

Cahier de calcul

 $\'echauffements,\ entra\^nements\ et\ approfondissements$

Terminale Spécialité

1515 calculs

Page web du *Cahier de calcul*, dernières versions

Ce cahier de calcul a été écrit collectivement par une équipe composée de professeurs en classes préparatoires et de professeurs en lycée.

Conception et coordination

Colas Bardavid

Aide à la coordination

Jérôme Trochon

Équipe des auteurs

Colas Bardavid Christopher Goyet Anthony Ollivier
Romain Basson Hélène Gros Alan Pellé
Ménard Bourgade Benjamin Groux Nicolas Popoff
Alain Camanes Jason Lapeyronnie Jean-Philippe Spriet
Carole Chabanier François Laurent Jérôme Trochon
Mathèlda Colar de Verdauère

Mathilde COLIN DE VERDIÈRE Steven LU
Geneviève DAVION Lionel MAGNIS
Éliane GAYOUT Quang-Thai NGO

Relecture

Rémy Allou, Van Bien Bui, Thibaut Deheuvels, Anne-Lucie Delvallez, Pierre Cauchois, Anne Foubert, Jérôme Gärtner, Éliane Gayout, William Gregory, Jonathan Harter, Marie Hézard, Sandrine et Hadrien Larôme, Landry Lavoine, Blaise Le Meaux, Arthur Meyer, Pedro Montoya, Inès Nebzry, Sébastien Pellerin

Illustrations

Le pictogramme de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). Le pictogramme de la roue crantée a été créé par AFY STUDIO (The Noun Project). Le pictogramme de la calculatrice a été créé par Sita RAISITA (The Noun Project). Le pictogramme du bateau a été créé par MELLO (The Noun Project).

L'illustration de la couverture a été réalisée par Colas BARDAVID, sur une idée de Yassine PATEL, d'après les biomorphes de Clifford Pickover. Elle illustre les propriétés de certaines fonctions.

Version 1.5.0 — 25 janvier 2025

Sommaire

	vuivies dans ce livre
Limites	
Fiche 1.	Limites de fonctions
Fiche 2.	Limites de suites
Logarithm	e
Fiche 3.	Propriétés algébriques du logarithme I
Fiche 4.	Propriétés algébriques du logarithme II
Fiche 5.	Dérivée du logarithme
Fonctions	trigonométriques
Fiche 6.	Fonctions trigonométriques
Fiche 7.	Dérivation des fonctions trigonométriques
 Dérivation	
Fiche 8.	Révisions sur la dérivation
Fiche 9.	Dérivée des fonctions composées
Convexité	
Fiche 10.	Convexité
Primitives	
Fiche 11.	Primitives I
Fiche 12.	Primitives II
Fiche 13.	Primitives III60

	Équations	différentielles
	Fiche 14.	Équations différentielles I
	Fiche 15.	Équations différentielles II
	Intégration	 L
	Fiche 16.	Intégration I
	Fiche 17.	Intégration II
	Fiche 18.	Intégration III
	Fiche 19.	Intégration par parties I
	Fiche 20.	Intégration par parties II
	Fiche 21.	Intégration des fonctions trigonométriques
	Combinato	pire et dénombrement
	Fiche 22.	Cardinaux et coefficients binomiaux
	Fiche 23.	Dénombrement I
	Fiche 24.	Dénombrement II
	Probabilit <i>é</i>	ės
	Fiche 25.	Généralités sur les probabilités
	Fiche 26.	Autour de la loi binomiale
	Géométrie	dans l'espace
	Fiche 27.	Droites dans l'espace
	Fiche 28.	Produit scalaire dans l'espace
П	Fiche 29.	Plans et sphères dans l'espace

Dans tout ce livre, l'usage de la calculatrice est strictement et formellement interdit.

Utiliser une calculatrice pour les exercices serait tout simplement absurde : le but même de ce livre est de fournir à l'étudiant un outil pour s'entraîner au calcul.

Introduction

Le calcul

Le calcul a parfois été délaissé par l'école.

On lui reprochait son côté rébarbatif, on disait que les calculatrices pouvaient s'en charger.

On lui préférait les activités de recherche, plus ludiques, plus intéressantes.

On déconseillait de donner aux élèves des fiches de calcul.

Certes, savoir chercher est essentiel; mais, tout de même, ce faisant, on a formé des élèves à qui il manquait quelque chose de fondamental.

Les vertus du calcul

Le calcul a de nombreuses qualités, de nombreuses vertus.

• Le calcul est indispensable aux mathématiques.

Sans calcul, les mathématiques seraient un paysage inerte, sans mouvement. C'est le calcul qui permet de transformer une expression A(x) en une autre expression B(x). C'est le calcul qui permet de montrer que deux quantités sont égales, que deux choses sont identiques. Quand on explore une situation mathématique, l'intuition est la boussole, c'est elle qui nous indique la direction à prendre. Mais c'est le calcul qui permet d'avancer, de passer d'une étape à la suivante.

• Le calcul permet de se familiariser avec les objets mathématiques compliqués.

Certains objets mathématiques sont difficiles à appréhender. Qu'on pense par exemple aux vecteurs. On peut être dérouté la première fois qu'on doit raisonner avec les vecteurs. Dans ce cas, il est conseillé de beaucoup calculer avec les vecteurs. À force d'en faire, on s'y habitue; à la fin, on n'est plus dérouté.

• Le calcul donne des idées.

Face à un problème mathématique, être fort en calcul est très utile. On imagine rapidement ce qui va se passer, on peut prévoir « de tête » la direction globale du calcul et donc prendre une bonne direction.

- Le calcul est comme un échauffement mathématique.
- Le calcul est a priori une activité sans piège.

Il suffit de suivre les règles méthodiquement.

• Le calcul peut même être ludique!

L'intérêt du calcul

C'est très simple.

Si vous voulez bien comprendre les mathématiques, le calcul est indispensable.

Quand on apprend à jouer au piano, faire des gammes est, de même, indispensable. Elles permettent de délier les doigts, elles permettent d'ancrer dans les mains des habitudes, des réflexes. Sans gamme, certains morceaux sont inabordables.

De même, la pratique du calcul permet de mieux comprendre les mathématiques.

Le cahier de calcul

Le cahier de calcul est l'outil idéal pour vous entraîner au calcul, en toute autonomie.

Il a été conçu par une large équipe de professeurs de mathématiques, en lycée et en classes préparatoires, tous soucieux de vous apporter l'aide et les outils pour réussir.

Pour profiter totalement de cet outil, **pratiquez régulièrement** : nous vous conseillons de faire (au moins) quinze minutes de calcul chaque jour.

Comment est-il organisé?

Trois parties pour chaque fiche

Chaque fiche du cahier de calcul est divisée en trois parties :

- une première partie de calculs généraux, destinée à vous entraîner sur les fondamentaux;
- la partie principale, qui porte sur le thème de la fiche en question;
- une dernière partie, composée de **calculs plus avancés**, qui est prévue pour ceux qui veulent aller plus loin.

Des pictogrammes

Le temps de résolution de chaque calcul (incluant la longueur et la technicité du calcul) est symbolisé par :

- des bateaux
 ▲ pour les exercices de calculs généraux;
- des horloges **()** pour les exercices de la partie principale;
- des roues crantées 💞 pour les exercices plus avancés.

Des cadres pour les réponses

Vous êtes invité à écrire directement les réponses dans les cadres prévus à cet effet.

Une erreur? Une remarque?

Si jamais vous voyez une erreur d'énoncé ou de corrigé, ou bien si vous avez une remarque à faire, n'hésitez pas à nous écrire à l'adresse cahierdecalcul@gmail.com. Merci en nous contactant de donner l'identifiant de la fiche, écrit en gris clair en haut à gauche de chaque fiche.

Conventions suivies dans ce livre

Polynômes

Dans ce cahier de calcul, nous avons choisi de noter les polynômes avec la lettre « X ».

 Ainsi, au lieu de considérer, par exemple, la fonction

$$t \longmapsto 5t^4 - 3t^3 + 25t^2 + 10t - 1,$$

on considérera le polynôme

$$5X^4 - 3X^3 + 25X^2 + 10X - 1.$$

- On notera généralement les polynômes P ou Q. Par exemple, on peut poser $P = 5X^2 - 3X - 2$.
- Les polynômes peuvent être évalués en un nombre, comme les fonctions.

Ainsi, pour $t \in \mathbb{R}$, on peut considérer P(t). En reprenant l'exemple précédent, on a

$$P(1) = 5 \times 1^2 - 3 \times 1 - 2 = 0.$$

On dit alors que 1 est une racine de P.

Définition des variables

Dans certains exercices, nous avons choisi, par souci de clarté et de concision, de ne pas préciser à quel ensemble appartiennent les variables.

 Par exemple, on pourra demander de simplifier l'expression

$$\frac{2-x}{x+3} - \frac{1-x}{5-x}$$

sans préciser qui est la variable x.

- Dans ce cas, il faudra toujours considérer que la variable x est implicitement définie et appartient au bon ensemble.
- Dans l'exemple précédent, il est sous-entendu que x est un nombre réel différent de -3 et 5.

Bons calculs à vous!

Limites de fonctions

Quelques calculs généraux pour commencer

Calcul 1.1 4444

Soit $x \in \mathbb{R}^*$. Simplifier les expressions suivantes.

a)
$$\frac{x^3 + x^2}{x}$$

c)
$$\frac{x^3 + x^2 + x^4}{x^2}$$

b)
$$x^3 \left(\frac{1}{x} + \frac{1}{x^3} \right)$$

Calcul 1.2

Soit $x \in \mathbb{R}$. Simplifier les expressions suivantes.

a)
$$e^{2x} \times e^{-x}$$

c)
$$\frac{e^{2x+1}}{e^{-x}}$$

b)
$$\frac{e^{3x}}{e^x}$$

d)
$$e^{x^2+x+1} \times e^{-x^2+3x}$$

Fractions, polynômes et racines

Calcul 1.3 — Détection de forme indéterminée (I).

Pour chaque expression suivante, dire s'il s'agit d'une forme indéterminée, auquel cas on ne cherchera pas à calculer la limite et on écrira « FI » dans le cadre-réponse ; s'il ne s'agit pas d'une forme indéterminée, on donnera la limite en question.

c)
$$\frac{\ln(x)}{x}$$
, en $+\infty$

d)
$$\frac{\ln(x)}{x}$$
, en 0⁺

Calcul 1.4 — Détection de forme indéterminée (II).

Même exercice.

a)
$$\frac{\cos(x)}{x}$$
, en 0⁺

c)
$$\frac{\sin(x)}{\cos(x)}$$
, en $\frac{\pi}{2}$

b)
$$\frac{\sin(x)}{x}$$
, en 0^+

d)
$$\frac{\sin(x)}{\cos(x)}$$
, en $\frac{\pi}{2}$

Calcul 1.5

Déterminer les limites suivantes.

On mettra en facteur des termes dominants pour lever l'indétermination.

a)
$$\lim_{x \to +\infty} \frac{x^2 + 1}{x} \dots$$

b)
$$\lim_{x \to -\infty} \frac{x^3 + 1}{x^2 - x} \dots$$

d)
$$\lim_{x \to -\infty} \frac{x+3}{x^2+x+1}$$

Calcul 1.6

Même exercice.

a)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + x}}{x + 2} \dots$$

b)
$$\lim_{x \to +\infty} \frac{\sqrt{x^4 + 3x^3}}{-2x^2 + 7}$$

Calcul 1.7

Déterminer les limites suivantes.

a)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right)$$

b)
$$\lim_{x \to +\infty} ((x+2)^2 - x^2) \dots$$

d)
$$\lim_{x \to +\infty} \left(\left(x + \frac{1}{\sqrt{x}} \right)^2 - x(x+1) \right)$$

Calcul 1.8

Chercher des facteurs communs afin de simplifier la fraction, pour lever l'indétermination, puis donner la limite des expressions suivantes.

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

c)
$$\lim_{x \to -2} \frac{x+2}{x^2-4}$$

b)
$$\lim_{x \to 1^+} \frac{x^2 - 1}{x^2 - 2x + 1}$$

d)
$$\lim_{x \to \frac{1}{2}} \frac{2x-1}{4x^2-1}$$

Calcul 1.9

Même exercice.

On cherchera au préalable à factoriser les polynômes au numérateur et au dénominateur.

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2}$$

b)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 + 2x}$$

Calcul 1.10 — Une identité remarquable de degré 3.

0000

En utilisant la formule

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2),$$

valable pour tous $a, b \in \mathbb{R}$, déterminer les limites suivantes.

a)
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

b)
$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2}$$

Calcul 1.11 — En utilisant la quantité conjuguée (I).

0000

On souhaite déterminer la limite de $\sqrt{x^2+1}-x$ en $+\infty$.

a) A-t-on
$$\sqrt{x^2 + 1} - x = \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}$$
?

Calcul 1.12 — En utilisant la quantité conjuguée (II).

En adaptant la technique précédente pour lever l'indétermination, calculer les limites suivantes.

a)
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + x - x}} \dots$$

b)
$$\lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right) \dots$$

Croissances comparées

Calcul 1.13 — En factorisant (I).

0000

Calculer:

a)
$$\lim_{x \to -\infty} x^3 e^x$$

c)
$$\lim_{x \to +\infty} \frac{e^{x-7} + 3e^x}{e^x + x} \dots$$

b)
$$\lim_{x \to +\infty} \frac{e^x - x^8}{x+1} \dots$$

d)
$$\lim_{x \to +\infty} \frac{e^x + e^{2x}}{e^x + x} \dots$$

Calcul 1.14

En posant $X = \frac{1}{x}$, déterminer les limites suivantes.

Calcul 1.15 — En factorisant (II)	alcul 1.15 — En fac	ctorisant (II)
-----------------------------------	---------------------	----------------

Calculer les limites suivantes.

a)
$$\lim_{x \to +\infty} x^2 - \ln(x)$$

b)
$$\lim_{x \to +\infty} \frac{x + \ln(x)}{x - \ln(x)} \dots$$

Calcul 1.16 — Une limite classique.

Quelle est la limite de $x \mapsto x \ln(x)$ en 0^+ ?

Calcul 1.17 — Une puissance de puissance.

Pour a > 0 et $b \in \mathbb{R}$, on définit $a^b = e^{b \ln(a)}$.

b) Que vaut
$$x^x$$
 pour $x = \frac{1}{4}$?

c) Déterminer
$$\lim_{x\to 0^+} x^x$$

Calcul 1.18

En mettant en facteur l'exponentielle, déterminer $\lim_{x\to+\infty} (\ln(e^x+4x)-x)$

Calcul 1.19

a) Déterminer
$$\lim_{x \to +\infty} \left(\sqrt{\ln(x)} - \ln(x) \right)$$

b) En écrivant
$$x = e^{\ln(x)}$$
, en déduire $\lim_{x \to +\infty} \frac{e^{\sqrt{\ln(x)}}}{x}$

Autour du taux d'accroissement

Calcul 1.20 — Limites de taux d'accroissement.

0000

Rappelons que si une fonction f est dérivable en a, alors on a $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = f'(a).$

Par exemple, pour déterminer $\lim_{x\to 0} \frac{\mathrm{e}^x-1}{x}$, on introduit $f:x\longmapsto \mathrm{e}^x$, et on reconnaît $\frac{f(x)-f(0)}{x-0}$. D'où

$$\lim_{x \to 0} \frac{e^x - 1}{x} = f'(0) = e^0 = 1.$$

En reconnaissant des taux d'accroissement, déterminer les limites suivantes.

a)
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} \dots$$

c)
$$\lim_{x \to 0} \frac{\sin(x)}{x} \dots$$

b)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} \dots$$

d)
$$\lim_{x \to 2} \frac{\ln(x) - \ln(2)}{x - 2}$$

Calculs plus avancés

Calcul 1.21 — Autour du taux d'accroissement de l'exponentielle.

On rappelle que $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$. Calculer:

a)
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{x^2}$$

c)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x}$$

b)
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{x}$$

d)
$$\lim_{x \to +\infty} x(e^{\frac{1}{x}} - 1) \dots$$

Calcul 1.22 — D'autres taux d'accroissement.

En faisant apparaître des taux d'accroissement, déterminer les limites suivantes.

a)
$$\lim_{x \to 0} \frac{x}{\ln(1+2x)} \dots$$

b)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{\ln(1+x)}$$

Calcul 1.23 — Une limite farouche.

Déterminer
$$\lim_{x \to +\infty} \sqrt{x^3 + \sqrt{x^4 + 2x^{\frac{7}{2}} + 1}} - \sqrt{x^3 + \sqrt{x^4 + x^{\frac{7}{2}} + 1}}$$

Calcul 1.24 — Une limite remarquable?

On rappelle que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

- b) Déterminer $\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$

Pour a > 0 et $x \in \mathbb{R}$, on définit a^x en posant $a^x = e^{x \ln(a)}$.

c) Déterminer $\lim_{x\to +\infty} \left(1 + \frac{1}{x}\right)^x$.

Si vous trouvez 1 ou $+\infty$, vous avez faux!.....

Calcul 1.25 — Avec des formules de trigonométrie (I).

Pour ce calcul, il faut connaître les formules de duplication du sinus et du cosinus.

- a) Exprimer $\cos(x)$ en fonction de $\sin\left(\frac{x}{2}\right)$
- b) En utilisant que $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, en déduire $\lim_{x\to 0} \frac{\cos(x) 1}{x^2}$

Calcul 1.26 — Avec des formules de trigonométrie (II).

Pour ce calcul, il faut connaître les formules de duplication du sinus et du cosinus.

Déterminer :

a)
$$\lim_{x \to \pi} \frac{\sin(2x)}{\sin(x)} \dots$$

b)
$$\lim_{x \to \frac{\pi}{d}} \frac{\cos(x) - \sin(x)}{\cos(2x)} \dots$$

Réponses mélangées

► Réponses et corrigés page 154

Limites de suites

Quelques calculs généraux pour commencer

Calcul 2.1 — Quelques équations.

4444

Donner la solution dans \mathbb{R} des équations suivantes.

a)
$$\frac{10}{3}x + \frac{5}{9} = 0$$

c)
$$\frac{x+5}{x+2} = \frac{2x+5}{2x+1}$$

b)
$$\frac{3x+2}{-2x+3} = 1$$

Calcul 2.2 — Quelques inéquations.

4444

Résoudre dans \mathbb{R} les inéquations suivantes.

On donnera la solution sous la forme d'un intervalle ou de la réunion de deux intervalles.

a)
$$\frac{2}{7}x - 6 > 0$$

b)
$$(2x-1)(2-3x) \leq 0$$

c)
$$\frac{2x-12}{1-x} \geqslant 0 \dots$$

$$d) \quad \frac{x^2 - 9}{x} \leqslant 0 \quad \dots$$

Théorèmes de comparaison

Calcul 2.3 — Autour de $(-1)^n$.

Pour chacune des suites définies par les expressions suivantes, dire si « oui » ou « non », elle admet une limite (finie ou infinie).

a)
$$(-1)^n$$

d)
$$n + (-1)^n \dots$$

g)
$$\cos((-1)^n\pi)$$
 ..

b)
$$(-1)^{2n+1}$$

e)
$$2n(-1)^n$$

h)
$$\sin((-1)^n \pi)$$
 ...

c)
$$n(-1)^n$$

f)
$$n(-1)^{2n}$$

Calcul 2.4

0000

Quelle est la limite des suites définies par les expressions suivantes?

- a) $\left(\frac{13}{17}\right)^n \cos(n)$

b) $(9 + (-1)^n) \times (0,2)^n$

- (a) -10 (b) -2 (c) -1 (d) 0 (e) 1 (f) 1,8

0000

0000

- c) $\frac{n + \sin(n\pi/2)}{3n}$
- (a) -1 (b) 0 (c) 1/3 (d) 1/2 (e) 1 (f) 3

Calcul 2.5

Soit $a \in \mathbb{R}$. On considère une suite réelle $(u_n)_n$ vérifiant

$$\forall n \in \mathbb{N}^*, \quad a^2 - a\left(1 + \frac{1}{n}\right) + 1 - \frac{a}{n} \leqslant u_n \leqslant a + \frac{a}{n}.$$

- Pour quelle valeur de a le théorème des gendarmes permet-il d'affirmer que la suite $(u_n)_n$ converge?

d) Dans ce cas, combien vaut alors $\lim_{n\to\infty} u_n$?

