Contenus	Capacités & commentaires
Produit scalaire	
Produit scalaire. Espace préhilbertien, espace euclidien.	Notations $\langle x, y \rangle$, $(x y)$, $x\dot{y}$.
Produit scalaire canonique sur \mathbb{R}^n .	Expression $X^{T}Y$.
Produit scalaire $\langle f, g \rangle = \int_{a}^{b} fg \operatorname{sur} \mathscr{C}([a, b], \mathbf{R}).$	Exemples de produits scalaires intégraux sur $\mathbf{R}[X]$ et $\mathscr{C}([a,b],\mathbf{R})$.
Norme associée à un produit scalaire	
Norme associée à un produit scalaire, distance. Inégalité de Cauchy-Schwarz, cas d'égalité. Inégalité triangulaire, cas d'égalité.	Exemples : sommes finies, intégrales.
Identité remarquable $ x+y ^2 = x ^2 + y ^2 + 2\langle x \rangle$.	Formule de polarisation associée.
Orthogonalité	
Vecteurs orthogonaux, orthogonal d'une partie. Famille orthogonale, orthonormée (ou orthonormale). Toute famille orthogonale de vecteurs non nuls est libre. Théorème de Pythagore. Algorithme d'orthonormalisation de Gram-Schmidt.	Notation X^{\perp} . L'orthogonal d'une partie est un sous-espace.
Bases orthonormées	
Existence de bases orthonormées dans un espace euclidien. Théorème de la base orthonormée incomplète. Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormée.	
Projection orthogonale sur un sous-espace de dimension finie	
Supplémentaire orthogonal d'un sous-espace F de dimension finie. Projection orthogonale sur F . Expression du projeté orthogonal d'un vecteur x dans une base orthonormée de F . Distance d'un vecteur à F . Le projeté orthogonal de x sur F est l'unique élément de F qui réalise la distance de x à F .	En dimension finie : dimension de F^{\perp} , vecteur normal à un hyperplan. Notation $d(x,F)$

-2024/2025 - -1-

CONTENUS	Capacités & commentaires
Séries numériques : convergence et divergence	
Sommes partielles d'une série numérique. Convergence, divergence, somme.	La série est notée $\sum u_n$. En cas de convergence, sa somme est notée $\sum_{n=0}^{+\infty} u_n$.
Linéarité de la somme. Le terme général d'une série convergente tend vers 0. Reste d'une série convergente. Lien suite-série. Séries géométriques : condition nécessaire et suffisante de convergence, somme. Relation $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$	Divergence grossière. La suite (u_n) et la série télescopique $\sum (u_{n+1} - u_n)$ sont de même nature.
Séries à termes positifs	
Convention de calcul et relation d'?ordre dans $[0,+\infty]$. Une série à termes positifs converge si et seulement si la suite de ses sommes partielles est majorée. Si $0 \le u_n \le v_n$ pour tout n la convergence de $\sum v_n$ implique celle de $\sum u_n$. Si (u_n) et (v_n) sont positives et si $u_n \sim v_n$ les séries $\sum u_n$ et $\sum v_n$ sont de même nature.	,On note $\sum_{n=0}^{+\infty} u_n = +\infty$ si la série $\sum u_n$ d'éléments de \mathbf{R}_+ diverge.
Si f est monotone, encadrement des sommes partielles de $f(n)$ à l?aide de la méthode des rectangles. Séries de Riemann.	Application à l'étude de sommes partielles.
Séries absolument convergentes à termes réels ou com-	
plexes, suites sommables Convergence absolue de la série numérique $\sum u_n$, aussi appelée sommabilité de la suite (u_n) .	Notations $\sum_{n=0}^{+\infty} u_n < +\infty$. Le critère de Cauchy et la notion de semi-convergence sont hors programme.
Une série numérique absolument convergente est convergente. Si (u_n) est une suite complexe, si (v_n) est une suite d'éléments de \mathbf{R}_+ , si $u_n = \mathrm{O}(v_n)$ et si $\sum v_n$ converge alors $\sum u_n$ est absolument convergente donc convergente.	Somme d'une suite sommable.

La colle sera constituée d'un des exercices "type" ci-dessous suivi éventuellement de différentes questions de cours, puis d'un ou deux exercices complémentaires.

Exercices "type"

- $\langle f,g\rangle = \int fg$ définit un produit scalaire sur $\mathscr{C}([a,b],\mathbf{R})$.
- $\langle P, Q \rangle = \int PQ$ définit un produit scalaire sur $\mathbf{R}[X]$.

Déterminer la projection orthogonale de X^3 sur $\mathbf{R}_2[X]$ pour cette structure euclidienne.

- Soit E euclidien avec \langle , \rangle le produit scalaire et $\| . \|$ la norme associée. Soit p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si $\langle p(x), y \rangle = \langle x, p(y) \rangle$ pour tout $\langle x, y \rangle \in E^2$.
- On note, pour tout $n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer qu'il existe une constante γ (appelée la **constante d'Euler**) telle

$$H_n = \ln n + \gamma + o(1)$$

- Soit $(u_k)_{k \in \mathbb{N}}$ une suite décroissante qui converge vers 0. On pose $S_n = \sum_{k=0}^n (-1)^k u_k$. Montrer que la série $\sum (-1)^n u_n$ converge et que le reste R_n vérifie $|R_n| \leqslant u_{n+1}$.

 • Soit $(\alpha, \beta) \in \mathbf{R}^2$. On considère la série

$$\sum_{n\geq 2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$$

Montrer que la série converge pour $\alpha > 1$ et diverge pour $\alpha < 1$.