Contenus	CAPACITÉS & COMMENTAIRES
Généralités sur les fonctions	
Ensemble de définition. Représentation graphique d'une fonction f à valeurs réelles. Parité, imparité, périodicité.	Les étudiants doivent savoir déduire de la représentation graphique de f celles de fonctions obtenues par des transformations simples, comme $x \mapsto f(x+a)$ ou $x \mapsto f(ax)$. Interprétation géométrique de ces propriétés. Utilisation pour
	la réduction du domaine d'étude.
Somme, produit, composée. Monotonie (large et stricte). Fonctions majorées, minorées, bornées.	Traduction géométrique de ces propriétés. La fonction f est bornée si et seulement si $ f $ est majorée.
Dérivation	
Dérivée d'une fonction. Dérivée d'une combinaison linéaire, d'un produit, d'un quotient, d'une composée. Caractérisation des fonctions constantes, (dé)croissantes, strictement (dé)croissantes, parmi les fonctions dérivables sur	Notations $f'(x)$, $\frac{d}{dx}(f(x))$. Ces résultats sont rappelés, avec la définition de la dérivée et l'équation de la tangente ; ils ne sont pas démontrés à ce stade. Résultats admis à ce stade.
un intervalle. Tableau de variations. Étude pratique d'une fonction. Tracé du graphe. Représentation graphique et dérivée d'une fonction réciproque. Fonction de classe \mathscr{C}^1 . Dérivées d'ordre supérieur.	Application : recherche d'extremums, démonstration d'inégalités. La formule donnant la dérivée est admise, mais on en donne l'interprétation géométrique.
Fonctions usuelles	
Fonctions exponentielle, logarithme népérien, puissances. Relations $(xy)^{\alpha}=x^{\alpha}y^{\alpha}, x^{\alpha+\beta}=x^{\alpha}x^{\beta}, (x^{\alpha})^{\beta}=x^{\alpha\beta}$. Croissances comparées des fonctions logarithme, puissances et exponentielle.	Dérivée, variations, représentation graphique. Les fonctions puissances sont définies sur \mathbf{R}_+^* et prolongées en 0 le cas échéant. Seules les fonctions puissances entières sont en outre définies sur \mathbf{R}^* . Logarithme décimal, logarithme en base 2.
Inégalités $\exp(x) \geqslant 1 + x$, $\ln(1+x) \leqslant x$. Fonctions circulaires réciproques arcsin, arccos, arctan. Fonctions hyperboliques \sinh , \cosh .	Dérivée, variations, représentation graphique. Dérivée, variations, représentation graphique. La fonction tangente hyperbolique et les fonctions hyperboliques réciproques sont hors programme. La seule formule exigible est $\cosh^2 x - \sinh^2 x = 1$
Calcul de primitives	
Primitives d'une fonction définie sur un intervalle à valeurs réelles. Lien entre intégrales et primitives.	Description de l'ensemble des primitives d'une fonction sur un intervalle connaissant l'une d'entre elles. On rappelle sans démonstration que, pour une fonction continue $f, x \mapsto \int_{x_0}^{x} f(t)dt$ a pour dérivée f .
Calcul des primitives, application au calcul d'intégrales. Primitives des fonctions exponentielle, logarithme, puissances, trigonométriques et hyperboliques, et des fonctions $x\mapsto \frac{1}{1+x^2}$ et $x\mapsto \frac{1}{\sqrt{1-x^2}}$. Intégration par parties, changement de variable.	On pourra noter $\int_{-x}^{x} f(t)dt$ une primitive générique de f . Les étudiants doivent savoir calculer les primitives de fonctions du type $x \mapsto \frac{1}{ax^2 + bx + c}$ et reconnaître les dérivées de fonctions composées.

- 2024/2025 -

La colle sera constituée d'un des exercices "type" ci-dessous suivi éventuellement de différentes questions de cours, puis d'un ou deux exercices complémentaires.

Exercices "type"

- On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 x^n e^{-x} dx$. Déterminer I_{n+1} en fonction de I_n . Calculer I_0 et en déduire I_1 et I_2 .
- Calculer $I = \int_{0}^{1} \sqrt{1 x^2} dx$.
- Si $(a,b) \neq (0,0)$ il existe $\rho > 0$ et $\theta \in \mathbf{R}$ tel que

$$\forall x \in \mathbf{R}, \ a\cos x + b\sin x = \rho\cos(x - \theta)$$

- Montrer que g: R → R définie par g(x) = ∫₀^x √(1+t²) dt est impaire.
 Montrer que e^x ≥ x + 1 et ln(1+x) ≤ x en précisant les domaines considérés.
- Justifier que la fonction g définie sur]0,1[par $g(x)=\int_x^{x^2}\frac{1}{\ln t}dt$ est dérivable et étudier ses variations.