Calcul 2.6 — Des inégalités.

Soit la suite $(u_n)_n$ définie sur \mathbb{N} par $u_n = \frac{n + (-1)^n}{n - (-1)^n}$

- a) Lequel des encadrements suivants est-il vérifié?
- (a) $1 \leqslant u_n \leqslant 1$

- $\underbrace{\text{c}} \frac{n-1}{n+1} \leqslant u_n \leqslant \frac{n+1}{n-1} \qquad \underbrace{\text{e}} \frac{n-2}{n-1} \leqslant u_n \leqslant \frac{n+2}{n-1}$
- $\underbrace{b} \frac{n+1}{n-1} \leqslant u_n \leqslant \frac{n-1}{n+1} \qquad \underbrace{d} \frac{n-1}{n} \leqslant u_n \leqslant \frac{n+1}{n}$

b) Quelle est la limite de la suite $(u_n)_n$?

Calcul 2.7 — Une inégalité très costaude.

Soit $a \in \mathbb{R}$. On considère une suite réelle $(u_n)_n$ vérifiant

$$\forall n \in \mathbb{N}^*, \quad \left(\frac{na + \sqrt{n} + n}{n}\right)^6 - 1 - \frac{a^6}{n} \leqslant u_n \leqslant \left(a + \frac{a}{n}\right)^6 + \frac{2an^2 + 7n + 18}{n^2 + n + 1}.$$

a) Quel est le degré du polynôme $(X+1)^6 - X^6 - 2X - 1$?

On note $P = (X+1)^6 - X^6 - 2X - 1$. Calculer:

- b) P(0) c) P(-1) d) $P(\frac{-1}{2})$
- e) Déterminer a, b, c tels que $(X+1)^6 X^6 2X 1 = X(X+1)(2X+1)(aX^2 + bX + c)$.

.....

f) Pour quelles valeurs de a le théorème des gendarmes permet-il d'affirmer que la suite $(u_n)_n$ converge?

.....

Formes indéterminées

Calcul 2.8 — Reconnaître une forme indéterminée (I).

Pour chacune des suites définies par les expressions suivantes, dire si « oui » ou « non », elle présente une forme indéterminée.

- a) $n^2 + 3n + 1$
- c) $(1,001)^n \times \frac{1}{n^{19}} \dots$
- b) $\sqrt{n} n$
- d) $\frac{3}{2} + \frac{7}{n} + \frac{49}{n^2} + \frac{1}{8n^3} \dots$

Calcul 2.9 — Reconnaître une forme indéterminée (II).

Pour chacune des suites définies par les expressions suivantes, dire si « oui » ou « non », elle présente une forme indéterminée.

- a) $\frac{\sqrt{2n^{-3}}}{n^2+5}$
- c) $\frac{\ln\left(\frac{1}{n}\right)}{3^{-n}}$
- b) $\frac{\sin(\frac{1}{n})}{e^{-n}}$
- d) $-4^{2n-1} \times \cos((-1)^n \pi)$...

Calculs de limites

Calcul 2.10

0000

Déterminer les limites des suites définies par les expressions suivantes.

On pourra factoriser par le terme prépondérant pour lever les indéterminations.

a)
$$n\sqrt{\ln(n)} - \sqrt{n}\ln(n)^2 \dots$$

c)
$$\frac{5^n-1}{10^n+5}$$

b)
$$\frac{2^n - \frac{1}{2^n}}{n^2 - \frac{1}{n^2}}$$

$$d) \quad \frac{\sqrt{2}n-1}{n+\sqrt{2}} \quad \dots$$

Calcul 2.11

Déterminer les limites des suites définies par les expressions suivantes.

On pourra factoriser par le terme prépondérant pour lever les indéterminations.

a)
$$\frac{3n^3 - n^2 - 17}{5n^3 + 9n^2 + n}$$

c)
$$\frac{\left(\frac{8}{11}\right)^n}{\left(\frac{24}{121}\right)^n} \dots$$

b)
$$\frac{(3-n)(2+\sqrt{n})}{9-n^2}$$

d)
$$8^{7n} - 56^n$$

Calcul 2.12 — Avec des radicaux.

Déterminer les limites des suites définies par les expressions suivantes.

Pour lever les indéterminations, on pourra utiliser la quantité conjuguée ou factoriser par les termes prépondérants.

a)
$$\sqrt{n+4} - \sqrt{n}$$

c)
$$\frac{\sqrt{2n^2 - n + 1} - n}{2n + 12}$$

b)
$$\sqrt{n^2 + 2n} - n$$

d)
$$\sqrt{2n+\sqrt{3n}}-\sqrt{2n}$$

Calcul 2.13

Calculer les limites des suites définies par les expressions suivantes.

a)
$$\frac{n\cos\left(\frac{n\pi}{2}\right) + 3}{n\sqrt{n} - 2n}$$

c)
$$\frac{7-5\sqrt{n}}{\sqrt{n}+\frac{2}{n}}$$

b)
$$\frac{-3\exp(n) + 5\exp(3n)}{\exp(2n) - 4\exp(n)}$$

d)
$$\frac{n + \sin(n)}{-2n - 4\cos(n)} \dots$$

Utiliser les quantificateurs

Calcul 2.14 — À partir d'un certain rang? a) Écrire avec les symboles \forall et \exists la phrase « la suite $(u_n)_n$ est croissante à partir d'un certain rang ». b) On suppose que $\lim_{n\to\infty} u_n = +\infty$. Peut-on en déduire, en général, que la suite $(u_n)_n$ est croissante à partir d'un certain rang? (a) Oui (b) Non (c) On suppose que $\lim_{n\to\infty} u_n = 2$ et que $\forall n \in \mathbb{N}, u_n < 2$. Peut-on alors en déduire, en général, que la suite $(u_n)_n$ est croissante à partir d'un certain rang? (a) Oui (b) Non

Calculs plus avancés

On peut lever certaines formes indéterminées en utilisant le taux d'accroissement. Par exemple, comme la fonction sinus est dérivable en 0, on sait que

$$\lim_{h \to 0} \frac{\sin(0+h) - \sin(0)}{h} = \sin'(0).$$

Comme sin' = cos, cela peut se réécrire

$$\lim_{h \to 0} \frac{\sin(h)}{h} = 1.$$

Dans les exercices qui suivent, on pourra utiliser de telles considérations pour répondre aux questions.

Calcul 2.15 — Taux d'accroissement.

a) Calculer
$$\lim_{h\to 0} \frac{\ln(1+h)}{h}$$

b) Calculer
$$\lim_{n \to \infty} \frac{\cos(\frac{1}{n}) - 1}{\frac{1}{n}}$$

c) Calculer
$$\lim_{n \to \infty} n \left(\sqrt{1 + \frac{1}{n}} - 1 \right)$$

Calcul 2.16 — Une limite remarquable.

On considère les suites $(u_n)_n$ et $(v_n)_n$ définies sur \mathbb{N}^* par $u_n = \left(1 + \frac{1}{n}\right)^n$ et $v_n = \ln(u_n)$.

- a) Calculer v_n

Calcul 2.17

Calculer les limites des suites définies par les expressions suivantes.

a)
$$\left(1+\frac{1}{n}\right)^{\sqrt{n}}$$

b)
$$\left(1+\frac{1}{\sqrt{n}}\right)^n$$

Réponses mélangées

► Réponses et corrigés page 162

Propriétés algébriques du logarithme I

Quelques calculs généraux pour commencer

Calcul 3.1 — Quelques simplifications.

4444

Écrire sous forme d'une fraction irréductible les nombres suivants.

a)
$$\frac{36}{45}$$

a)
$$\frac{36}{45}$$
 b) $\frac{2}{7} \times \frac{28}{16}$.

c)
$$\frac{\frac{9}{25}}{\frac{3}{10}}$$
 d) $\frac{10^3 \times 3^5}{6^4 \times 5^2}$

d)
$$\frac{10^3 \times 3^5}{6^4 \times 5^2}$$

Calcul 3.2 — Quelques équations.

4444

Résoudre les équations suivantes en donnant la valeur de leur solution.

a)
$$2x + 4 = 5x - 3$$

c)
$$\frac{4}{3}x - \frac{1}{2} = \frac{1}{6}x + \frac{1}{2}$$

b)
$$x + \frac{1}{2} = 6x - 5$$

d)
$$\frac{5}{3}x = \frac{3}{4}x + \frac{2}{5}$$

Propriétés du logarithme

Calcul 3.3

0000

Simplifier les expressions suivantes.

a)
$$\ln(3) + \ln\left(\frac{1}{3}\right)$$

b)
$$\ln(10) - \ln(2)$$

c)
$$2\ln(\sqrt{7})$$

$$n(\sqrt{7})$$

Calcul 3.4

0000

Exprimer les quantités suivantes à l'aide de ln(2) et ln(3).

d)
$$3\ln(6) - 2\ln(4) - \ln(9)$$

b)
$$\ln\left(\frac{1}{81}\right)$$

e)
$$\ln(\sqrt{27})$$

f)
$$\ln(\sqrt{6})$$

Calcul 3.5 — Autour de la constante « e » d'Euler.

Simplifier les expressions suivantes.

a)
$$\ln(e^2)$$

c)
$$\ln(\sqrt{e})$$

b)
$$\ln\left(\frac{1}{e^{11}}\right)$$

d)
$$\ln(\sqrt{e^7})$$

Calcul 3.6 — Logarithme et fonction exponentielle.

Simplifier les expressions suivantes.

a)
$$e^{\ln(7)-\ln(5)}$$
 b) $e^{3\ln(10)}$ c) $e^{-\ln(\ln(3))}$

b)
$$e^{3\ln(10)}$$

c)
$$e^{-\ln(\ln(3))}$$

Calcul 3.7 — Simplifications remarquables.

Simplifier les expressions suivantes.

a)
$$\ln(\sqrt{3}-1) + \ln(\sqrt{3}+1)$$

b)
$$\ln\left(\frac{1}{e^{-\ln(e^2)}}\right)$$

c)
$$\ln\left((\sqrt{2}-1)^{15}\right) + \ln\left((\sqrt{2}+1)^{15}\right)$$

d)
$$\ln(140) + \ln\left(\frac{6}{7}\right) - \ln(24)$$

d)
$$\ln(140) + \ln\left(\frac{6}{7}\right) - \ln(24)$$

Équations et inéquations

Calcul 3.8 — Bien défini?

Indiquer pour quelles valeurs du nombre réel x les quantités suivantes sont bien définies.

a)
$$\ln(1+x)$$
 b) $\ln(x^2-3x)$..

b)
$$\ln(x^2 - 3x)$$
 ...

c)
$$\ln \left(\ln(x) \right) \ldots$$

Calcul 3.9

Quel est le signe de chacune des quantités suivantes?

e)
$$\ln(0.8^2)$$

b)
$$\ln\left(\frac{1}{4}\right)$$
 d) $(\ln(0.8))^2$

d)
$$(\ln(0.8))^2$$

f)
$$\ln(3) - 1 \dots$$

Calcul 3.10 — Bien défini?

0000

a) Pour quelles valeurs du réel x la quantité $\ln(1-\ln(x))$ est-elle bien définie?

.

Remarque

Pour les inéquations suivantes, on donnera les solutions sous la forme « $x \le a$ », « a < x < b », etc.

Calcul 3.11 — Des inéquations (I).

0000

Résoudre les inéquations suivantes.

a) $\ln(5+2x) \ge 0$

c) $\ln(x^2) \ge 0$

b) $\ln(x-1) < 1$

d) $0 \le \ln(2x+5) \le 2 \dots$

Calcul 3.12 — Des inéquations (II).

0000

Résoudre les inéquations suivantes.

a) $\ln(x+3) > \ln(2x-1)$

c) $\ln(x) + \ln(x - 1) \le \ln(2)$

b) $\ln(x) + \ln(x+2) \le \ln(3) \dots$

d) $\ln(x^2) \le 1$

Calcul 3.13 — Des équations.

0000

Résoudre les équations suivantes.

a) $\ln\left(\frac{x+1}{3x-5}\right) = 0 \dots$

b) $\ln(x)^2 - 3\ln(x) + 2 = 0$

Calcul 3.14 — Des inéquations (III).

0000

Résoudre les inéquations suivantes.

a) $\ln(x)^2 \le 1$

b) $\ln(x^2 + 3) \ge 1$

Calcul 3.15 — Une dernière inéquation.

0000

Résoudre l'inéquation $\ln\left(\frac{x^2+3x}{4}\right) \leqslant 0$

On donnera la solution sous la forme d'une union d'intervalles.

Calculs plus avancés

Calcul 3.16 — Une somme de logarithmes.

- a) Soit $k \ge 1$. Écrire $1 \frac{1}{k}$ comme une fraction
- b) Soit $k \ge 2$. Écrire $\ln\left(1 \frac{1}{k}\right)$ comme une somme ou une différence de logarithmes.
- c) Soit $n \ge 2$. Calculer $\ln\left(1 \frac{1}{2}\right) + \ln\left(1 \frac{1}{3}\right) + \dots + \ln\left(1 \frac{1}{n}\right)$

Calcul 3.17

33300

Soit $x \in \mathbb{R}$. On admet que $x + \sqrt{x^2 + 1} > 0$ et on note $f(x) = \ln(x + \sqrt{x^2 + 1})$.

Simplifier l'expression $e^{f(x)} - e^{-f(x)}$

Réponses mélangées

Réponses mélangées
$$1 < x \leqslant 2 > 0 \quad 2x \quad < 0 \quad > 0 \quad 0 < x < e \quad -11 \quad 1 < x < 1 + e$$

$$x = 3 \quad \frac{7}{2} \quad \frac{11}{10} \quad \frac{15}{2} \quad \frac{6}{7} \quad > 0 \quad \frac{1}{2} < x < 4 \quad x = \frac{24}{55} \quad < 0 \quad 0$$

$$x < 0 \text{ ou } x > 3 \quad \ln(3) - \ln(2) \quad \frac{3}{2} \ln(3) \quad 1 \text{ 000} \quad \frac{6}{5} \quad \frac{1}{2} \quad 5 \ln(2) \quad \frac{1}{2} \ln(2) + \frac{1}{2} \ln(3)$$

$$\ln(2) \quad 0 < x \leqslant 1 \quad \frac{1}{2} \quad \ln(5) \quad \frac{k-1}{k} \quad x \geqslant 1 \text{ ou } x \leqslant -1 \quad -\ln(n)$$

$$[-4, -3[\,\cup\,]0, 1] \quad 0 \quad -4 \ln(3) \quad 2 \quad \frac{4}{5} \quad \ln(5) \quad > 0 \quad x > 1 \quad \text{tous les réels}$$

$$2 \quad \frac{1}{\ln(3)} \quad < 0 \quad \frac{7}{5} \quad \frac{7}{3} \quad \ln(7) \quad x = e \text{ ou } x = e^2 \quad -2 \leqslant x \leqslant \frac{e^2 - 5}{2}$$

$$x \in \left[-\sqrt{e}, 0\left[\,\cup\,]0, \sqrt{e}\right] \quad 2 \ln(2) + \ln(3) \quad \frac{1}{e} \leqslant x \leqslant e \quad x \geqslant -2 \quad \ln(k-1) - \ln(k) \quad x > -1$$

Propriétés algébriques du logarithme II

Quelques calculs généraux pour commencer

Calcul 4.1 4444

Écrire le plus simplement possible les nombres suivants.

a)
$$\sqrt{45} - \sqrt{20}$$
 ... b) $\frac{2}{\sqrt{3} - 1}$

b)
$$\frac{2}{\sqrt{3}-1}$$

c)
$$2\sqrt{5} + \sqrt{45}$$
 ...

4444 Calcul 4.2

Calculer les nombres suivants.

a)
$$\left| \frac{3}{2} \times \frac{8}{9} \right| + \left| \frac{7}{3} - 10 \right|$$
 b) $\left| \frac{1}{14} - \frac{4}{7} \right| - \left| \frac{6}{7} - \frac{5}{2} \right|$

b)
$$\left| \frac{1}{14} - \frac{4}{7} \right| - \left| \frac{6}{7} - \frac{5}{2} \right| \dots$$

Propriétés algébriques du logarithme

Calcul 4.3 0000

Exprimer les quantités suivantes en fonction de ln(2) et ln(5).

c)
$$\ln(12) + \ln(9) - \ln(27)$$

d)
$$\ln(\sqrt{8}) - \ln(16) + \frac{3}{2}\ln(2)$$

Calcul 4.4 — Avec racines et puissances.

Exprimer les quantités suivantes en fonction de ln(3).

Calcul 4.5 — Des encadrements.

On donne $0.69 \le \ln(2) \le 0.70$ et $1.60 \le \ln(5) \le 1.61$. En déduire des encadrements de :

0000

Calcul 4.6 — D'autres encadrements.

On donne $0.69 \le \ln(2) \le 0.70$ et $1.60 \le \ln(5) \le 1.61$. En déduire des encadrements de :

a)
$$\ln\left(\frac{8}{5}\right)$$

c)
$$\ln(25)\ln\left(\frac{1}{2}\right)$$

d)
$$\ln(5+\sqrt{5})+\ln(5-\sqrt{5})$$

Avec la fonction exponentielle

Calcul 4.7 — Avec le nombre d'Euler e.

Simplifier les expressions suivantes.

a)
$$\ln(e^5) - \ln(e^2)$$

d)
$$e^{\ln(5)-\ln(3)}$$

b)
$$\ln(\sqrt{e}) - \ln\left(\frac{1}{e}\right)$$

e)
$$e^{\frac{1}{2}\ln(4)}$$

c)
$$2\ln(e\sqrt{e})$$

f)
$$\ln\left(\frac{e^2}{e+3}\right) + \ln\left(\frac{e+3}{e}\right) \dots$$

Calcul 4.8 - Logarithme et exponentielle.

Simplifier les expressions suivantes.

a)
$$\exp(-\ln(\ln(2)))$$

c)
$$\ln\left(\sqrt{\exp\left(\frac{1}{3}\ln e^{27}\right)}\right)$$

b)
$$\ln\left(\sqrt{e^6}\right)$$

d)
$$\ln\left(\sqrt{\sqrt{e}}\right)$$

e)
$$\ln\left(\sqrt{\exp\left(-\ln(\sqrt{e})\right)}\right)$$

f)
$$\exp\left(2\ln\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\right)$$

Calcul 4.9

Soit $x \in \mathbb{R}$. À quelle expression est égal $\ln(e^x + 1)$?

$$(a) \ln(x) - 1$$

$$\bigcirc x + \ln(e^{-x} + 1)$$

$$\bigcirc$$
 x

Équations et inéquations

Calcul 4.10

On considère l'équation $\ln(x-2) + \ln(x-1) = \ln(2)$.

- a) Sur quel intervalle cette équation a-t-elle un sens?
- b) Donner la solution dans \mathbb{R} de $\ln(x-2) + \ln(x-1) = \ln(2)$

Calcul 4.11

Donner la solution dans $\mathbb R$ des équations suivantes.

Calcul 4.12

On considère l'équation $\ln(x-1) + 2\ln(x+1) - \ln(x^2-1) = 1$.

- a) Donner l'ensemble des valeurs de x pour lesquelles cette équation a un sens \dots
- b) Simplifier l'expression $\ln(x-1) + 2\ln(x+1) \ln(x^2-1)$
- c) Donner l'ensemble des solutions dans \mathbb{R} de $\ln(x-1) + 2\ln(x+1) \ln(x^2-1) = 1$.

Résoudre dans
$$\mathbb{Z}$$
 l'équation $\ln(2^x) = \ln(4^{x+1})$

Résoudre dans $\mathbb R$ les équations suivantes.

a)
$$(\ln(x))^2 = \ln(x^2) - 1$$

c)
$$(\ln(x-2))^2 = 2$$

Calcul 4.15 — Deux inéquations.

Soit un réel p > 1. Donner l'ensemble des solutions dans \mathbb{R} des inéquations suivantes.

a)
$$\ln(x+1) > p$$

b)
$$\ln(px+1) \le \ln(x+p)$$

Logarithmes dans d'autres bases

Pour tout réel a > 1, on définit le logarithme de base a par $\log_a(x) = \frac{\ln(x)}{\ln(a)}$.

Calcul 4.16 — Logarithme décimal.

