous ses coefficients
diagonaux non nuls alors le système est de Cramer.
Un système de Cramer homogène a toujours pour unique solution (x1, . . . ,xn) = (0, . . . ,0).
Si tous les coefficients comportent un paramètre on pourra commencer par faire une disjonction des
cas sur le paramètre.

•Méthode 2 : par substitution
Méthode réservé aux systèmes simples ou il n’y a que 2 ou 3 inconnues par ligne.

•Méthode 3 : méthode matricielle
Si on écrit le système matriciellement AX = B où A est la matrice des coefficients du système et qu’on arrive
à montrer que A est inversible (cf. Montrer qu’une matrice est inversible) alors le système est de Cramer
et son unique solution est X = A−1B.

•Méthode 4 : cas des systèmes 2×2
Pour ces systèmes on peut savoir s’ils sont de Cramer sans les trianguler : il suffit de calculer son détermi-
nant. Cela ne donne pas la solution (sauf dans le cas d’un système homogène).
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MONTRER QU’UNE MATRICE EST INVERSIBLE

•Méthode 1 : avec un système
X Pour montrer que A ∈Mn(K) est inversible on résout le système associé à AX = 0 où X ,0 sont des
matrices colonnes. Si la seule solution est X = 0 alors A est inversible.
X Pour montrer que A ∈Mn(K) est inversible et calculer l’inverse de A on résout le système associé à
AX = Y où X ,Y sont des matrices colonnes. La matrice A−1 est donnée par les coefficients du système où
X est exprimé en fonction de Y (on a X = A−1Y )

•Méthode 2 : avec la méthode de Gauss matricielle
X Pour montrer que A ∈Mn(K) est inversible on transforme A en une matrice triangulaire T en utilisant
les opérations élémentaires autorisées sur les lignes ou les colonnes.
On a alors A inversible si et seulement si T possède tous ses termes diagonaux non nul.
X Pour calculer l’inverse de A ∈Mn(K) on transforme A en In en utilisant les opérations élémentaires
autorisées uniquement sur les lignes (ou uniquement sur les colonnes).
La matrice A−1 est alors obtenue en effectuant les mêmes opérations dans le même ordre en partant de la
matrice In.

•Méthode 3 : avec un polynôme annulateur
On suppose que l’on a trouve (a0, . . . ,ap) ∈Kp tels que

a0In +a1A+a2A2 + · · ·+apAp = 0n avec a0 6= 0

Dans ce cas, en isolant In et en factorisant par A dans le calcul précédent on constate que A est inversible et

A−1 =
1
a0

(
−a1In−a2A−·· ·−apAp−1)
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CALCUL DE An

•Méthode 1 : conjecturer puis montrer par récurrence
Cette méthode s’applique en général uniquement pour des matrices de petites tailles ou des matrices diago-
nales ou triangulaires très simples.

•Méthode 2 : diagonalisation
Si on arrive à écrire A = PDP−1 avec P ∈Gln(R) et D diagonale alors An = PDnP−1 (récurrence à refaire).
Lorsque qu’une telle écriture est possible les matrices P et D se trouvent en résolvant le système AX = λX
de paramètre λ : les coefficients diagonaux de D sont les λ pour lesquels ce système admet des solutions
non nulles, et la matrice P est la matrice dont les colonnes sont les solutions correspondantes pour chacun
des λ considérés. On verra cela plus tard dans l’année.
Si A = PT P−1 avec T triangulaire simple on peut appliquer cette méthode couplée à la première méthode
pour calculer T n.

•Méthode 3 : formule du binôme
Si on arrive à écrire A = M+N avec MN = NM alors

An = (M+N)n =
n

∑
k=0

(
n
k

)
MkNn−k

Cette méthode s’applique en général pour les matrices A = λ In +T où T triangulaire stricte.
On vérifiera bien la commutation.

•Méthode 4 : établir une relation du type An = anIn +bnA
Dans ce cas là on montre par récurrence la propriété

P(n) : ∃(an,bn) ∈K2 , An = anIn +bnA

La récurrence donne alors une relation entre an+1,bn+1 et an,bn ce qui nous permet d’appliquer les méthodes
sur les suites classiques.
Une variante possible est An = anAp + bnAq où p,q sont des entiers. Cette méthode ne s’appliquera que
pour les matrices ayant un polynôme annulateur ne comportant que très peu de termes : par exemple, si on
a An = anA+bnA2 c’est que P(X) = X3−a3X−b3X2 est annulateur de A.
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RÉSOUDRE DES ÉQUATIONS MATRICIELLES

•Méthode 1 : analyse/synthèse
Dans l’analyse on pourra chercher des conditions nécessaires en passant par exemple l’équation à la trans-
posée ou à la trace. Cela nous amènera souvent à faire une disjonction des cas pour la synthèse.

•Méthode 2 : par identification des coefficients
Cette méthode ne s’appliquera en général pour pour des petites tailles.

•Méthode 3 : pour les équations du type P(M) = A avec P ∈K[X ]
Si P(X) = aX +b on pourra résoudre l’équation comme on le faisait avec des nombres.
Si P(X) = Xn on pourra écrire A = PDP−1 et résoudre d’abord Nn = D (facile si D diagonale) sachant que

Mn = A⇐⇒ P−1MnP = P−1AP⇐⇒ (P−1MP)n = D

On remarquera que si M est solution de P(M) = A avec P∈K[X ] alors M commute avec A (preuve à faire).

DÉTERMINER LE COMMUTANT D’UNE MATRICE CARRÉE

Soit A ∈Mn(K). On souhaite déterminer

C (A) = {M ∈Mn(K) | AM = MA}

•Méthode 1 : identification des coefficients
Cette méthode s’applique bien sur les petites tailles ou sur des matrices simples.
En taille quelconque on pourra d’abord chercher les matrices élémentaires Ei j qui commutent avec A.
La rédaction se fait en général avec des équivalences, mais elle peut devenir une analyse/synthèse si besoin.
On n’oubliera pas (mais il faut savoir le démontrer) que si A est diagonale à termes diagonaux deux à deux
distincts alors C (A) = Dn(K).
A retenir : C (A) est toujours un sev de Mn(K) : c’est le noyau de l’application linéaire M 7→ AM−MA.

•Méthode 2 : diagonaliser A
Si on arrive à écrire A = PDP−1 avec D diagonale on peut se ramener à chercher d’abord C (D) sachant que

MA = AM⇐⇒MP−1DP = P−1DPM⇐⇒ (PMP−1)D = D(PMP−1)

Cette méthode reste exploitable si A = PT P−1 avec T triangulaire simple.
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