Simplifier au maximum les nombres suivants.

a)
$$\log_{10}(100)$$

b)
$$\log_{10}(4) + \log_{10}(250)$$

c)
$$\log_{10}(120) - \log_{10}(12)$$

d)
$$5\log_{10}(2) - \log_{10}(3200)$$

Calcul 4.17 — Logarithme en d'autres bases.

Simplifier au maximum les nombres suivants.

a)
$$\log_3(3^{17})$$

b)
$$\log_6(4) + \log_6(9)$$

c)
$$\log_5(\sqrt{e}) \times \ln(5)$$

d)
$$(1 + \log_2(0.25)) \times (\log_2(200) - \log_2(25))$$

Calculs plus avancés

Calcul 4.18 — Une somme de logarithmes (I).

8886

Soit
$$n \in \mathbb{N}^*$$
. Calculer $\ln\left(\frac{2}{1}\right) + \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) + \dots + \ln\left(\frac{n+1}{n}\right)$

Calcul 4.19 — Une somme de logarithmes (II).

ಿಂದಿದ

Calculer
$$\sum_{k=1}^{n} \ln(2^k)$$

Réponses mélangées

$$5\sqrt{5} \qquad \ln(3) \qquad \frac{-1}{p} < x \leqslant 1 \qquad 1 \qquad \frac{-1}{4} \qquad 1,61 \leqslant \ln(5,12) \leqslant 1,70 \qquad 10 \ln(3) \qquad x > e^p - 1$$

$$2 \qquad 2,98 \leqslant \ln(5+\sqrt{5}) + \ln(5-\sqrt{5}) \leqslant 3,01 \qquad -3 \qquad 1 \qquad -2,254 \leqslant \ln(25) \ln(\frac{1}{2}) \leqslant -2,208$$

$$]1,+\infty[\qquad -2 \qquad]2,+\infty[\qquad 4 \qquad 2 \ln(2) \qquad 9 \qquad \ln(x+1) \qquad 3 \qquad \frac{-8}{7}$$

$$2 \qquad \boxed{c} \qquad \ln(n+1) \qquad -1,61 \leqslant \ln(0,2) \leqslant -1,60 \qquad \frac{1}{\ln(2)} \qquad \sqrt{3}+1 \qquad 2$$

$$x = 2 + e^{\sqrt{2}} \text{ ou } x = 2 + e^{-\sqrt{2}} \qquad 4,5 \qquad -\ln(2) \qquad \frac{5}{3} \qquad e \qquad \frac{1}{4} \qquad \frac{n(n+1) \ln(2)}{2} \qquad 2$$

$$3 \ln(2) \qquad x = 1 \text{ ou } x = e \qquad \frac{\ln(e^7-3)}{2} \qquad 17 \qquad 2,29 \leqslant \ln(10) \leqslant 2,31 \qquad -2 \qquad 3$$

$$\frac{1}{2} \qquad 3 \qquad \sqrt{5} \qquad 0,46 \leqslant \ln\left(\frac{8}{5}\right) \leqslant 0,50 \qquad 3 \qquad -2 \ln(2) - 2 \ln(5) \qquad 3 \qquad e-1 \qquad \frac{3}{2}$$

▶ Réponses et corrigés page 173

Dérivée du logarithme

Quelques calculs généraux pour commencer

Calcul 5.1

Soient x et t des réels. Simplifier les écritures suivantes.

a)
$$e^{3x+1} \times e^{5x+2}$$

c)
$$\frac{e^{2x+1} \times e^{5-8x}}{e^{2x+3}}$$

b)
$$(e^{2t-4})^5 \times e$$

$$d) \quad \frac{e^{2x+5t} \times e^{4x-3t}}{e^{2t+6x}} \quad \dots$$

Calcul 5.2

Écrire les nombres suivants sous la forme $a \ln(b)$ où a et b sont des entiers et b est le plus petit possible.

a)
$$3\ln(2) + \ln(4)$$

c)
$$\ln(7 - 2\sqrt{6}) + \ln(7 + 2\sqrt{6})$$

b)
$$\ln(100) - \ln(28) + \ln(21) - \ln(3)$$

d)
$$4\ln(9) - 2\ln(27) + 6\ln(\sqrt{3}) \dots$$

Remarque

Dans l'ensemble des calculs de cette fiche, on ne se souciera pas des domaines de définition et de dérivabilité.

Dérivation du logarithme népérien

Calcul 5.3 — Au même dénominateur (I).

Déterminer l'expression de f'(x) sous la forme d'un quotient pour f définie par :

a)
$$f(x) = 2x + 1 - \ln(x)$$

b)
$$f(x) = 4\ln(x) - \frac{3}{x+1} \dots$$

Calcul 5.4 — Au même dénominateur (II).

Déterminer l'expression de f'(x) sous la forme d'un quotient pour f définie par :

a)
$$f(x) = \frac{\ln(x)}{x} - 3x^2 \dots$$

b)
$$f(x) = e^x \times \ln(x) \dots$$

Calcul 5.5 — Application des formules usuelles.

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$f(x) = x \ln(x) - x \dots$$

c)
$$f(x) = \frac{x^2 - x}{\ln(x)}$$

b)
$$f(x) = \frac{\ln(x)}{x} \dots$$

d)
$$f(x) = \sqrt{x} \ln(x) \dots$$

Calcul 5.6 — Composition et logarithme.

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$f(x) = (\ln(x))^3 \dots$$

c)
$$f(x) = \sqrt{\ln(x)}$$

b)
$$f(x) = \frac{1}{\ln(x)}$$

d)
$$f(x) = \frac{1}{\ln(x)^4}$$

Fonctions de la forme ln(u)

Calcul 5.7 — Composition et logarithme (II).

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$f(x) = \ln(x^2 - 4x + 7) \dots$$

c)
$$f(x) = \ln(1 - x^3) \dots$$

b)
$$f(x) = \ln(1 + e^x) \dots$$

d)
$$f(x) = \ln(\ln(x)) \dots$$

Calcul 5.8 — Au même dénominateur (III).

0000

Déterminer l'expression de f'(x) sous la forme d'un quotient pour f définie par :

a)
$$f(x) = 4x^2 + 1 - \ln(2x^2 + 3x + 7)$$

b)
$$f(x) = 3x + 1 + \ln(1 + \sqrt{x})$$
.....

c)
$$f(x) = \ln(1+x) - \ln(2x^2 + x + 1)$$
....

Calcul 5.9 — Logarithme d'un quotient.

On considère la fonction $f: \begin{cases}]3, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \ln\left(\frac{x-3}{x^2-2}\right). \end{cases}$ On admet que la fonction f est dérivable.

- b) Que vaut f'(4)?

Calcul 5.10 — Compositions successives.

Déterminer l'expression de f'(x) pour f définie par :

a)
$$f(x) = \ln(x + \sqrt{x^2 + 1}) \dots$$

c)
$$f(x) = \ln(1 + e^{x^2 + 1})\dots$$

b)
$$f(x) = \ln\left(\sqrt{\frac{1-x}{1+x}}\right) \dots$$

d)
$$f(x) = \ln(\ln(\ln(x))) \dots$$

Calcul 5.11 — Compositions successives (II).

Déterminer l'expression de f'(x) pour f définie par :

a)
$$f(x) = \ln(1 + xe^{x-x^3})$$
.....

b) $f(x) = \ln(1 + \ln(1 + e^{x^2}))$

Calculs plus avancés

Calcul 5.12 — Détermination d'une équation différentielle.

Soit f une fonction définie, dérivable et strictement positive sur $]0,+\infty[$ telle que, pour tout réel x>0,

$$f'(x) = f(x)(1 - \ln(f(x))).$$

Calcul 5.13 — Logarithme intégral.

On définit la fonction « li » (appelée logarithme intégral) sur $]1, +\infty[$ par li(e) = 0 et $li'(x) = \frac{1}{\ln(x)}$.

- a) Soit $x \in]1, +\infty[$. Calculer i''(x).
- b) Soit $f: \begin{cases}]0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \text{li}(3x^2 + x + 2). \end{cases}$ Calculer f'(x)....
- c) Soit $g: \begin{cases}]0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \text{li}(e^x). \end{cases}$ Calculer g'(x).....

Calcul 5.14 — Exponentielle en base a.

Soit a un réel strictement positif. Pour tout réel x, on pose

$$a^x = e^{x \ln(a)}.$$

Déterminer l'expression de f'(x) pour f définie par :

- a) $f(x) = 2^x$
- $d) \quad f(x) = x^x \quad \dots$
- b) $f(x) = 5^x$
- e) $f(x) = x^{\sqrt{x}}$
- c) $f(x) = 3^{-x}$
- f) $f(x) = \left(1 + \frac{1}{x}\right)^x \dots$

Réponses mélangées

$$\frac{2xe^{x^2+1}}{1+e^{x^2+1}} \quad \frac{(1+x-3x^3)e^{x-x^3}}{1+xe^{x-x^3}} \quad \frac{e^x}{x} \quad g' = 1-g \quad \frac{(2x-1)\ln(x)-x+1}{(\ln(x))^2}$$

$$\frac{\ln(x)+2}{2\sqrt{x}} \quad \ln(x) \quad \frac{2x-4}{x^2-4x+7} \quad 2\ln(5) \quad \frac{1}{x\ln(x)} \quad -\frac{1}{x\ln(x)^2} \quad \frac{1}{\sqrt{x^2+1}}$$

$$\frac{2xe^{x^2}}{(1+e^{x^2})(1+\ln(1+e^{x^2}))} \quad \frac{1}{2x\sqrt{\ln(x)}} \quad 5\ln(3) \quad \frac{16x^3+24x^2+52x-3}{2x^2+3x+7} \quad -\ln(3)\times 3^{-x}$$

$$\left(\ln\left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right)\left(1+\frac{1}{x}\right)^x \quad \ln(2)\times 2^x \quad \frac{1}{x^2-1} \quad -\frac{2x(x+2)}{(1+x)(2x^2+x+1)}$$

$$(1+\ln(x))\times x^x \quad \frac{1}{2\sqrt{x}}(\ln(x)+2)x^{\sqrt{x}} \quad \frac{6x+6\sqrt{x}+1}{2(x+\sqrt{x})} \quad -\frac{1}{x\ln(x)^2} \quad \frac{1-\ln(x)-6x^3}{x^2}$$

$$e^{-8x+3} \quad \frac{2x-1}{x} \quad \frac{1}{x\ln(x)\ln(\ln(x))} \quad \frac{3\ln(x)^2}{x} \quad \frac{e^x}{1+e^x} \quad -\frac{4}{x\ln(x)^5}$$

$$5\ln(2) \quad \frac{1-\ln(x)}{x^2} \quad \frac{(x\ln(x)+1)e^x}{x} \quad \frac{6x+1}{\ln(3x^2+x+2)} \quad e^{8x+3} \quad 1 \quad e^{10t-19}$$

$$-\frac{x^2-6x+2}{(x-3)(x^2-2)} \quad 2\ln(5) \quad \frac{4x^2+11x+4}{x(x+1)^2} \quad -\frac{3x^2}{1-x^3} \quad \ln(5)\times 5^x \quad \frac{3}{7}$$

► Réponses et corrigés page 179

Fonctions trigonométriques

Quelques calculs généraux pour commencer

Calcul 6.1

4444

Donner l'ensemble des solutions des équations suivantes.

a)
$$x - \frac{2x-5}{5} + \frac{x+2}{6} = 6 + \frac{x-1}{3}$$

b)
$$\left(\frac{3}{2}x+1\right)(12-x)-\frac{5}{2}(x^2+2)=-2(1+2x^2)$$

Calcul 6.2

4444

Soient trois réels a, b et c. Simplifier les expressions suivantes.

a)
$$\frac{(a+b)^2 - c^2}{a+b+c}$$

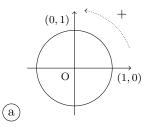
b)
$$\frac{a^2 + b^2 - c^2 + 2ab}{a^2 - b^2 + c^2 + 2ac}$$

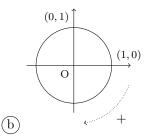
c)
$$\left(\frac{6a+1}{a^2-6a} + \frac{6a-1}{a^2+6a}\right) \frac{a^2-36}{a^2+1}$$

Révisions générales de trigonométrie

Entraînement 6.3 — Pour commencer.

Quel est le sens direct dans le cercle trigonométrique?





Calcul 6.4 — Degrés et radians.

a) Parmi les propositions suivantes, laquelle est vraie?

$$\widehat{\text{a}}$$
 $\pi \text{ rad} = 1^{\circ}$

$$(b) \pi \text{ rad} = 60^{\circ}$$

$$(c)$$
 π rad = 180°

(b)
$$\pi \text{ rad} = 60^{\circ}$$
 (c) $\pi \text{ rad} = 180^{\circ}$ (d) $\pi \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$

b) Parmi les propositions suivantes, laquelle est vraie?

(a)
$$1^{\circ} = \frac{\pi}{180}$$
 rad (b) $1^{\circ} = \frac{\pi}{60}$ rad (c) $1^{\circ} = \pi$ rad (d) $1^{\circ} = 180\pi$ rad

$$(b) 1^{\circ} = \frac{\pi}{60} rad$$

$$\bigcirc$$
 1° = π rad

$$\widehat{\mathrm{(d)}}\ 1^{\circ} = 180\pi \mathrm{\ rad}$$

Calcul 6.5 — Angles remarquables.

Donner la valeur de :

a)
$$\cos\left(\frac{\pi}{6}\right)$$

c)
$$\sin\left(\frac{\pi}{4}\right)$$

b)
$$\cos\left(\frac{\pi}{3}\right)$$

d)
$$\sin\left(\frac{\pi}{3}\right)$$

Calcul 6.6 — Angles associés.

Pour tout $x \in \mathbb{R}$, exprimer en fonction de $\cos(x)$ et $\sin(x)$ les expressions suivantes.

a)
$$\cos(-x)$$

d)
$$\sin(\pi - x)$$

g)
$$\cos\left(\frac{\pi}{2} - x\right)$$
 ...

b)
$$\sin(-x)$$

e)
$$\cos(\pi + x)$$

h)
$$\sin\left(\frac{\pi}{2} - x\right)$$
 ..

c)
$$\cos(\pi - x)$$

f)
$$\sin(\pi + x)$$

Calcul 6.7 — Des inégalités.

Choisir les bonnes réponses.

Plusieurs bonnes réponses sont possibles.

a) Pour
$$x \in \left[0, \frac{\pi}{2}\right]$$
, on a

b) Pour
$$x \in \left[\pi, \frac{3\pi}{2}\right]$$
, on a

$$\bigcirc$$
 $\cos(x) \ge 0$

$$\bigcirc$$
 $\cos(x) \geqslant 0$

$$(b) \sin(x) \ge 0$$

$$(b) \sin(x) \ge 0$$

$$\bigcirc$$
 $\cos(x) \leqslant 0$

$$(c) \cos(x) \leq 0$$

$$\widehat{\mathrm{d}}$$
 $\sin(x) \leqslant 0$

$$(d) \sin(x) \leqslant 0$$

Calcul 6.8

Soit $x \in \mathbb{R}$. Parmi les expressions suivantes, laquelle est égale à $\cos^2(x)$?

(a)
$$\sqrt{1-\sin^2(x)}$$

$$\bigcirc -1 + \sin^2(x)$$

$$(b) 1 + \sin^2(x)$$

$$\widehat{\text{(d)}} 1 - \sin^2(x)$$

Premiers calculs

Calcul 6.9

Soit $x \in \left[0, \frac{\pi}{2}\right]$ tel que $\cos(x) = \frac{\sqrt{3-1}}{4}$.

- a) A-t-on: (a) $\sin(x) \ge 0$ ou (b) $\sin(x) \le 0$?
- b) Calculer $\sin(x)$

Calcul 6.10

Soit $k \in \mathbb{Z}$.

- a) Soit $x = \frac{45\pi}{4} + 2k\pi$. Pour quelle valeur de k a-t-on $0 < x < 2\pi$?

Calcul 6.11

Dans chacun des cas suivants, déterminer la mesure principale (celle appartenant à l'intervalle $[-\pi,\pi]$) corresponsant à la mesure donnée.

- a) $\frac{152\pi}{5}$ b) $-\frac{75\pi}{4}$

Calcul 6.12

Donner la valeur de :

- d) $\sin\left(\frac{10\pi}{3}\right)$
- b) $\sin\left(\frac{11\pi}{4}\right)$
- e) $\cos\left(\frac{19\pi}{2}\right)$
- c) $\cos\left(\frac{10\pi}{3}\right)$
- f) $\sin\left(\frac{19\pi}{2}\right)$

Autour des fonctions cosinus et sinus

Calcul 6.13	otion assinus laquella est serresta?
Parmi les affirmations suivantes portant sur la fonc	
(a) Sa courbe est symétrique par rapport à l'axe	
(b) Sa courbe est symétrique par rapport à l'axe	
(c) Sa courbe est symétrique par rapport à l'orig	gine.
Calcul 6.14 — Croissante ou décroissante ?	0000
Pour chacune des questions suivantes, choisir la rép	ponse correcte.
a)	
(a) La fonction sinus est croissante sur $\left[0, \frac{\pi}{2}\right]$	
(b) La fonction sinus est décroissante sur $\left[0, \frac{\pi}{2}\right]$	
L)	
b) π	
(a) La fonction sinus est croissante sur $\left[-\frac{\pi}{2}, 0\right]$	_
b La fonction sinus est décroissante sur $\left[-\frac{\pi}{2}, 0\right]$)]
c)	
(a) La fonction $x \mapsto \cos\left(x + \frac{\pi}{4}\right)$ est croissante	sur $[0,\pi]$
(b) La fonction $x \mapsto \cos\left(x + \frac{\pi}{4}\right)$ est croissante	$\operatorname{sur}\left[\frac{3\pi}{4},\pi\right]$
Calcul 6.15 — Paire ou impaire ?	0000
Pour chacune des fonctions f suivantes, choisir la m	réponse correcte parmi ces trois propositions :
(a) f est paire	\bigcirc f n'est ni paire ni impaire
\bigcirc b f est impaire	
a) $f: x \longmapsto \sin(2x)$	c) $f: x \longmapsto 4\cos(x)\sin(x)$
b) $x \longmapsto 5 - 2\cos(x)$	d) $f: x \longmapsto x^2 \cos(x) \dots$

Calcul 6.16 — Des périodes.

« Vrai » ou « faux »?

- a) La fonction $x \mapsto \cos(x)$ est 4π -périodique
- b) La fonction $x \mapsto \sin\left(\frac{x}{2}\right)$ est 2π -périodique
- La fonction $x \mapsto 3\sin(2\pi x)$ est 1-périodique
- d) La fonction $x \mapsto 4\cos(4x) 1$ est $\frac{\pi}{2}$ -périodique

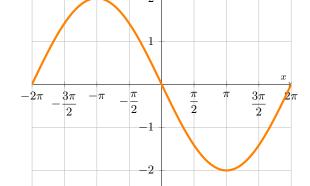
Calcul 6.17 — Deux courbes.

Quelle est la fonction représentée par la courbe ci-contre?

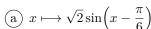
(a)
$$x \mapsto \sin\left(\frac{x}{2}\right)$$

$$(c)$$
 $x \mapsto 2\cos(x)$

$$\widehat{\mathrm{d}}$$
 $x \longmapsto \sin(2x)$



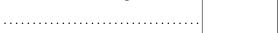
b) Quelle est la fonction représentée par la

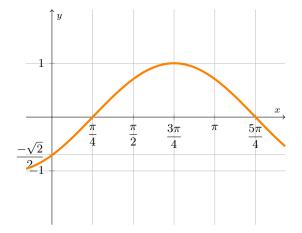


courbe ci-contre?

$$\begin{array}{c}
\text{(b)} \ x \longmapsto \cos\left(x - \frac{3\pi}{4}\right) \\
\text{(c)} \ x \longmapsto \sin\left(x - \frac{3\pi}{4}\right)
\end{array}$$

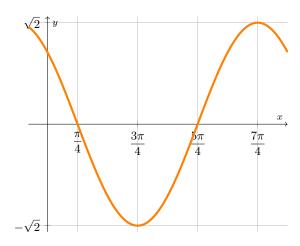
$$\bigcirc x \longmapsto \sin\left(x - \frac{3\pi}{4}\right)$$





Calcul 6.18 — Deux autres courbes.

a) Quelle est la fonction représentée par cette courbe?

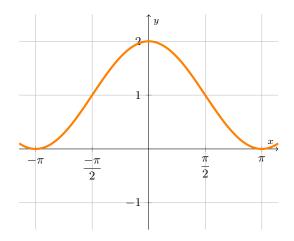


$$\begin{array}{cc} \text{(a)} & x \longmapsto -\sqrt{2} \sin \left(x - \frac{\pi}{4} \right) \\ \text{(b)} & x \longmapsto \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) \end{array}$$

$$\begin{array}{c} (b) \ x \longmapsto \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) \end{array}$$

$$\begin{array}{c}
\hline
\text{(c)} \ x \longmapsto \sqrt{2} \sin\left(x - \frac{3\pi}{4}\right) \\
\hline
\text{(d)} \ x \longmapsto \sqrt{2} \cos\left(x - \frac{\pi}{2}\right)
\end{array}$$

b) Quelle est la fonction représentée par cette courbe?



$$(a)$$
 $x \mapsto 1 + \cos(x)$

$$\begin{array}{ccc} \textcircled{a} & x \longmapsto 1 + \cos(x) \\ \textcircled{b} & x \longmapsto 2 - \sin(x) \end{array}$$

$$(c)$$
 $x \mapsto 2\cos(x)$

$$\begin{array}{c} \textcircled{c} \quad x \longmapsto 2\cos(x) \\ \textcircled{d} \quad x \longmapsto 1 + \cos^2(x) \end{array}$$

Équations et inéquations trigonométriques

Calcul 6.19

0000

Résoudre dans $]-\pi,\pi]$ les équations suivantes.

a)
$$\cos(x) = \cos\left(\frac{\pi}{5}\right)$$

c)
$$\cos(x) = \frac{1}{2}$$

Calcul 6.20

Résoudre dans $[0, 2\pi[$ les équations suivantes.

a)
$$\sin(x) = -\frac{\sqrt{3}}{2}$$

b)
$$-\cos(x) = \frac{1}{\sqrt{2}}$$

c)
$$\cos(3x) = \frac{\sqrt{3}}{2}$$

Calcul 6.21

Résoudre dans $[0, 2\pi[$ les équations suivantes.

a)
$$\sin(x) = \cos\left(\frac{5\pi}{3}\right)$$

b)
$$\sin^2(x) = \frac{1}{2}$$

c)
$$2\cos^2(x) + \cos(x) - 1 = 0$$

Calcul 6.22

Résoudre dans $]-\pi,\pi]$ les inéquations suivantes.

a)
$$\cos(x) \geqslant \frac{1}{2} \dots$$

c)
$$|\cos(x)| \leqslant \frac{\sqrt{2}}{2} \ldots$$

b)
$$\sin(x) < -\frac{\sqrt{3}}{2} \dots$$

d)
$$\sin\left(x - \frac{\pi}{4}\right) \geqslant 0$$
 ...

Calculs plus avancés

Calcul 6.23 — Tangente.

Pour $x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$, on pose $\tan(x) = \frac{\sin(x)}{\cos(x)}$.

- a) Calculer tan(0)
- c) Calculer $\tan\left(\frac{\pi}{4}\right)$
- e) Pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, exprimer $1 + \tan^2(x)$ en fonction de $\cos(x)$

Réponses mélangées

(a) et (b)
$$\frac{1}{2}$$
 $\frac{\sqrt{3}}{2}$ $-\frac{3\pi}{4}$ $\frac{2\pi}{5}$ (b) $-\cos(x)$ (a) vrai $-\sin(x)$ $-\frac{\sqrt{3}}{2}$ $\left] -\frac{2\pi}{3}, -\frac{\pi}{3} \right[-\cos(x) \quad \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} - \frac{\pi}{2} \quad \frac{a+b-c}{a+c-b} \quad \frac{\sqrt{2}}{2} \quad \left\{ -\frac{9}{17} \right\} \right]$ $-\sin(x) \quad 0 \quad \cos(x) \quad \frac{12}{a} \quad -6 \quad a+b-c \quad -1 \quad \text{(c) et (d)} \quad -\frac{\sqrt{2}}{2}$ vrai (b) (b) $\left\{ -\frac{\pi}{5}, \frac{\pi}{5} \right\}$ (d) $\left\{ -\frac{\pi}{3}, \frac{\pi}{3} \right\} \quad \frac{\sqrt{3}}{3} \quad \left\{ \frac{3\pi}{4}, \frac{5\pi}{4} \right\}$ (b)

$$\begin{cases}
10 \\
-\frac{1}{2}
\end{cases} -5 \qquad
\begin{cases}
\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}
\end{cases} \qquad
\begin{cases}
\frac{\pi}{3}, \pi, \frac{5\pi}{3}
\end{cases} \qquad \text{(a)} \qquad
\begin{bmatrix}
\frac{3\pi}{4}, -\frac{\pi}{4}
\end{bmatrix} \cup
\begin{bmatrix}
\frac{\pi}{4}, \frac{3\pi}{4}
\end{bmatrix} \cup
\begin{bmatrix}
\frac{\pi}{4}, \frac{3\pi}{4}
\end{bmatrix}$$

$$\begin{bmatrix}
-\pi, -\frac{3\pi}{4} \\
\frac{\pi}{2}, \pi
\end{bmatrix} \cup \sin(x) \qquad \text{(a)} \qquad \frac{\sqrt{3}}{2} \qquad \frac{\sqrt{2}}{2} \qquad \cos(x) \qquad \text{(c)}$$

vrai
$$\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}^{\frac{1}{4}}$$
 a faux $\sin(x)$ $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$ a 1 $\frac{1}{\cos^2(x)}$

(a)
$$\left[-\pi, -\frac{3\pi}{4} \right] \cup \sin(x)$$
 (a) (a) $\left[\frac{\pi}{4}, \pi \right] = \sin(x)$ (b) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right] = \sin(x)$ (c) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right] = \sin(x)$ (d) $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right] = \cos(x)$ (e) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right] = \sin(x)$ (f) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right] = \sin(x)$ (g) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right] = \sin(x)$ (g) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right] = \sin(x)$ (h) $\left[-\frac{\pi}{3},$

► Réponses et corrigés page 184

Dérivation des fonctions trigonométriques

Quelques calculs généraux pour commencer

Calcul 7.1

4444

Développer les expressions suivantes.

a)
$$(x+y)(x^2 - xy + y^2)$$
 b) $(x - \frac{1}{x})(1 - \frac{1}{x+1})$

b)
$$\left(x-\frac{1}{x}\right)\left(1-\frac{1}{x+1}\right)$$

c)
$$(x-1)(x^2-1)(x^3-1)$$

Calcul 7.2

4444

Factoriser les expressions suivantes.

b)
$$a+1+b+ab$$

Calcul 7.3

4444

Donner l'ensemble des solutions des équations suivantes.

a)
$$|x+2| = 7$$

b)
$$|x+2| = |x-7|$$

Calculs de dérivées

Calcul 7.4

Dans chacun des cas suivants, donner la réponse correcte.

- a) Soit $f: x \longmapsto \sin(x) + \cos(x)$. Alors, on a f'(x) =

- (a) $2\cos(x)$ (b) $2\sin(x)$ (c) $\sin(x) \cos(x)$ (d) $\cos(x) \sin(x)$

.....

- b) Soit $f: x \mapsto x \sin(x)$. Alors, on a f'(x) =

- (a) $\sin(x) x\cos(x)$ (b) $x\sin(x) \cos(x)$ (c) $\sin(x) + x\cos(x)$ (d) $x\sin(x) + \cos(x)$

.....

Dans chacun des cas suivants, donner la réponse correcte.

- a) Soit $f: x \mapsto x^2 \cos(x)$. Alors, on a f'(x) =
- \bigcirc $2x\cos(x) x^2\sin(x)$

 \bigcirc $2x\sin(x) - x^2\cos(x)$

(b) $2x\cos(x) + x^2\sin(x)$

- b) Soit $f: x \mapsto \frac{\sin x}{x}$. Alors, on a f'(x) =

- (a) $\frac{x\cos(x) + \sin(x)}{x^2}$ (b) $\frac{x\cos(x) \sin(x)}{x^2}$ (c) $\frac{x\sin(x) + \cos(x)}{x^2}$ (d) $\frac{x\sin(x) \cos(x)}{x^2}$

Calcul 7.6

Déterminer l'expression de la dérivée de chacune des fonctions suivantes.

- a) $f: x \longmapsto e^x \cos(x) \dots$
- c) $f: x \longmapsto \cos(x^2) \dots$
- b) $f: x \longmapsto \cos(-5x+3) \dots$

Calcul 7.7

Sans tenir compte du domaine de définition, déterminer l'expression de la dérivée de chacune des fonctions suivantes.

a) $f: x \longmapsto e^{\sin(x)} + \cos(x)$

- b) $f: x \longmapsto 2\sqrt{\sin(x)} 2\sqrt{\cos(x)}$
- c) $f: x \mapsto (1 + 3\sin(2x))^4$

Calcul 7.8

Sans tenir compte du domaine de définition, déterminer l'expression de la dérivée de chacune des fonctions suivantes.

- a) $f: x \longmapsto \sin\left(\sqrt{x^2+5}\right)$
- b) $f: x \longmapsto \frac{\sin(x)}{\cos^2(3x)}$
- c) $f: x \longmapsto x^3 \sqrt{\sin(x)}$

Autres calculs

Calcul 7.9

On considère la fonction $f: x \mapsto e^{-x} \sin(x)$. Calculer $f''(x) + 2f'(x) + 2f(x) \dots$

Calcul 7.10

On définit sur \mathbb{R} la fonction $f: x \longmapsto x \sin(x)$. Calculer xf(x) - 2f'(x) + xf''(x)

Calcul 7.11 — Des limites.

En utilisant la définition du nombre dérivé, déterminer les limites suivantes.

- b) $\lim_{x \to 0} \frac{\sin(x)}{x} \dots$
- c) $\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(2x \frac{2\pi}{3}\right)}{x \frac{\pi}{3}} \dots$

Calculs plus avancés

ಿರಿಕೆರೆ

Calcul 7.12 — Une fonction mystérieuse.

On désigne par g la fonction définie sur $\left]-1,1\right[$ par

$$g(0) = 0$$
 et $g'(x) = \frac{1}{\sqrt{1 - x^2}}$

pour tout $x \in]-1,1[$. On ne cherchera pas à expliciter g(x).

On considère alors la fonction composée h, définie sur $]-\pi,0[$ par $h(x)=g(\cos(x)).$

- b) Calculer $h\left(-\frac{\pi}{2}\right)$
- c) Donner l'expression de h(x)

Calcul 7.13 — Dérivée de la tangente.

La fonction tangente est définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{par} \tan(x) = \frac{\sin(x)}{\cos(x)}.$

Calculer une expression de la dérivée de la fonction tangente

Calcul 7.14 — Autour de la tangente.

Sans tenir compte du domaine de définition, déterminer l'expression de la dérivée de chacune des fonctions suivantes.

a)
$$f: x \longmapsto \tan(3x) + 2\tan(x)$$

b)
$$f: x \longmapsto 2 \tan^2(x)$$

c)
$$f: x \longmapsto 8\sqrt{\tan(3x)} + \frac{4}{\sin^2(\sqrt{x})}$$

Réponses mélangées

$$\frac{\cos(x)\cos(3x) + 6\sin(x)\sin(3x)}{\cos^3(3x)} \qquad \text{b} \qquad \text{a} \qquad e^x(\cos(x) - \sin(x)) \qquad 1$$

$$x^3 + y^3 \qquad 1 \qquad 3x^2\sqrt{\sin(x)} + \frac{x^3\cos(x)}{2\sqrt{\sin(x)}} \qquad 24\cos(2x)(1 + 3\sin(2x))^3 \qquad 2$$

$$-2x\sin(x^2) \qquad \frac{4\tan(x)}{\cos^2(x)} \qquad (1 + a)(1 + b) \qquad x - 1 \qquad 0 \qquad \frac{\cos(x)}{\sqrt{\sin(x)}} + \frac{\sin(x)}{\sqrt{\cos(x)}}$$

$$0 \qquad \cos(x)e^{\sin(x)} - \sin(x) \qquad x + \frac{\pi}{2} \qquad \frac{x\cos(\sqrt{x^2 + 5})}{\sqrt{x^2 + 5}} \qquad \left\{\frac{5}{2}\right\}$$

$$\frac{12}{\cos^2(3x)\sqrt{\tan(3x)}} - \frac{4\cos(\sqrt{x})}{\sqrt{x}\sin^3(\sqrt{x})} \qquad 5\sin(-5x + 3) \qquad \cos(a) \qquad x^6 - x^5 - x^4 + x^2 + x - 1$$

$$\frac{1}{\cos^2(x)} \qquad \left\{-9, 5\right\} \qquad \frac{3}{\cos^2(3x)} + \frac{2}{\cos^2(x)} \qquad -2\sin(x) \qquad \text{d} \qquad ab(7a - 4b) \qquad \text{c}$$

► Réponses et corrigés page 189

Révisions sur la dérivation

Quelques calculs généraux pour commencer

Calcul 8.1 — Quelques fractions.

4444

Écrire les fractions suivantes sous la forme d'une fraction irréductible.

a)
$$\frac{1}{3} - \frac{1}{4}$$

c)
$$\frac{25}{15} - \frac{4}{3}$$

b)
$$\frac{1}{3} + \frac{1}{6} + \frac{1}{2}$$

d)
$$\frac{16}{4} + \frac{2}{5}$$

Calcul 8.2

4444

Développer les expressions suivantes et les ordonner en fonction des puissances décroissantes de x.

a)
$$(x-3)(x^2-2x+1)$$

c)
$$(x+4)(x+5) - x^2(x+1)$$
 ...

b)
$$(x-2)(x^2+3x+4)$$

d)
$$x^2 + 6x + 9 - (x - 3)^2 \dots$$

Calcul 8.3 — Quelques dérivées élémentaires.

4444

Donner les dérivées des fonctions suivantes.

a)
$$x \longmapsto 4x \ldots$$

c)
$$x \longmapsto \sqrt{x} \dots$$
 e) $x \longmapsto e \dots$

$$e) \quad x \longmapsto e \quad \dots$$

b)
$$x \longmapsto 5x + 3$$
 . d) $x \longmapsto e^{-3x}$...

d)
$$x \mapsto e^{-3x} \dots$$

f)
$$x \longmapsto \frac{1}{x^5} \dots$$

Utilisation des règles de dérivation

Calcul 8.4 — Combinaisons linéaires de fonctions élémentaires (I).

Donner les dérivées des fonctions suivantes.

a)
$$x \longmapsto 4x^3 + 5x^4 \dots$$

c)
$$x \longmapsto \frac{e^x - e^{-x}}{2} \dots$$

b)
$$x \longmapsto \frac{e^x + e^{-x}}{2} \dots$$

$$d) \quad x \longmapsto 3e^{3x} + \frac{1}{x} \quad \dots$$

Calcul 8.5 — Combinaisons linéaires de fonctions élémentaires (II).

0000

Donner les dérivées des fonctions suivantes.

a)
$$x \longmapsto \frac{e^{3x}}{3} + \frac{2}{x}$$

b)
$$x \mapsto 3e^{2x} - (4x)^4$$

c)
$$x \mapsto \frac{e^{3x}}{4} + \frac{3}{10}\ln(x) + 3\sqrt{x}$$

d)
$$x \mapsto (e^{5x})^2 + \frac{2}{x} - (3x)^4$$

Calcul 8.6 — Produits et quotients de fonctions (I).

0000

Donner les dérivées des fonctions suivantes.

a)
$$x \longmapsto (x+1)e^{2x} \ldots$$
 b) $x \longmapsto (x+1)\ln(x) \ldots$

Calcul 8.7 — Produits et quotients de fonctions (II).

0000

Donner les dérivées des fonctions suivantes.

a)
$$x \mapsto \frac{e^x}{1 + e^x}$$
 b) $x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$

c)
$$x \mapsto \frac{x^2 + 2xe^x + 1}{1 + x^2}$$

Calcul 8.8 — Composition avec des fonctions linéaires (I).

0000

Donner les dérivées des fonctions suivantes.

a)
$$x \longmapsto (3x+2)^2 \dots$$
 c) $x \longmapsto \ln(12x+3) \dots$

b)
$$x \mapsto \frac{1}{5x+2} \dots$$
 d) $x \mapsto \frac{1}{(5-2x)^4} \dots$

Calcul 8.9 — Composition avec des fonctions linéaires (II).

Donner les dérivées des fonctions suivantes.

- a) $x \mapsto (3x+2)^2 e^{4x+5}$
- b) $x \mapsto (x + e)^4 + 3(3x + 2)^3$

Dérivées secondes

Calcul 8.10

On considère la fonction $f: x \longmapsto x \ln(1+x)$. Déterminer :

- a) l'expression de f'(x) ..
- b) l'expression de f''(x) ...

Calcul 8.11

On considère la fonction $f: x \longmapsto \frac{\ln(x)}{x}$. Déterminer :

- a) l'expression de f'(x) ...
- b) l'expression de f''(x) ...

Calcul 8.12

On considère la fonction $f: x \longmapsto x+1-\frac{x}{\mathrm{e}^x}.$ Déterminer :

- a) l'expression de f'(x) ...
- b) l'expression de f''(x) ...

Calculs plus avancés

Calcul 8.13 — Calcul d'une somme par dérivation.

Soit $n \in \mathbb{N}^*$. On considère la fonction f définie sur \mathbb{R} par $f(x) = 1 + x + x^2 + \cdots + x^n$.

- a) Calculer f'(x) sous la forme d'une somme
- b) Pour $x \neq 1$, exprimer f(x) sous la forme d'un quotient de polynômes.

 On utilisera une formule du cours.
- c) En déduire, pour $x \neq 1$, une expression de $\sum_{k=1}^{n} kx^{k-1}$ sous forme de fraction.

Calcul 8.14 — Dérivées successives d'une inverse.

Étant donné une fonction f, on note (sous réserve d'existence) f', f'', f''' puis $f^{(4)}$, $f^{(5)}$, $f^{(6)}$, etc. les dérivées successives de f. En général, la dérivée n-ième est notée $f^{(n)}$.

On considère la fonction f définie, pour $x \in \mathbb{R}$, par

$$f(x) = \frac{1}{3 - 2x}.$$

Déterminer les expressions de :

a)
$$f'(x)$$

d)
$$f^{(4)}(x)$$

b)
$$f''(x)$$

e)
$$f^{(5)}(x)$$

c)
$$f^{(3)}(x)$$

f)
$$f^{(n)}(x)$$
 pour tout $n \in \mathbb{N}$

Réponses mélangées

$$x \mapsto 9e^{3x} - \frac{1}{x^2} \qquad x \mapsto \frac{3}{2} \left(\frac{e^{3x}}{2} + \frac{1}{5x} + \frac{1}{\sqrt{x}} \right) \qquad x \mapsto \frac{e^x + e^{-x}}{2} \qquad x \mapsto \frac{4}{(e^x + e^{-x})^2}$$

$$x \mapsto \frac{e^x}{(1 + e^x)^2} \qquad x \mapsto 4 \qquad \frac{3! \times 2^3}{(3 - 2x)^4} \qquad x \mapsto (3x^2 + 2x + 3)e^{3x} \qquad 12x \qquad x \mapsto e^{3x} - \frac{2}{x^2}$$

$$x \mapsto \frac{2e^x(x^3 - x^2 + x + 1)}{(1 + x^2)^2} \qquad x \mapsto \frac{8}{(5 - 2x)^5} \qquad \frac{2 + x}{(1 + x)^2} \qquad \frac{1 - (n + 1)x^n + nx^{n+1}}{(1 - x)^2} \qquad 1$$

$$x \mapsto \frac{1 - x^{n+1}}{1 - x} \qquad x \mapsto -\frac{5}{(5x + 2)^2} \qquad \frac{4! \times 2^4}{(3 - 2x)^5} \qquad \frac{22}{5} \qquad -x^3 + 9x + 20 \qquad \frac{5! \times 2^5}{(3 - 2x)^6}$$

$$x \mapsto -\frac{5}{x^6} \qquad \frac{1}{12} \qquad x^3 + x^2 - 2x - 8 \qquad x \mapsto -3e^{-3x} \qquad \frac{e^x - 1 + x}{e^x} \qquad x \mapsto \frac{e^x - e^{-x}}{2}$$

$$x \mapsto 4x^2(3 + 5x) \qquad -\frac{3 - 2\ln(x)}{x^3} \qquad x \mapsto \frac{4}{4x + 1} \qquad x \mapsto \ln(x) + \frac{x + 1}{x} \qquad x \mapsto \frac{1}{2\sqrt{x}}$$

$$x \mapsto 5 \qquad x^3 - 5x^2 + 7x - 3 \qquad x \mapsto (2x + 3)e^{2x} \qquad x \mapsto 2(3x + 2)(6x + 7)e^{4x + 5}$$

$$\frac{2 - x}{e^x} \qquad x \mapsto 4(x + e)^3 + 27(3x + 2)^2 \qquad \frac{n! \times 2^n}{(3 - 2x)^{n+1}} \qquad \frac{1 - \ln(x)}{x^2} \qquad x \mapsto 0$$

$$\frac{2^3}{(3 - 2x)^3} \qquad \frac{1}{3} \qquad \ln(1 + x) + \frac{x}{1 + x} \qquad x \mapsto 6(3x + 2) \qquad x \mapsto 2(3e^{2x} - 2^9x^3)$$

$$x \mapsto 1 + 2x + 3x^2 + \dots + nx^{n-1} \qquad x \mapsto 2\left(5e^{10x} - \frac{1}{x^2} - 2 \times 3^4x^3\right) \qquad \frac{2}{(3 - 2x)^2}$$

► Réponses et corrigés page 192

Dérivée des fonctions composées

Quelques calculs généraux pour commencer

Calcul 9.1 — Développer.

4444

Développer, réduire et ordonner les expressions suivantes.

a)
$$(2x+3)(3x-7)$$
 ...

c)
$$(x+1)^2(x-3)$$

b)
$$(9x-7)^2$$

c)
$$(x+1)^2(x-3)$$

d) $(x^2+3x+2)^2$

Calcul 9.2 — Mettre au même dénominateur.

4444

Mettre les expressions suivantes au même dénominateur, puis réduire et ordonner les numérateurs.

a)
$$\frac{1}{x-1} + \frac{1}{3-x}$$

b)
$$\frac{2x+3}{x-4} + \frac{3}{x-7}$$

c)
$$\frac{1}{x^3} + \frac{2x+3}{x(x-4)}$$

Fonctions composées

Calcul 9.3 — Application des formules usuelles (I).

Déterminer l'expression de f'(x), où f est définie, pour $x \in \mathbb{R}$, par :

a)
$$f(x) = 2e^{1-x^3} \dots$$

c)
$$f(x) = \sqrt{1 + e^x} \dots$$

b)
$$f(x) = \frac{1}{1 + e^{2x}} \dots$$

d)
$$f(x) = \sqrt{1 + x^2} \dots$$

Calcul 9.4 — Application des formules usuelles (II).

0000

Déterminer l'expression de f'(x) où f est définie, pour $x \in \mathbb{R}$, par :

- a) $f(x) = (x^2 + ex)^4$
- b) $f(x) = \left(\frac{x^2 2x + 3}{2}\right)^2$
- c) $f(x) = (4x^2 + 3x + 5)^3$
- d) $f(x) = (3x^2 5x + 7)^{-2}$

Calcul 9.5 — Ensemble de dérivation.

On considère la fonction $f: \left\{ \begin{array}{ll} \left[-1,\frac{5}{2}\right] & \longrightarrow \mathbb{R} \\ x & \longmapsto \sqrt{-2x^2+3x+5}. \end{array} \right.$

- a) Pour x dans le domaine de dérivabilité de f, que vaut f'(x)?
- b) Sur quel intervalle la fonction f est-elle dérivable?
- (a) $\left[-1, \frac{5}{2}\right]$ (b) $\left]-1, \frac{5}{2}\right]$ (c) $\left[-1, \frac{5}{2}\right[$ (d) $\left]-1, \frac{5}{2}\right[$

Calcul 9.6 — Calcul numérique.

0000

0000

On considère la fonction $f: \left\{ \begin{array}{ll} \left[-3,-\frac{1}{2}\right] & \longrightarrow \mathbb{R} \\ x & \longmapsto \sqrt{x^3+2x^2-4x-1}. \end{array} \right.$

On admet que la fonction f est dérivable sur son domaine de définition.

Calcul 9.7 — Équation de tangente.

0000

On considère la fonction $g: \left\{ \begin{array}{ll}]0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto e^{x-\sqrt{x}}. \end{array} \right.$

- a) Rappeler l'équation réduite de la tangente à la courbe représentative d'une fonction f en un point d'abscisse a où elle est dérivable......
- b) Déterminer l'équation réduite de la tangente à la courbe représentative de g au point d'abscisse 1.

Calcul 9.8 — Une composition plus subtile.

a) On considère la fonction f définie, pour x > 0, par $f(x) = \frac{e^x}{\sqrt{x}}$.

Soit x > 0. Exprimer f'(x) sous la forme d'un quotient

b) Soit la fonction g définie sur \mathbb{R} par $g(x) = \frac{e^{x^2 + x + 1}}{\sqrt{x^2 + x + 1}}$.

Soit $x \in \mathbb{R}$. Exprimer g'(x) sous la forme d'un quotient

Plusieurs opérations

Calcul 9.9 — Produit avec une fonction composée (I).

Déterminer l'expression sous forme factorisée de f'(x) pour f définie par :

- a) $f(x) = (3x+5)e^{x^2+3}$
- b) $f(x) = (x-3)\sqrt{1+x^2}$

Calcul 9.10 — Produit avec une fonction composée (II).

Déterminer l'expression sous forme factorisée de f'(x) pour f définie, pour $x \in]0, +\infty[$, par :

- a) $f(x) = x^2 e^{\sqrt{x}}$
- b) $f(x) = x \exp\left(\frac{1}{x}\right)$

Calcul 9.11 — Une dérivée seconde.

On considère la fonction $f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto e^{x^2 - 5x + 7}. \end{array} \right.$

Donner une expression de f''(x) pour tout réel x

Calcul 9.12 — Produit de deux fonctions composées.

Déterminer l'expression sous forme factorisée de f'(x) pour f définie par :

- b) $f(x) = \frac{e^{5-x^3}}{(x^2-2)^3}$

Calcul 9.13 — Composition d'un produit ou d'un quotient.

Déterminer l'expression sous forme factorisée de f'(x) pour f définie par :

a)
$$f(x) = \sqrt{\frac{x^2 + 1}{x - 1}}$$

b)
$$f(x) = \exp((x^2 + 2x + 3)\sqrt{x})$$

c)
$$f(x) = \left(\frac{2x+5}{4x-1}\right)^2$$

Calcul 9.14 — Compositions successives.

Déterminer l'expression sous forme factorisée de f'(x) pour f définie par :

a)
$$f(x) = \exp(\sqrt{1-x^2})$$

b)
$$f(x) = (x + \exp(x^3))^4$$

Calculs plus avancés

Calcul 9.15 — Un peu de calcul formel.

On considère une fonction f définie et quatre fois dérivable sur un intervalle I, et telle que

$$f' = 1 - f^2.$$

- b) Exprimer f''' en fonction de f
- c) Exprimer f'''' en fonction de f

Calcul 9.16 — Détermination d'une équation différentielle (I).

Soient $a, b \in \mathbb{R}_+^*$ et soit f une fonction définie, dérivable, strictement positive sur $]0, +\infty[$ et vérifiant $f' = af - b\sqrt{f}$. On considère la fonction g définie par $g = \sqrt{f}$.

- b) Déterminer une équation reliant g et g'......

Calcul 9.17 — Détermination d'une équation différentielle (II).

Soit f une fonction définie, deux fois dérivable, strictement positive sur \mathbb{R}_+^* et telle que, pour tout x > 0,

$$x^{2}f''(x) - 3xf'(x) + 4f(x) = 0.$$

On considère la fonction g définie, pour tout réel t, par $g(t) = f(e^t)$.

- b) Soit $t \in \mathbb{R}$. Calculer g''(t)
- c) Déterminer une équation reliant les fonctions g, g' et g''

Réponses mélangées

$$y = f'(a)(x-a) + f(a) \qquad 4(2x+e)(x^2+ex)^3 \qquad -2f+2f^3 \qquad 2gg' \qquad -\frac{44(2x+5)}{(4x-1)^3}$$

$$y = \frac{1}{2}x + \frac{1}{2} \qquad \frac{2x^3 + 3x^2 + x - 4}{x^3(x-4)} \qquad -\frac{x \exp(\sqrt{1-x^2})}{\sqrt{1-x^2}} \qquad \frac{1}{2}x(\sqrt{x}+4)e^{\sqrt{x}} \qquad 16f - 40f^3 + 24f^5$$

$$\frac{(5x^2 + 6x + 3) \exp((x^2 + 2x + 3)\sqrt{x})}{2\sqrt{x}} \qquad (d) \qquad (x-1)(x^2 - 2x + 3) \qquad \frac{x(3x^3 + 3x + 1)e^{x^3}}{\sqrt{1+x^2}}$$

$$3(8x+3)(4x^2 + 3x + 5)^2 \qquad \frac{x}{\sqrt{1+x^2}} \qquad \frac{e^x}{2\sqrt{1+e^x}} \qquad \frac{2x^2 - 8x - 33}{(x-7)(x-4)} \qquad -\frac{3x(x^3 - 2x + 2)e^{5-x^3}}{(x^2 - 2)^4}$$

$$-\frac{5}{4} \qquad \frac{(2x-1)e^x}{2x\sqrt{x}} \qquad \frac{2}{(3-x)(x-1)} \qquad \frac{(x-1)\exp(\frac{1}{x})}{x} \qquad g'' - 4g' + 4g = 0 \qquad \frac{(2x-1)(x-1)}{\sqrt{1+x^2}}$$

$$-6x^2e^{1-x^3} \qquad 0 \qquad x^3 - x^2 - 5x - 3 \qquad \frac{-2(6x-5)}{(3x^2 - 5x + 7)^3} \qquad -\frac{2e^{2x}}{(1+e^{2x})^2} \qquad \frac{3 - 4x}{2\sqrt{-2x^2 + 3x + 5}}$$

$$\frac{(x^2 - 2x - 1)\sqrt{x-1}}{2(x-1)^2\sqrt{1+x^2}} \qquad -2 + 8f^2 - 6f^4 \qquad 6x^2 - 5x - 21 \qquad \frac{(2x+1)(2x^2 + 2x + 1)e^{x^2 + x + 1}}{2(x^2 + x + 1)\sqrt{x^2 + x + 1}}$$

$$4(1 + 3x^2 \exp(x^3))(x + \exp(x^3))^3 \qquad e^t f'(e^t) + e^{2t} f''(e^t) \qquad (4x^2 - 20x + 27)e^{x^2 - 4x + 7}$$

$$(6x^2 + 10x + 3)e^{x^2 + 3} \qquad e^t f'(e^t) \qquad 81x^2 - 126x + 49 \qquad x^4 + 6x^3 + 13x^2 + 12x + 4 \qquad g' = \frac{a}{2}g - \frac{b}{2}$$

► Réponses et corrigés page 196

Convexité

Quelques calculs généraux pour commencer

Calcul 10.1 — Des factorisations.

4444

Factoriser les expressions suivantes.

a)
$$36 - (2x+3)^2$$

b)
$$(2x+1)(2x-5)+4x^2-1$$

c)
$$(4x-2)(2-3x)+1-4x^2$$

d)
$$(3-x^2)-x^2-2\sqrt{3}x-3$$

4444

Résoudre les systèmes d'inconnues x et y réelles suivants.

a)
$$\begin{cases} 3x - 4y = 34 \\ -2x + 5y = -39 \end{cases} \dots$$

c)
$$\begin{cases} 9x - 6y = -23 \\ x + y = -2 \end{cases}$$

b)
$$\begin{cases} x + y = -2 \\ 11x - 7y = -40 \end{cases}$$
.....

d)
$$\begin{cases} x + 4y = 7 \\ 6x - 12y = 69 \end{cases}$$
....

Reconnaître une fonction convexe

Calcul 10.3

0000

Si f' est croissante sur I, alors ...

 \bigcirc a f est positive

 \bigcirc f est convexe

 $\widehat{\mathbf{b}}$ f' est positive

 \bigcirc d) f' est convexe

Calcul 10.4

0000

Si f'' est positive sur I, alors ...

(a) f'' est croissante

 \bigcirc f' est convexe

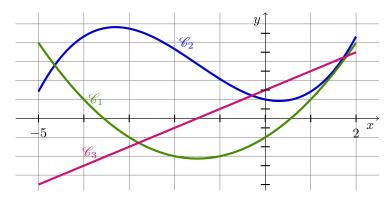
(b) f est convexe

(d) f'' est convexe

Calcul 10.5 — Identification de courbes (I).

On considère f une fonction définie sur l'intervalle [-5,2].

On donne ci-dessous trois courbes : \mathcal{C}_1 , \mathcal{C}_2 et \mathcal{C}_3 . Elles correspondent aux fonctions f, f' et f'', et il faut déterminer quelle fonction correspond à quelle courbe.



- b) $\mathscr{C}_1, \mathscr{C}_2$ ou \mathscr{C}_3 : quelle est la courbe de f'?
- c) La fonction f est
 - (a) convexe sur [-5, 2]

 \bigcirc convexe sur $\left[-\frac{1}{2}, 2\right]$

(b) concave sur [-5, -1]

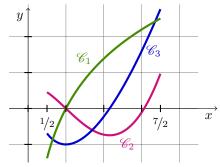
.....

Calcul 10.6 — Identification de courbes (II).

On considère f une fonction définie sur l'intervalle $\left[\frac{1}{2}, \frac{7}{2}\right]$.

On donne ci-contre trois courbes : \mathcal{C}_1 , \mathcal{C}_2 et \mathcal{C}_3 .

Elles correspondent aux fonctions f, f' et f'', et il faut deviner quelle fonction correspond à quelle courbe.



- c) f est convexe sur ..

Études calculatoires

Calcul 10.7 — En utilisant l'expression de la dérivée (I).

0000

Dans chacun des cas suivants, déterminer les variations de f' et en déduire les intervalles sur lesquels f est convexe.

▶ Pour $f'(x) = x^3 + 2x$.

a) Variations de f'

b) Intervalles sur lesquels f est convexe

▶ Pour $f'(x) = e^{2x} - \sqrt{7}$.

c) Variations de f'

d) Intervalles sur lesquels f est convexe

Calcul 10.8 — En utilisant l'expression de la dérivée (II).

Dans chacun des cas suivants, déterminer les variations de f' et en déduire les intervalles sur lesquels f est convexe.

▶ Pour $f'(x) = x^2 - 7x$.

a) Variations de f'

b) Intervalles sur lesquels f est convexe

► Pour $f'(x) = -(2x+6)^2$.

c) Variations de f'

d) Intervalles sur lesquels f est convexe

Calcul 10.9 — Des calculs de dérivée seconde (I).

Dans chacun des cas suivants, calculer f''(x) et en déduire les intervalles sur lesquels f est convexe.

 $Pour f(x) = e^x + e^{-x}.$

- $Pour f(x) = e^x e^{-x}.$
- a) f''(x)
- c) f''(x)
- b) Intervalles sur lesquels f est convexe
- d) Intervalles sur lesquels f est convexe

.....

Calcul 10.10 — Des calculs de dérivée seconde (II).

Dans chacun des cas suivants, calculer f''(x) et en déduire les intervalles sur lesquels f est convexe.

- ► Pour $f(x) = -e^{-3x^2+2}$.
- a) f''(x)
- b) Intervalles sur lesquels f est convexe
- ► Pour $f(x) = \frac{1}{x^2 + 1} 2x$.
- c) f''(x)
- d) Intervalles sur lesquels f est convexe

Calcul $10.11\,$ — Des calculs de dérivée seconde (III).

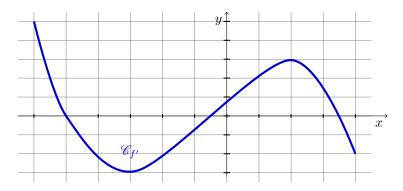
Dans chacun des cas suivants, calculer f''(x) et en déduire les intervalles sur lesquels f est convexe.

- ightharpoonup Pour $f(x) = x^2 x \ln(x)$.
- a) f''(x)
- b) Intervalles sur lesquels f est convexe
- ► Pour $f(x) = 3x \ln(x^2) + 2$.
- c) f''(x)
- d) Intervalles sur lesquels f est convexe

Études graphiques

Calcul 10.12

On considère f une fonction définie et dérivable sur [-6,4]; on note \mathscr{C}_f sa courbe représentative. On donne ci-dessous la représentation graphique de sa dérivée f'.



a)	f est convexe sur	

b) .	f est concave sur	

c) Déterminer l'abscisse des deux points d'inflexion de
$$\mathscr{C}_f$$

d) On note T_0 la tangente à \mathscr{C}_f au point d'abscisse 0. Quelle est la position de \mathscr{C}_f par rapport à T_0 ?

- (a) au-dessus de T_0 sur [-6,0]
- (b) au-dessous de T_0 sur [-2,2]
- (c) au-dessus de T_0 sur [-2,2]
- (d) au-dessous de T_0 sur [0,2]

e) On note A et B les points de \mathscr{C}_f d'abscisses respectives -1 et 1. Quelle est la position de \mathscr{C}_f par rapport à la sécante (AB)?

- (a) au-dessus de (AB) sur [-3, 2]
- (b) au-dessous de (AB) sur [-1,1]
- (c) au-dessous de (AB) sur [-3,2]
- (d) au-dessus de (AB) sur [-1,1]

Calcul 10.13

On considère une fonction f, définie et dérivable sur [-5, 5].

On donne le tableau de variations de sa dérivée f'.

x	-5	-2	2	5
variations de f'	3	-2	2	0

La courbe représentative de f, notée \mathcal{C}_f , a deux points d'inflexion A et B.

On note x_A et x_B les abscisses respectives des points A et B. On convient que $x_A < x_B$.

f est convexe sur f est concave sur c) Déterminer x_A et x_B

On note T_A et T_B les tangentes à \mathscr{C}_f respectivement aux points A et B.

- d) Quelle est la position de \mathscr{C}_f par rapport à T_A ?
 - (a) au-dessous de T_A sur [-5, -2]
 - (b) au-dessus de T_A sur [-2,2]
 - (c) ni l'un ni l'autre
 - (d) les deux à la fois

.....

- e) Quelle est la position de \mathscr{C}_f par rapport à T_{B} ?
- (a) au-dessous de $T_{\rm B}$ sur [-2,2]
- (b) au-dessus de $T_{\rm B}$ sur [2,5]
- (c) ni l'un ni l'autre
- (d) les deux à la fois
- f) \mathscr{C}_f est au-dessous de (AB) pour x dans

Calculs plus avancés

ೆ ಕೆ ಕೆ ಕೆ

Calcul 10.14 — Prouver des inégalités.

Soit la fonction f définie sur $]-2, +\infty[$ par

$$f(x) = \ln(x+2) + \frac{3}{x+2}.$$

On note \mathcal{C}_f la courbe représentative de f et T la tangente à \mathcal{C}_f au point d'abscisse -1.

- a) Calculer f'(x)
- b) Calculer f''(x)
- c) f est convexe sur
- d) Déterminer l'équation réduite de T
- e) \mathscr{C}_f est au-dessus de T sur
 - (a) $[2, +\infty[$

(c)]-2,5]

(e) [-1, 6]

(b) jamais

(d)]-2,4]

.....

f) Soit $x \in]-2, 2]$.

Pour quelle expression A(x) a-t-on $(x+2)\ln(x+2) \ge A(x)$?

- (a) A(x) = 1 2x
- (b) $A(x) = -1 3x 2x^2$
- $\bigcirc A(x) = 3x 2x^2$

Calcul 10.15 — Une étude théorique.

Soit f une fonction deux fois dérivable et convexe sur I. On pose

$$g: \left\{ \begin{array}{l} I \longrightarrow \mathbb{R} \\ x \longmapsto \mathrm{e}^{f(x)}. \end{array} \right.$$

a) Calculer g'(x) en fonction de f(x) et f'(x).

b) Calculer g''(x) en fonction de f(x), f'(x) et f''(x).

- c) Sur quel intervalle la fonction g est-elle convexe?
 - (a) jamais
- (b) une partie de I

Réponses mélangées

$$(x,y) = (-3,1)$$
 \mathscr{C}_1 $[-2,2]$ $\left[\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right]$ $(2x+1)(4x-6)$ (b)

$$]-\infty,0[$$
 et $]0,+\infty[$ $]-\infty,-3]$ Croissante sur $]-\infty,-3[$ $(f''(x)+f'(x)^2)e^{f(x)}$

$$y = 1 - 2x$$
 \mathbb{R} $(3 - 2x)(9 + 2x)$ \mathbb{R} $6(1 - 6x^2)e^{-3x^2 + 2}$ $\frac{2}{x^2}$ $-2 \text{ et } 2$

(d)
$$e^x + e^{-x}$$
 $[-6, -3]$ et $[2, 4]$ \mathscr{C}_2 $[-2, 2]$ $e^x - e^{-x}$ $\left[\frac{1}{2}, +\infty\right[$

$$(x,y) = \left(10, -\frac{3}{4}\right)$$
 Croissante sur \mathbb{R} $\left[\frac{7}{2}, +\infty\right[$ Croissante sur \mathbb{R} $\left[0, +\infty\right[$

(b)
$$\left] -\infty, \frac{-1}{\sqrt{3}} \right[\text{ et } \left] \frac{1}{\sqrt{3}}, +\infty \right[\mathbb{R} \quad (x,y) = \left(\frac{-7}{3}, \frac{1}{3}\right) \quad]-2, 4 \right] \quad 2 - \frac{1}{x}$$

Primitives I

Remarque

Dans cette fiche, pour gagner en concision, on utilisera la notion informelle d'expression. On s'autorisera ainsi à dire, par exemple, qu'une primitive de l'expression $4x^3$ est l'expression x^4 .

Quelques calculs généraux pour commencer

Calcul 11.1 — Racines et fractions.

4444

Effectuer les calculs suivants et donner le résultat sous la forme d'une fraction irréductible.

a)
$$-\frac{1}{3} + \frac{1}{5} - \frac{1}{6}$$

c)
$$\frac{\sqrt{2} - \frac{1}{4\sqrt{2}}}{\sqrt{2} + \frac{1}{4\sqrt{2}}}$$

b)
$$\frac{\frac{1}{6}-1}{2-\frac{3}{5}}$$

d)
$$\left(1 - \frac{1}{3}\right)^2 - \left(1 + \frac{1}{3}\right)^2 \dots$$

Calcul 11.2

4444

Donner les solutions dans $\mathbb R$ des équations suivantes.

a)
$$5x^2 + 10x - 15 = 0$$

c)
$$-(x-2)^2 + 2 = 0$$

b)
$$2x^2 - 6x + \frac{9}{2} = 0$$

d)
$$(3x-2)^2 = (1-x)^2$$

Calcul 11.3 — Quelques calculs rapides (I).

0000

Déterminer les primitives des expressions suivantes.

a)
$$3x^2 - 1$$

c)
$$\frac{1}{2}x^3 - 3x^5 + 2$$

b)
$$-3x^{-4} - 4x^{-5}$$

d)
$$\frac{7}{3}(1+x+x^2)$$

Calcul 11.4 — Quelques calculs rapides (II).

0000

Déterminer les primitives des expressions suivantes.

a)
$$\frac{1}{x^3}$$

c)
$$\frac{-2}{x^4}$$

b)
$$\frac{1}{\sqrt{x}} + 4x$$

d)
$$5e^x - 6$$

Calcul 11.5 — Primitives de fractions rationnelles (I).

Déterminer les primitives des expressions suivantes.

a)
$$\frac{2}{(x-2)^2}$$

c)
$$-\frac{3}{(1+4x)^2}$$

b)
$$\frac{6}{(2x-1)^3}$$

d)
$$\frac{-9}{(x-7)^{10}}$$

Calcul 11.6 — Primitives de fractions rationnelles (II).

Déterminer les primitives des expressions suivantes.

a)
$$\frac{7}{(-x-3)^{-5}}$$

b)
$$\frac{6}{(3x-1)^{-3}} + \frac{2}{(x-2)^2}$$

On considère la fonction f définie sur $\mathbb{R} \setminus \{-1,1\}$ par $f(x) = \frac{3x^2 + 1}{(x^2 - 1)^3}$.

a) Pour
$$x \in \mathbb{R} \setminus \{-1, 1\}$$
, calculer $\frac{1}{2(x-1)^3} - \frac{1}{2(x+1)^3} \dots \dots$

b) En déduire l'expression, sous la forme d'une fraction, des primitives de
$$f$$

Calcul 11.8 — Avec des fonctions composées (I).

Déterminer les primitives des expressions suivantes.

a)
$$xe^{x^2}$$

c)
$$(x-1)^2$$

b)
$$\frac{1}{\sqrt{2x+1}}$$

d)
$$(3x-2)^5$$

Calcul 11.9 — Avec des fonctions composées (II).

Déterminer les primitives des expressions suivantes.

a)
$$2xe^{x^2+x-3} + e^{x^2+x-3}$$

b)
$$5(3x^2-2)(x^3-2x+1)^4$$

c)
$$\frac{x+2}{\sqrt{x^2+4x-5}}$$

Calcul 11.10 — Avec des fonctions composées (III).

0000

Déterminer les primitives des expressions suivantes.

a)
$$-xe^{-3x^2+1}+1$$

b)
$$5e^x(e^x+1)^4$$

c)
$$\frac{e^x}{(e^x + 5)^2}$$

$$d) \frac{e^x + 2x}{2\sqrt{e^x + x^2}} \dots$$

e)
$$\frac{e^{\sqrt{x}}}{2\sqrt{x}}$$

f)
$$(2e^{2x} - e^{-x})(e^{2x} + e^{-x})^2$$

Calcul 11.11 — Composée par une fonction affine.

0000

On considère la fonction définie sur $]-1,+\infty]$ par $f(x)=\frac{-4}{\sqrt{x+1}}$.

b) Déterminer une expression de la dérivée de
$$x \longmapsto F(2x+1)$$

c) Déterminer l'expression des primitives de la fonction
$$x \mapsto f(2x+1) \dots$$

Calcul 11.12

Déterminer les primitives des fonctions suivantes.

a)
$$x \mapsto f(-3x+5)$$
 où $f(x) = e^{-2x}$

d)
$$x \mapsto f(4x-5)$$
 où $f(x) = \frac{2}{(2x-1)^2}$

Calculs plus avancés

Calcul 11.13 — Puissances divisées.

0°0°0°

Pour $n \in \mathbb{N}$, on considère f_n la fonction définie sur \mathbb{R} par $f_n(x) = \frac{x^n}{n!}$.

- a) Calculer $f_2(2)$

Calcul 11.14

Pour $n \in \mathbb{N}$ et $a \in \mathbb{R}$, on considère g_n la fonction définie sur \mathbb{R} par $g_n(x) = \frac{(x-a)^n}{n!}$.

- a) Pour $n \ge 1$, calculer g'_n

Réponses mélangées

$$\frac{1}{8}x^4 - \frac{1}{2}x^6 + 2x + C \qquad \frac{1}{2}(3x - 1)^4 - \frac{2}{x - 2} + C \qquad \frac{1}{(x - 7)^9} + C \qquad e^{x^2 + x - 3} + C$$

$$x \mapsto \frac{1}{6}e^{6x - 10} + C \qquad x \mapsto \frac{-3}{10(10x + 1)} + C \qquad 2 \qquad \frac{-1}{e^x + 5} + C \qquad x^3 - x + C$$

$$\frac{3}{4(4x + 1)} + C \qquad x \mapsto \frac{1}{4(11 - 8x)} + C \qquad \frac{7}{3}\left(x + \frac{x^2}{2} + \frac{x^3}{3}\right) + C \qquad 2 - \sqrt{2} \text{ et } 2 + \sqrt{2}$$

$$\frac{1}{3}(e^{2x} + e^{-x})^3 + C \qquad \frac{7}{9} \qquad (x^3 - 2x + 1)^5 + C \qquad 5e^x - 6x + C \qquad x^{-3} + x^{-4} + C$$

$$\frac{-2}{x - 2} + C \qquad (e^x + 1)^5 + C \qquad f(x) \qquad -\frac{x}{(x^2 - 1)^2} + C \qquad g_{n+1} \qquad \frac{2}{3x^3} + C \qquad \frac{1}{2}e^{x^2} + C$$

$$f_{n+1} \qquad -4\sqrt{2x + 2} + C \qquad 2f(2x + 1) \qquad g_{n-1} \qquad 2\sqrt{x} + 2x^2 + C \qquad \sqrt{x^2 + 4x - 5} + C$$

$$-\frac{4}{3} \qquad f_{n-1} \qquad \frac{1}{18}(3x - 2)^6 + C \qquad \frac{1}{3}(x - 1)^3 + C \qquad \frac{1}{2} \text{ et } \frac{3}{4} \qquad \frac{-3}{2(2x - 1)^2} + C$$

$$x \mapsto \frac{-1}{24}(4x + 5)^6 + C \qquad -\frac{7}{6}(x + 3)^6 + C \qquad \frac{-1}{2x^2} + C \qquad \sqrt{2x + 1} + C \qquad \frac{3}{2} \qquad e^{\sqrt{x}} + C$$

$$\frac{1}{6}e^{-3x^2 + 1} + x + C \qquad -8\sqrt{x + 1} + C \qquad -\frac{3}{10} \qquad -\frac{25}{42} \qquad \sqrt{e^x + x^2} + C \qquad -3 \text{ et } 1$$

► Réponses et corrigés page 205

Primitives

Primitives II

Quelques calculs généraux pour commencer

Calcul 12.1

Donner l'ensemble des solutions des inégalités suivantes sous la forme d'un intervalle.

a)
$$\frac{x}{2} - \frac{1}{3} < \frac{x}{3} + \frac{1}{4} \dots$$

c)
$$\frac{5x}{-3} + \frac{1}{4} > \frac{2x-1}{6} \dots$$

b)
$$\frac{-x}{3} + \frac{2}{5} \ge -x + \frac{1}{2} \dots$$

d)
$$\frac{2x}{3} + \frac{1}{5} \leqslant \frac{x}{7} - \frac{3}{10} \dots$$

Calcul 12.2

Donner l'ensemble des solutions des inégalités suivantes sous la forme d'un intervalle ou de la réunion de deux intervalles.

a)
$$6x^2 + x - 1 \le 0 \dots$$

c)
$$0 < 5x^2 - 2x - 1$$
 ...

b)
$$2x^2 - 12x + 18 \le 0$$

d)
$$0 \leqslant -7x^2 + x + 1$$
 ...

Calculs de primitives

Calcul 12.3 — Primitives usuelles (I).

Donner l'expression des primitives des fonctions définies par les expressions suivantes sur l'intervalle I.

b)
$$f(x) = \frac{1}{x} \text{ avec } I = \mathbb{R}_{-}^{*}$$

c) Donner une expression des primitives de
$$x \mapsto \frac{1}{x}$$
 valable sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .

Calcul 12.4 — Primitives usuelles (II).

Donner l'expression des primitives des fonctions définies par les expressions suivantes.

a)
$$f(x) = 2x^3 + 6x^2 - x + 1$$

b)
$$f(x) = -3e^x + x^2 - 2x$$

c)
$$f(x) = 2x^4 - 4e^x + \frac{1}{x^2}$$

Calcul 12.5 — Primitives usuelles (III).

Donner l'expression des primitives des fonctions définies par les expressions suivantes.

a)
$$f(x) = \frac{1}{x^2}$$

b)
$$f(x) = -3x^2 + \frac{1}{x} + \frac{1}{\sqrt{x}}$$

c)
$$f(x) = \frac{3}{x} + \frac{1}{x^3} + \frac{3}{\sqrt{x}}$$

d)
$$f(x) = -\frac{2}{x^3} + \frac{2}{x^4} - \frac{2}{x^5} + \frac{2}{x}$$

Calcul 12.6 — Trouver une primitive particulière.

Donner l'expression de la primitive F de f telle que F(a) = b dans les cas suivants.

a)
$$f(x) = 2x + 1$$
, $a = 1$ et $b = 0$

b)
$$f(x) = \frac{2}{x}$$
, $a = 1$ et $b = 3$

c)
$$f(x) = \frac{3}{x}$$
, $a = 2$ et $b = 0$

Calcul 12.7 — Composition avec une fonction affine (I).

0000

a) Donner l'expression des primitives de f définie par $f(x) = \exp(x)$

En déduire l'expression des primitives des fonctions définies par les expressions suivantes.

b)
$$f_1(x) = \exp(2x+3) \dots$$

d)
$$f_3(x) = \exp\left(\frac{1}{2}x + \frac{1}{3}\right)$$
.

c)
$$f_2(x) = \exp(-5x + 2)$$
 ...

e)
$$f_4(x) = \exp\left(\frac{-1}{3}x + 2\right)$$

Calcul 12.8 — Composition avec une fonction affine (II).

Donner l'expression des primitives de f définie par $f(x) = \frac{1}{2\sqrt{x}}$

En déduire l'expression des primitives des fonctions définies par les expressions suivantes.

b)
$$f_1(x) = \frac{1}{2\sqrt{3x+5}} \dots$$

d)
$$f_3(x) = \frac{1}{2\sqrt{\frac{6}{5}x - 3}} \dots$$

c)
$$f_2(x) = \frac{1}{2\sqrt{\frac{2}{3}x - 4}} \dots$$

e)
$$f_4(x) = \frac{1}{\sqrt{\frac{2}{3}x}} \dots$$

Calcul 12.9 — Composition avec une fonction affine (III).

a) Donner l'expression des primitives de f définie par $f(x) = \frac{1}{x}$

En déduire l'expression des primitives des fonctions définies par les expressions suivantes.

b)
$$f_1(x) = \frac{1}{x-3}$$

d)
$$f_3(x) = \frac{1}{\frac{1}{7}x - 6} \dots$$

c)
$$f_2(x) = \frac{1}{2x+1} \dots$$

e)
$$f_4(x) = \frac{1}{\frac{2}{3}x + 5} \dots$$

Calcul 12.10 — Reconnaître les formules des dérivées usuelles (I).

Donner l'expression des primitives des fonctions définies par les expressions suivantes.

a)
$$f(x) = 2x \exp(x^2)$$

b)
$$f(x) = \frac{2x+3}{2\sqrt{x^2+3x+1}} \dots$$

b)
$$f(x) = \frac{2x+3}{2\sqrt{x^2+3x+1}}$$

Calcul 12.11 — Reconnaître les formules des dérivées usuelles (II).

Donner l'expression des primitives des fonctions définies par les expressions suivantes.

a)
$$f(x) = 6(8x - 2) \times (4x^2 - 2x - 3)^5$$

b)
$$f(x) = -2 \times \frac{-12x + 1}{(-6x^2 + x)^3}$$

c)
$$f(x) = \frac{6x+5}{3x^2+5x-1}$$

Calcul 12.12 — Reconnaître les formules des dérivées usuelles (III).

Donner l'expression des primitives des fonctions définies par les expressions suivantes.

a)
$$f(x) = \frac{x+1}{x^2+2x}$$

c)
$$f(x) = \frac{\exp(\sqrt{x})}{\sqrt{x}}$$

Calcul 12.13 — Reconnaître les formules des dérivées usuelles (IV).

Donner l'expression des primitives des fonctions définies par les expressions suivantes.

a)
$$f(x) = \frac{2x+1}{(3x^2+3x-9)^5}$$

b)
$$f(x) = \frac{1}{x\sqrt{\ln(x)}}$$

c)
$$f(x) = \frac{1}{x \ln(3x)}$$

Calculs plus avancés

Calcul 12.14 — Primitiver une fonction « inconnue ».

0000

Soit f la fonction définie sur \mathbb{R} par $f(x) = \exp(x^2)$ et soit φ l'unique primitive de f qui s'annule en 0.

- a) Calculer $\varphi'(2x)$ pour tout $x \in \mathbb{R}$
- b) Donner l'expression de la dérivée de la fonction $x \mapsto \varphi(2x)$
- c) Donner, en fonction de φ , une primitive de $x \mapsto \exp((x+1)^2)$
- d) Donner, en fonction de φ , une primitive de $x \longmapsto \exp((3x+1)^2)$...

Réponses mélangées

$$\frac{-1}{5}\exp(-5x+2) + C \qquad \frac{1}{2}\exp(2x+3) + C \qquad \frac{1}{2}\ln\left(|x^2+2x|\right) + C$$

$$\sqrt{x} + C \qquad 3\ln(|x|) - \frac{1}{2x^2} + 6\sqrt{x} + C \qquad \ln(|x|) + C \qquad \frac{2}{5}(\sqrt{x})^5 + C \qquad \{3\}$$

$$\frac{1}{x^2} - \frac{2}{3x^3} + \frac{1}{2x^4} + 2\ln(|x|) + C \qquad \exp(x^2) + C \qquad 2\exp(4x^2) \qquad 3\ln(|x|) - 3\ln(2)$$

$$\frac{3}{2}\sqrt{\frac{2}{3}x - 4} + C \qquad \frac{3}{2}\ln\left(\left|\frac{2}{3}x + 5\right|\right) + C \qquad (4x^2 - 2x - 3)^6 + C \qquad \ln(-x) + C$$

$$\frac{1}{2}x^4 + 2x^3 - \frac{1}{2}x^2 + x + C \qquad \exp(x) + C \qquad -\frac{1}{x} \qquad \frac{1}{2}\ln(|2x + 1|) + C \qquad \sqrt{x^2 + 3x + 1} + C$$

$$-3\exp\left(\frac{-1}{3}x + 2\right) + C \qquad \frac{2}{5}x^5 - 4e^x - \frac{1}{x} + C \qquad 2\ln(|x|) + 3 \qquad \ln(|x|) + C$$

$$\left] -\infty, \frac{1 - \sqrt{6}}{5} \left[\cup \right] \frac{1 + \sqrt{6}}{5}, \infty \left[\qquad 7\ln\left(\left|\frac{1}{7}x - 6\right|\right) + C \qquad \left[\frac{3}{20}, +\infty\right[\qquad \frac{1}{3}\sqrt{3x + 5} + C \right] \right]$$

$$\ln(|\ln(3x)|) + C \qquad \exp(4x^2) \qquad x^2 + x - 2 \qquad -x^3 + \ln(|x|) + 2\sqrt{x} + C \qquad \frac{1}{3}x^3 - e^x + 3x + \frac{3}{2}$$

$$\left] -\infty, -\frac{21}{22} \right] \qquad \ln(|x - 3|) + C \qquad \frac{1}{(-6x^2 + x)^2} + C \qquad \ln(|3x^2 + 5x - 1|) + C$$

$$-\frac{1}{12}\frac{1}{(3x^2 + 3x - 9)^4} + C \qquad x \longmapsto \varphi(x + 1) \qquad x \longmapsto \frac{1}{3}\varphi(3x + 1) \qquad \right] -\infty, \frac{7}{2} \left[\qquad 2\sqrt{\ln(x)} + C \qquad \frac{5}{6}\sqrt{\frac{6}{5}x - 3} + C \qquad -3e^x + \frac{1}{3}x^3 - x^2 + C \qquad 2\exp(\sqrt{x}) + C \qquad \left[-\frac{1}{2}, \frac{1}{3}\right]$$

$$3\sqrt{\frac{2}{3}x} + C \qquad \left[\frac{1 - \sqrt{29}}{14}, \frac{1 + \sqrt{29}}{14}\right] \qquad \ln(x) + C \qquad \right] -\infty, \frac{5}{24} \left[\qquad 2\exp\left(\frac{1}{2}x + \frac{1}{3}\right) + C \right]$$

► Réponses et corrigés page 209

Primitives III

Quelques calculs généraux pour commencer

Calcul 13.1 — Factorisations.

4444

Soit x un réel. Factoriser les expressions suivantes (on pourra utiliser le discriminant).

a)
$$3x^2 - 18x + 24$$

c)
$$5x^4 - 10x^2 - 15 \dots$$

b)
$$3x^2 - 18x + 24 + x^2 - 4x + 4$$

d)
$$x^3 + x^2 - 2x$$

Calcul 13.2 — Un peu de trigonométrie.

4444

Soit x un réel. Transformer les expressions suivantes pour ne les exprimer qu'en fonction de $\cos(x)$.

a)
$$\cos(-x)$$

b)
$$\sin^2(x) - 1$$

c)
$$\sin^2(x) - 2\cos(-x - 13\pi)$$

d)
$$\sin^4(x) + \sin^2(x) - 2\cos(x)$$

Primitives de fonctions élémentaires

Calcul 13.3 — Fonctions élémentaires (I).

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \mapsto x^3 + 2 \dots$$

d)
$$x \longmapsto \frac{1}{x^5} \dots$$

b)
$$x \longmapsto \frac{1}{3x} \dots$$

e)
$$x \longmapsto \frac{1}{x^{1/3}} \dots$$

c)
$$x \mapsto \frac{1}{\sqrt{x}}$$

f)
$$x \longmapsto \frac{1}{e^{12x}} \dots$$

Calcul 13.4 — Fonctions élémentaires (II).

0000

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \longmapsto e^3 \dots$$

d)
$$x \longmapsto 2\sin(2x) \dots$$

b)
$$x \longmapsto 3e^{5x} - x^2 \dots$$

e)
$$x \longmapsto 3\cos(3x+5)$$
 ...

c)
$$x \longmapsto \frac{x^3 + 5x^2 - 4}{x^2} \dots$$

f)
$$x \longmapsto \sin(2-5x) \dots$$

Primitives de formes remarquables

Dans les exercices suivants, on fera apparaître des expressions de la forme

$$nu'(x)u(x)^{n-1}$$
, $\frac{u'(x)}{u(x)}$ ou $u'(x)e^{u(x)}$

pour primitiver les fonctions proposées.

Calcul 13.5 — Fonction puissance (I).

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \mapsto (2x+1)(x^2+x)^5 \dots$$

c)
$$x \longmapsto (x^2 + 1)(x^3 + 3x + 4)$$
.

b)
$$x \longmapsto (2x+3)(x^2+3x+12)^{10}$$

$$d) \quad x \longmapsto \frac{8x^2}{(x^3+2)^3} \quad \dots$$

Calcul 13.6 — Fonction puissance (II).

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \longmapsto (e^x + 1)^{-3}e^x \dots$$

c)
$$x \longmapsto x\sqrt{1-2x^2} \dots$$

b)
$$x \mapsto (e^x + 1)(e^x + x)^{22}$$

d)
$$x \longmapsto \frac{\ln(x)}{x} \dots$$

Calcul 13.7 — Fonction puissance (III).

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \longmapsto \sin(x)\cos(x)$$

c)
$$x \longmapsto (3\sin(x)+2)^5\cos(x)$$

b)
$$x \longmapsto \cos(x)\sin^5(x) \dots$$

d)
$$x \longmapsto \frac{\sin(x)}{(\cos(x)+3)^2} \dots$$

Calcul 13.8 — Fonction inverse (I).

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \mapsto \frac{1}{2x-3} \dots$$

d)
$$x \mapsto \frac{5x^4 + 3x^2 + 1}{x^5 + x^3 + x + 12}$$

b)
$$x \mapsto \frac{4x^3 + 3x^2}{x^4 + x^3} \dots$$

e)
$$x \mapsto \frac{e^x + 1}{e^x + x} \dots$$

c)
$$x \longmapsto \frac{3x^2 + 4x}{x^3 + 2x^2 + 1} \dots$$

f)
$$x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}} \dots$$

Calcul 13.9 — Fonction inverse (II).

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \mapsto \frac{e^x + e^{-x}}{e^x - e^{-x}} \dots$$

c)
$$x \mapsto \frac{\sin(x)}{\cos(x)} \dots$$

b)
$$x \mapsto \frac{\cos(x)}{\sin(x)} \dots$$

d)
$$x \mapsto \frac{\sin^2(x)\cos(x)}{\sin^3(x) + 5}$$
 ..

Calcul 13.10 — Fonction exponentielle.

Déterminer l'expression d'une primitive des fonctions suivantes.

a)
$$x \longmapsto \left(3x^2 + \frac{1}{x}\right) e^{x^3 + \ln(x)} \dots$$

c)
$$x \mapsto \sin(x)e^{-\cos(x)+3} \dots$$

b)
$$x \mapsto (x^2 + x + 5)e^{x^3 + \frac{3}{2}x^2 + 15x - 12}$$

d)
$$x \mapsto \exp(x) \exp(e^x)$$

Primitives par décomposition

Calcul 13.11 — Un premier exemple de décomposition.

a) Déterminer l'expression d'une primitive de
$$t \mapsto \frac{1}{1+t}$$

b) Mettre sous forme de fraction
$$1 - \frac{1}{1+t}$$

c) En déduire l'expression d'une primitive de
$$t \mapsto \frac{t}{1+t}$$

Calcul 13.12 — Un second exemple de décomposition.

a) Déterminer l'expression d'une primitive de
$$x \mapsto \frac{x}{1+x^2}$$

b) Simplifier l'expression
$$\frac{x}{1+x^2} + \frac{x^3}{1+x^2}$$

c) En déduire l'expression d'une primitive de
$$x \mapsto \frac{x^3}{1+x^2}$$

Calcul 13.13 — Un troisième exemple de décomposition.

0000

- a) Écrire sous forme de fraction la quantité $\frac{1}{3-x} + \frac{1}{3+x}$
- c) Écrire sous forme de fraction la quantité $\frac{1}{a-x} + \frac{1}{a+x}$
- d) En déduire l'expression d'une primitive de $x \mapsto \frac{1}{a^2 x^2}$
- e) Déterminer l'expression d'une primitive de $x \mapsto \frac{1}{25 16x^2}$

Calcul 13.14 — En autonomie.

En utilisant la stratégie des exercices précédents, déterminer l'expression d'une primitive des fonctions suivantes :

a)
$$x \mapsto \frac{x+2}{x+1} \dots$$

b)
$$x \longmapsto \frac{x^2 + 2x}{(x+1)^2} \dots$$

Calcul 13.15 — Une fraction de sinus.

- a) Écrire sous forme de fraction la quantité $\frac{1}{2 + \cos(x)} + \frac{1}{2 \cos(x)} + \cdots$
- b) En déduire l'expression d'une primitive de $x \mapsto \frac{\sin(x)}{3 + \sin^2(x)}$

Calculs plus avancés

On note ψ (prononcer psi) la primitive s'annulant en 0 de la fonction

$$x \longmapsto \frac{1}{1+x^2}.$$

Ainsi, pour $x \in \mathbb{R}$, on a $\psi'(x) = \frac{1}{1+x^2}$. On ne cherchera pas à calculer la fonction ψ .

Calcul 13.16 — Dérivation autour de ψ .

Déterminer l'expression de la dérivée des fonctions suivantes :

a)
$$x \mapsto \psi(3x) \dots$$

c)
$$x \longmapsto \psi(x^3) \dots$$

b)
$$x \longmapsto \psi(2x-3) \dots$$

d)
$$x \mapsto \psi^2(x) \dots$$

Calcul 13.17 — Calcul d'une primitive à l'aide de ψ (I).

Déterminer l'expression d'une primitive des fonctions suivantes. Cette expression fera intervenir ψ .

a)
$$x \mapsto \frac{\sqrt{3}}{1+3x^2} \dots$$

b)
$$x \longmapsto \frac{1}{9+x^2} \dots$$

Calcul 13.18 — Calcul d'une primitive à l'aide de ψ (II).

- a) Mettre le polynôme $x^2 + 10x + 26$ sous forme canonique
- b) En déduire l'expression, en fonction de ψ , d'une primitive de $x \mapsto \frac{1}{x^2 + 10x + 26}$

Calcul 13.19 — Calcul d'une primitive à l'aide de ψ (III).

- a) Mettre sous forme de fraction la quantité $\frac{2x}{x^2+9} \frac{7}{x^2+9}$
- b) En déduire l'expression, en fonction de ψ , d'une primitive de $x \mapsto \frac{2x-7}{x^2+9}$

Calcul 13.20 — En autonomie.

Déterminer l'expression, en fonction de ψ , d'une primitive des fonctions suivantes :

a)
$$x \mapsto \frac{3}{9x^2 - 12x + 5}$$
 ... b) $x \mapsto \frac{x}{x^4 + 3}$

b)
$$x \longmapsto \frac{x}{x^4 + 3} \dots$$

Maintenant, on note φ (prononcer phi) la primitive sur]-1,1[et s'annulant en 0 de la fonction

$$x \longmapsto \frac{1}{\sqrt{1-x^2}}.$$

Ainsi, on a, pour $x \in]-1,1[,\varphi'(x)=\frac{1}{\sqrt{1-x^2}}]$. On ne cherchera pas à calculer la fonction φ .

Calcul 13.21 — Dérivation.

Déterminer l'expression de la dérivée des fonctions suivantes :

a)
$$x \longmapsto \varphi(3x)$$

b)
$$x \longmapsto \varphi(2x-3) \ldots$$

d)
$$x \mapsto \varphi^2(x^3) \dots$$

Calcul 13.22 — Primitives.

Déterminer l'expression d'une primitive des fonctions suivantes. Cette expression fera intervenir φ . On pourra, comme dans la série d'exercices sur la fonction ψ , commencer par écrire les polynômes sous forme canonique.

a)
$$x \longmapsto \frac{5}{\sqrt{1 - 25x^2}} \dots$$

c)
$$x \mapsto \frac{1}{\sqrt{-x^2 - 8x - 15}}$$
.

b)
$$x \mapsto \frac{1}{\sqrt{25-16x^2}} \dots$$

d)
$$x \mapsto \frac{x^2}{\sqrt{1-x^6}} \dots$$

$x \longmapsto \psi(x+5) \qquad x \longmapsto \frac{1}{4} \ln \frac{2 - \cos x}{2 + \cos x} \qquad \frac{2x - 7}{x^2 + 9} \qquad x \longmapsto \frac{1}{5} \cos(2 - 5x) \qquad x \longmapsto \frac{1}{6} \ln \left| \frac{3 + x}{3 - x} \right|$ $x \longmapsto \frac{-4/3}{(x^3 + 2)^2} \qquad x \longmapsto \frac{3}{1 + 9x^2} \qquad x \longmapsto \frac{3}{2}x^{2/3} \qquad x \longmapsto -\frac{1}{6}(1 - 2x^2)^{3/2} \qquad x \longmapsto \psi(\sqrt{3}x)$ $x \longmapsto \frac{2\psi(x)}{1 + x^2} \qquad -\cos^2(x) \qquad x \longmapsto -\frac{1}{2(1 + e^x)^2} \qquad \cos(x) \qquad x \longmapsto \frac{1}{2\sqrt{x}\sqrt{1 - x}}$ $x \longmapsto \frac{(x^2 + 3x + 12)^{11}}{11} \qquad x \longmapsto \frac{(x^2 + x)^6}{6} \qquad x \qquad 2(x - 2)(2x - 7) \qquad x \longmapsto \ln(x^2 + 9) - \frac{7}{3}\psi\left(\frac{x}{3}\right)$ $x \longmapsto \frac{1}{3} \ln|\sin^3(x) + 5| \qquad x \mapsto \frac{x^4}{4} + 2x \qquad x \mapsto \frac{1}{3}e^{x^3 + \frac{3}{2}x^2 + 15x - 12} \qquad x \mapsto \frac{3x^2}{1 + x^6}$ $-\cos^2(x) + 2\cos(x) + 1 \qquad x \longmapsto \frac{1}{3} \ln|x| \qquad x \mapsto \frac{3}{5}e^{5x} - \frac{x^3}{3} \qquad x \mapsto \frac{1}{1 \cos(x) + 3}$ $x \longmapsto -\frac{e^{-12x}}{12} \qquad x \longmapsto x + \frac{1}{x + 1} \qquad x \mapsto \ln|e^x + x| \qquad (x + 5)^2 + 1 \qquad x \mapsto e^{-\cos(x) + 3}$ $x \longmapsto -\frac{1}{2}\cos^2(x) \qquad x \mapsto \frac{x^2}{2} - \frac{\ln(1 + x^2)}{2} \qquad \frac{6}{9 - x^2} \qquad t \longmapsto t - \ln|1 + t|$ $x \mapsto \frac{\ln(1 + x^2)}{2} \qquad x \mapsto xe^{x^3} \qquad x \mapsto e^3x \qquad x \mapsto \frac{1}{3}\psi\left(\frac{x}{3}\right) \qquad x \mapsto \ln(e^x + e^{-x})$ $x \mapsto \frac{6x^2\varphi(x^3)}{\sqrt{1 - x^6}} \qquad x \mapsto \exp(e^x) \qquad x \mapsto -\cos(2x) \qquad x \mapsto -\frac{1}{4x^4} \qquad x \mapsto \frac{1}{40} \ln\left|\frac{5 + 4x}{5 - 4x}\right|$ $x \mapsto \frac{6x^2\varphi(x^3)}{\sqrt{1 - x^6}} \qquad x \mapsto \exp(e^x) \qquad x \mapsto -\cos(2x) \qquad x \mapsto -\frac{1}{4x^4} \qquad x \mapsto \frac{1}{40} \ln\left|\frac{5 + 4x}{5 - 4x}\right|$ $x \mapsto \frac{1}{2x^2 - 6x + 5} \qquad x \mapsto \ln|x^4 + x^3| \qquad x \mapsto -\ln|\cos(x)| \qquad x \mapsto \frac{1}{18}(3\sin(x) + 2)^6$ $x \mapsto \ln|\sin(x)| \qquad x \mapsto \frac{(x^3 + 3x + 4)^2}{6} \qquad \frac{t}{1 + t} \qquad x \mapsto \sin(3x + 5) \qquad x \mapsto \frac{1}{6}\sin^6(x)$ $x \mapsto \varphi(x + 4) \qquad x \mapsto \ln|x^5 + x^3 + x + 2| \qquad x \mapsto \ln|x^3 + 2x^2 + 1| \qquad x \mapsto \psi(3x - 2)$

$$5(x - \sqrt{3})(x + \sqrt{3})(x^2 + 1) \qquad x \longmapsto \frac{3}{\sqrt{1 - 9x^2}} \qquad x \longmapsto \frac{(\ln(x))^2}{2} \qquad \frac{4}{4 - \cos^2(x)}$$

$$x \longmapsto \frac{1}{4}\varphi(\frac{4x}{5}) \qquad 3(x - 2)(x - 4) \qquad x \longmapsto \ln\sqrt{|2x - 3|} \qquad \frac{2a}{a^2 - x^2} \qquad x \longmapsto \frac{1}{2a}\ln\left|\frac{a + x}{a - x}\right|$$

$$x \longmapsto \varphi(5x) \qquad \cos^4(x) - 3\cos^2(x) - 2\cos(x) + 2 \qquad x \longmapsto \frac{1}{\sqrt{-x^2 + 3x - 2}}$$

 $t \longmapsto \ln|1+t| \qquad x \longmapsto 2\sqrt{x} \qquad x \longmapsto \frac{1}{2\sqrt{3}}\psi\left(\frac{x^2}{\sqrt{3}}\right) \qquad x \longmapsto x + \ln|x+1| \qquad x \longmapsto \frac{(e^x+x)^{23}}{2^2}$

 $x \longmapsto \frac{1}{2}\varphi(x^3)$ $x \longmapsto \ln|e^x - e^{-x}|$ x(x-1)(x+2) $x \longmapsto \frac{x^2}{2} + 5x + \frac{4}{x}$

Équations différentielles I

Quelques calculs généraux pour commencer

Calcul 14.1 — Calculs avec des exponentielles.

4444

Simplifier les expressions suivantes.

a)
$$e^{\frac{3}{2}} \times e^{-\frac{7}{6}}$$

c)
$$e^{\frac{\pi}{2}} \times e^{-\frac{\pi}{3}}$$

b)
$$(e^{-\frac{3}{4}})^3 \times (e^{\frac{7}{25}})^5 \dots$$

d)
$$\frac{e^{3x+7} \times e^{2x+1}}{(e^{x+2/5})^5}$$

Calcul 14.2 — Résolution d'équations du premier degré.

4444

Donner la solution de chacune des équations suivantes, où x est l'inconnue réelle.

a)
$$7x - 8 = 21x - 12$$

c)
$$\frac{7x-23}{4x-1} = 5$$

b)
$$\frac{1}{x+1} = \frac{2}{x}$$

d)
$$\frac{2x+3}{x-7} = \frac{2x-11}{x+9}$$

Équations différentielles homogènes

Calcul 14.3 — Formes générales.

Déterminer la forme générale des solutions des équations différentielles homogènes suivantes.

a)
$$y'=2y$$

c)
$$2y' - 3y = 0$$

d) $2y' + 3y = 8y + 9y'$

b)
$$y' + 7y = 0$$

d)
$$2y' + 3y = 8y + 9y'$$

Calcul 14.4 — Équations homogènes avec condition (I).

Dans chacun des cas suivants, déterminer la solution f de l'équation différentielle donnée vérifiant la condition donnée.

a)
$$y' = -11y$$
 avec $f(0) = 5$

Dans chacun des cas suivants, déterminer la solution f de l'équation différentielle donnée vérifiant la condition donnée.
a) $\frac{1}{2}y' + y = \frac{1}{3}y - y'$ avec $f(3) = e^{-1}$
b) $y' + \sqrt{2}y = 0$ avec $f(\sqrt{2}) = 1$
Équations différentielles avec second membre
Calcul 14.6
On considère l'équation différentielle $(E): y'=y-3.$
a) Déterminer une solution particulière constante de l'équation (E)
b) Déterminer la forme générale des solutions de l'équation $y'=y$
c) Déterminer la forme générale des solutions de l'équation (E)
Calcul 14.7 On considère l'équation différentielle $(E): \sqrt{2}y' = \sqrt{6}y - 1.$
a) Déterminer une solution particulière constante de l'équation (E)
b) Déterminer la forme générale des solutions de l'équation $\sqrt{2}y'=\sqrt{6}y$
c) Déterminer la forme générale des solutions de l'équation (E)
Calcul 14.8 — En autonomie (I).
Déterminer la forme générale des solutions de l'équation différentielle : $13y' - 3y = 12y' + 2y + \frac{35}{9}$.
Calcul 14.9 — En autonomie (II).
Déterminer la fonction f solution de l'équation différentielle : $3y' - 7y = \frac{21}{25}$ telle que $f(2) = -5$.

Calcul 14.5 — Équations homogènes avec condition (II).

Calculs plus avancés

Calcul 14.10 — Une condition initiale intégrale.

0000

Soit f la fonction solution de l'équation différentielle : 3y'-4y=0 vérifiant la condition $\int_{-1}^{1} f(t) dt = 1$.

Déterminer f

Calcul 14.11 — Une équation intégrale.

ೆ ೆ ರೆ ರೆ

Déterminer la fonction f continue vérifiant, pour tout réel x, $\int_0^x f(t) dt + f(x) = 2$.

.....

Réponses mélangées

$$x \longmapsto C \mathrm{e}^{2x} \qquad x \longmapsto C \mathrm{e}^{\sqrt{3}x} \qquad -2 \qquad \mathrm{e}^{6} \qquad \mathrm{e}^{\frac{1}{3}} \qquad \frac{2}{7} \qquad x \longmapsto 5 \mathrm{e}^{-11x} \qquad x \longmapsto \pi \mathrm{e}^{-5x}$$

$$\mathrm{e}^{\frac{\pi}{6}} \qquad x \longmapsto k \mathrm{e}^{5x} - \frac{7}{9} \qquad \mathrm{e}^{-\frac{17}{20}} \qquad x \longmapsto k \mathrm{e}^{x} + 3 \qquad -\frac{18}{13} \qquad x \longmapsto C \mathrm{e}^{\sqrt{3}x} + \frac{1}{\sqrt{6}}$$

$$x \mapsto -\frac{122}{25} \mathrm{e}^{\frac{7x-14}{3}} - \frac{3}{25} \qquad x \longmapsto C \mathrm{e}^{3x/2} \qquad x \longmapsto \frac{1}{\sqrt{6}} \qquad x \longmapsto 2 \mathrm{e}^{-x} \qquad x \mapsto \frac{4}{3(\mathrm{e}^{4/3} - \mathrm{e}^{-4/3})} \mathrm{e}^{4x/3}$$

$$x \longmapsto C \mathrm{e}^{-7x} \qquad \frac{25}{23} \qquad x \longmapsto \mathrm{e}^{\frac{1}{3} - \frac{4}{9}x} \qquad x \longmapsto C \mathrm{e}^{-5x/7} \qquad x \longmapsto 3 \qquad x \longmapsto \mathrm{e}^{2-\sqrt{2}x} \qquad x \longmapsto C \mathrm{e}^{x}$$

► Réponses et corrigés page 218

Équations différentielles II

Prérequis

- Pour l'ensemble de la fiche, « résoudre une équation différentielle » signifie « donner la forme générale des solutions » de l'équation proposée.
- La dérivée d'une fonction composée $f = v \circ u$ est donnée par la formule

$$f' = (v \circ u)' = (v' \circ u) \times u'.$$

Quelques calculs généraux pour commencer

Calcul 15.1

4444

Développer, réduire et ordonner suivant les puissances croissantes de x les expressions suivantes.

a)
$$(1-x)(-x^2+5x+2)$$

c)
$$(1-2x)(x+\frac{3}{2})(2x+2)$$

b)
$$(x-1)(x+2)(x-3)$$

d)
$$(x^3 + x - 1 - x^2)(x+1)$$

Calcul 15.2 — Des racines carrées.

4444

Écrire sans racine carrée au dénominateur les expressions suivantes.

a)
$$\frac{2-\sqrt{5}}{2+\sqrt{5}}$$

c)
$$\frac{1}{3+\sqrt{7}} - \frac{2}{5-\sqrt{3}}$$

b)
$$\left(\frac{5-\sqrt{3}}{\sqrt{2}}\right)^2$$

d)
$$\frac{1}{\sqrt{15}} \frac{1-\sqrt{5}}{2} - \frac{1}{\sqrt{15}} \frac{1+\sqrt{5}}{2} \dots$$

Équations différentielles du type y' = ay + b

Calcul 15.3 — Trouver l'équation différentielle connaissant une solution.

Quelle est l'équation différentielle dont la fonction $f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mathrm{e}^{4x} - \frac{1}{4} \end{array} \right.$ est solution?

$$(a) y' = 4y - \frac{1}{4}$$

$$\bigcirc y' = -4y - 2$$

(b)
$$y' = \frac{-1}{4}y + 4$$

Calcul 15.4

Quelle est la fonction qui est solution de l'équation différentielle y' = -y + 3?

- (a) $\mathbb{R} \longrightarrow \mathbb{R}$ (b) $\mathbb{R} \longrightarrow \mathbb{R}$ (c) $\mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto -3e^{-x} + 3$

Calcul 15.5 — Résolution d'une équation différentielle (I).

On note (E) l'équation différentielle $y' = -\frac{2}{3}y + 5$.

- a) Résoudre sur $\mathbb{R}: y' = -\frac{2}{3}y$
- b) Pour quelle valeur $K \in \mathbb{R}$ la fonction constante $x \longmapsto K$ est-elle solution de (E)?

Calcul 15.6 — Résolution d'une équation différentielle (II).

On note (E) l'équation différentielle $\frac{2}{7}y' = \frac{1}{7}y + 2$.

- a) Les solutions de (E) sont les solutions de
- $(a) \frac{2}{7}y' = \frac{1}{7}y$

(c) $y' = \frac{1}{2}y + 7$

(b) $y' = -\frac{1}{7}y + \frac{12}{7}$

(d) $y' = \frac{1}{2}y + \frac{2}{7}$

Il y a une unique bonne réponse.

b) Résoudre sur $\mathbb{R}: y' = \frac{1}{2}y$

- c) Résoudre sur $\mathbb{R}: y' = \frac{1}{7}y$
- Résoudre (E) sur \mathbb{R}

Calcul 15.7 — Résolution d'une équation différentielle (III).

0000

On note (E) l'équation différentielle $4y' + \frac{2}{5}y - 1 = 0$.

a) Les solutions de (E) sont les solutions de

(a)
$$y' = \frac{1}{10}y - 3$$

$$b) y' = -\frac{1}{10}y + \frac{1}{4}$$

$$y' = -\frac{1}{20}y + \frac{1}{2}$$

(a)
$$y' = \frac{1}{10}y - 3$$
 (b) $y' = -\frac{1}{10}y + \frac{1}{4}$ (c) $y' = -\frac{1}{20}y + \frac{1}{2}$ (d) $y' = \frac{1}{10}y + \frac{3}{4}$

Il y a une unique bonne réponse.

b) Déterminer une solution particulière de (E)

c) Résoudre (E) sur \mathbb{R}

Calcul 15.8 — En autonomie.

Résoudre sur \mathbb{R} les équations différentielles suivantes.

a) 3y' - 2y = 7

b) 2y' - 3y = y' - 8

c) $y' - \frac{1}{2}y = \frac{1}{3}y' + y + 1$

d) $\pi y' + 3y = y + \frac{\pi}{3}y' - \frac{\pi}{2}$

Avec des conditions initiales

Calcul 15.9

Pour chacune des équations différentielles suivantes, déterminer la solution sur \mathbb{R} vérifiant la condition

initiale indiquée.

a) y' = 2y - 1 et y(0) = -4

b) $\frac{1}{2}y' - y = 7$ et y(1) = 0

Calcul 15.10

Pour chacune des équations différentielles suivantes, déterminer la solution sur \mathbb{R} vérifiant la condition initiale indiquée.

a)
$$5y - y' = 7$$
 et $y(-3) = 3$

b)
$$3\pi y' - 2y = \pi \text{ et } y(0) = 0$$

Calcul 15.11 — Des conditions initiales variées.

Soient b et c des nombres réels.

a) Résoudre sur
$$\mathbb{R}$$
 l'équation différentielle $2y'+3y=b$

Pour chacune des équations différentielles suivantes, déterminer la solution sur \mathbb{R} vérifiant la condition initiale indiquée.

b)
$$2y' + 3y = b$$
 et $y(0) = b$

c)
$$2y' + 3y = b$$
 et $y(0) = c$

d)
$$2y' + 3y = b$$
 et $y(c) = b$

Équations différentielles du type y' = ay + f

Calcul 15.12

Quelle est l'équation différentielle dont la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{9} - \frac{2}{3}x \end{array} \right.$ est solution?

(a)
$$y' = -y + x - 2$$
 (b) $y' = 3y + x^2 - 1$ (c) $y' = 3y + 2x - 1$ (d) $y' = 2y - 2x + 3$

(b)
$$y' = 3y + x^2 - 1$$

$$(d) y' = 2y - 2x + 3$$

Calcul 15.13

On note (E) l'équation différentielle y' = 5y + 2x - 3.

a) Résoudre sur
$$\mathbb R$$
 l'équation différentielle $y'=5y$

b) Déterminer le couple de réels
$$(a,b)$$
 tel que $\varphi: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto ax+b \end{array} \right.$ soit solution de (E) .

c) Résoudre
$$(E)$$
 sur $\mathbb R$

Calcul 15.14

On note (E) l'équation différentielle $y' + y = 2e^{-x}$.

- a) Déterminer l'unique réel a tel que φ : $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto axe^{-x} \end{cases}$ soit solution de (E)
- Résoudre (E) sur \mathbb{R}

Calcul 15.15

On note (E) l'équation différentielle $y' - 3y = 4\sin(x)$.

- a) Parmi les expressions suivantes, déterminer celle qui définit une fonction solution de (E).

(a) $\frac{-4}{3}\cos(x)$ (b) $\frac{-4}{3}\sin(x)$

 $\begin{array}{c}
\boxed{\bigcirc} \quad \frac{4}{5}\cos(x) - \frac{2}{5}\sin(x) \\
\boxed{\bigcirc} \quad \frac{-2}{5}\cos(x) - \frac{6}{5}\sin(x)
\end{array}$

Calcul 15.16

On note (E) l'équation différentielle $y' + 2y = e^{-2x} \cos(x)$.

- a) Parmi les expressions suivantes, déterminer celle qui définit une fonction solution de (E).

- (a) $2e^{-2x}\cos(x)$ (b) $e^{-2x}\sin(x)$ (c) $-e^{-2x}\sin(x)$
- $\widehat{\mathrm{d}}$ $\mathrm{e}^{\cos(x)}$

- b) Résoudre (E) sur \mathbb{R}
- c) Déterminer la solution de (E) sur \mathbb{R} vérifiant $y(0) = 1 \dots$

Calcul 15.17

Déterminer une expression de f telle que la fonction $\varphi: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto 2e^x + 3e^{-x} \end{array} \right.$ soit solution de l'équation

différentielle $(E): 7y' + 3y = f(x), \text{ sur } \mathbb{R}$

Calculs plus avancés

Calcul 15.18 — Un peu de théorie.

Dans cet exercice, on présente une méthode de résolution des équations différentielles linéaires

$$y' + a(x)y = 0$$
 et $y' + a(x)y = b(x)$,

respectivement notées (H) et (E), où $a: I \longrightarrow \mathbb{R}$ et $b: I \longrightarrow \mathbb{R}$ sont deux fonctions.

On note A une primitive de la fonction a sur I.

- a) Soit $f: x \mapsto \exp(-A(x))$. Calculer f'(x)
- b) Soit C un nombre réel. La fonction Cf est une solution de

$$(a) y' + a(x)y = 0$$

(b)
$$y' + a(x)y = b(x)$$
 (c) ni l'une ni l'autre

On note $k: I \longrightarrow \mathbb{R}$ une fonction définie et dérivable sur I et on considère $\varphi = kf$.

On va déterminer à quelle condition portant sur k la fonction φ est une solution particulière de (E).

c) Calculer l'expression de la fonction φ' en fonction de k, k', a et A.

- d) La fonction φ est une solution de (E) sur I si, et seulement si :
- (a) pour tout $x \in I$, k'(x) + a(x)k(x) = b(x)
- (b) pour tout $x \in I$, $k'(x)e^{-A(x)} + a(x) = b(x)$
- (c) pour tout $x \in I$, $k'(x)e^{-A(x)} = b(x)$

e) Parmi les expressions suivantes, déterminer celle qui définit une fonction solution de l'équation différentielle $(E): y' + y = e^{-x}\cos(x)$

(a)
$$e^{-x}\cos(x)$$
 (b) $e^x\cos(x)$

$$\bigcirc$$
 $e^x \cos(x)$

$$\bigcirc$$
 $e^{\sin(x)}$

$$\bigcirc$$
 $e^{-x}\sin(x)$

Calcul 15.19 — Équation différentielle à coefficients variables.

0000

On veut résoudre sur \mathbb{R}_+^* l'équation différentielle

$$(E): xy' - (1 - 2x^2)y = 2x^3$$

en utilisant la méthode de l'exercice précédent. On note (H) l'équation différentielle $xy' - (1-2x^2)y = 0$.

a) Déterminer une solution f, non nulle, de (H) sur \mathbb{R}_+^*

On admet que l'ensemble des solutions de (H) est l'ensemble des fonctions Cf avec $C \in \mathbb{R}$.

- b) Déterminer une solution particulière φ de (E) sur \mathbb{R}_+^*

Réponses mélangées

$$14 - 5\sqrt{3} \qquad \bigcirc \qquad 2 + 3x - 6x^2 + x^3 \qquad 3 - x - 8x^2 - 4x^3 \qquad \frac{23}{22} - \frac{\sqrt{7}}{2} - \frac{\sqrt{3}}{11}$$

$$\left(\frac{-2}{5}, \frac{13}{25}\right) \qquad x \longmapsto C\mathrm{e}^{3x} + \frac{8}{3}, \text{ où } C \in \mathbb{R} \qquad x \longmapsto C\mathrm{e}^{-\frac{2}{3}x} + \frac{15}{2}, \text{ où } C \in \mathbb{R}$$

$$x \longmapsto C\mathrm{e}^{-\frac{2}{3}x}, \text{ où } C \in \mathbb{R} \qquad x \longmapsto \frac{b}{3} + \frac{2b}{3}\mathrm{e}^{-\frac{3}{2}x} \qquad x \longmapsto -\frac{2}{5}x + \frac{13}{25} + C\mathrm{e}^{5x}, \text{ où } C \in \mathbb{R}$$

$$(b) \qquad (k'(x) - k(x)a(x))\mathrm{e}^{-A(x)} \qquad 6 - 5x - 2x^2 + x^3 \qquad x \longmapsto \frac{b}{3} + \frac{2b}{3}\mathrm{e}^{\frac{3}{2}c}\mathrm{e}^{-\frac{3}{2}x}$$

$$(a) \qquad x \longmapsto -\frac{\pi}{2} + \frac{\pi}{2}\mathrm{e}^{\frac{2x}{3\pi}} \qquad x \longmapsto -\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) \qquad 15 \qquad x \longmapsto \frac{5}{2}$$

$$-a(x)\mathrm{e}^{-A(x)} \qquad x \longmapsto (\sin(x) + 1)\mathrm{e}^{-2x} \qquad x \longmapsto x \qquad (b) \qquad x \longmapsto C\mathrm{e}^{\frac{2}{3}x} - \frac{7}{2}, \text{ où } C \in \mathbb{R}$$

$$x \longmapsto x\mathrm{e}^{-x^2} \qquad x \longmapsto \frac{1}{2} - \frac{9}{2}\mathrm{e}^{2x} \qquad x \longmapsto 20\mathrm{e}^x - 12\mathrm{e}^{-x} \qquad x \longmapsto x + Cx\mathrm{e}^{-x^2} \text{ où } C \in \mathbb{R}$$

$$x \longmapsto C\mathrm{e}^{\frac{a}{3}x} - \frac{2}{3}, \text{ où } C \in \mathbb{R} \qquad 1 + x^4 \qquad (c) \qquad x \longmapsto (2x + C)\mathrm{e}^{-x}, \text{ où } C \in \mathbb{R}$$

$$x \longmapsto -14 \qquad 4\sqrt{5} - 9 \qquad -\frac{\sqrt{3}}{3} \qquad x \longmapsto \frac{b}{3} + (c - \frac{b}{3})\mathrm{e}^{-\frac{3}{2}x} \qquad (b)$$

$$x \longmapsto \frac{7}{5} + \frac{8}{5}\mathrm{e}^{15}\mathrm{e}^{5x} \qquad x \longmapsto C\mathrm{e}^{5x}, \text{ où } C \in \mathbb{R} \qquad x \longmapsto C\mathrm{e}^{\frac{1}{2}x} - 14, \text{ où } C \in \mathbb{R} \qquad (d)$$

$$x \longmapsto C\mathrm{e}^{\frac{1}{2}x}, \text{ où } C \in \mathbb{R} \qquad 2 \qquad (c) \qquad x \longmapsto \frac{b}{3} + C\mathrm{e}^{\frac{3}{2}x}, \text{ où } C \in \mathbb{R} \qquad (d)$$

$$x \longmapsto C\mathrm{e}^{-\frac{1}{2}x}, \text{ où } C \in \mathbb{R} \qquad (d) \qquad x \longmapsto C\mathrm{e}^{-\frac{1}{2}x}, \text{ où } C \in \mathbb{R} \qquad x \longmapsto C\mathrm{e}^{\frac{1}{7}x}, \text{ où } C \in \mathbb{R}$$

$$x \longmapsto -2\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) \qquad x \longmapsto -7 + 7\mathrm{e}^{-2}\mathrm{e}^{2x} \qquad x \longmapsto C\mathrm{e}^{-\frac{3}{2}x} - \frac{\pi}{4}, \text{ où } C \in \mathbb{R}$$

► Réponses et corrigés page 220

Intégration I

Quelques calculs généraux pour commencer

Calcul 16.1 — Des fractions.

4444

Calculer, en donnant le résultat sous forme de fraction irréductible :

a)
$$1 - \frac{1}{2} + \frac{1}{3}$$
 b) $\frac{1}{2} - \frac{1}{3}$

b)
$$\frac{1}{2} - \frac{1}{3} \dots$$

c)
$$\frac{2}{3} - \frac{3}{2} \dots$$

Calcul 16.2 — D'autres fractions.

4444

Exprimer les nombres suivants sous la forme « $2^a 5^b$ » (avec $a, b \in \mathbb{Z}$).

a)
$$\frac{10^2}{5^4}$$

b)
$$\frac{1}{2^2 \times \frac{1}{5^2}} \dots$$
 c) $\frac{1}{5} - \frac{1}{10} \dots$

c)
$$\frac{1}{5} - \frac{1}{10} \dots$$

Premières intégrales

Calcul 16.3

0000

Calculer:

a)
$$\int_0^1 t \, \mathrm{d}t \dots$$

a)
$$\int_0^1 t \, dt$$
 b) $\int_0^1 2t^2 \, dt$ c) $\int_0^1 (-t+1) \, dt$...

c)
$$\int_0^1 (-t+1) dt$$
...

Calcul 16.4 — Une formule générale.

0000

Soit $n \in \mathbb{N}$. Combien vaut $\int_0^1 t^n dt$?

(a)
$$n+1$$

$$\bigcirc$$
 $n-1$

$$\bigcirc$$
 $\frac{1}{n}$

(a)
$$n+1$$
 (b) $n-1$ (c) $\frac{1}{n}$ (d) $\frac{1}{n+1}$ (e) $\frac{1}{n-1}$

Calcul 16.5 — Variations autour d'une puissance.

0000

Soit $n \in \mathbb{N}$. Calculer:

a)
$$\int_{-1}^{1} t^n dt \dots$$

c)
$$1 - \int_0^1 nt^n dt \dots$$

b)
$$\int_0^{\frac{1}{2}} t^n dt$$

$$d) \int_{\frac{1}{4}}^{\frac{1}{2}} t^n dt \dots$$

Calcul 16.6

Soit
$$n \in \mathbb{N}$$
. Calculer $\int_0^{\sqrt{2}} \frac{t^{2n}}{2^n} dt$

Secondes intégrales

Calcul 16.7 — Variations autour d'une fraction.

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$ et soit a > 0. Calculer :

a)
$$\int_{\frac{1}{2}}^{1} \frac{1}{t^n} dt \dots$$

c)
$$\int_{\frac{1}{a}}^{a} \frac{1}{t^n} dt \dots$$

d)
$$\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{t^{2n}} dt$$

Calcul 16.8

Soit $n \in \mathbb{N}^*$.

a) Calculer
$$\int_0^2 \left(\frac{t^3}{2}\right)^n dt \dots$$

b) Calculer
$$\int_0^{2^n} nt^{2n-1} dt \dots$$

Calculs plus avancés

Calcul 16.9 — Une somme d'intégrales.

Soit
$$n \in \mathbb{N}^*$$
. Calculer $\int_0^2 2t \, \mathrm{d}t + \int_0^2 3t^2 \, \mathrm{d}t + \int_0^2 4t^3 \, \mathrm{d}t + \dots + \int_0^2 (n+1)t^n \, \mathrm{d}t \, \dots$

Calcul 16.10 — Une fraction de fractions, integrée entre deux fractions.

Soit
$$n \in \mathbb{N}$$
 tel que $n \geqslant 2$. Calculer $\frac{n}{\int_{\frac{1}{2n}}^{\frac{1}{n}} \frac{1}{t^n} dt}$

Réponses mélangées

$$\frac{1}{n-1} \frac{a^{2n-2}-1}{a^{n-1}} \qquad \frac{1-(-1)^{n+1}}{n+1} \qquad \frac{1}{2} \qquad \frac{1}{n+1} \qquad 2^{2n^2-1} \qquad 2^{-1}5^{-1} \qquad \frac{1}{2} \qquad \frac{1}{(n+1)2^{n+1}}$$

$$\frac{\sqrt{2}}{2n+1} \qquad \frac{2}{3} \qquad \frac{1}{2n-1} \frac{2^n-\sqrt{2}}{\sqrt{2}} \qquad \frac{2^{n+1}-1}{4^{n+1}(n+1)} \qquad \frac{2^{2n+1}}{3n+1} \qquad 2^25^{-2} \qquad \text{(d)} \qquad -\frac{5}{6}$$

$$\frac{1}{n-1}(2^{n-1}-1) \qquad \frac{1}{6} \qquad \frac{5}{6} \qquad 4(2^n-1) \qquad \frac{(-1)^n}{n-1}(2^{n-1}-1) \qquad 2^{-2}5^2 \qquad \frac{(n-1)}{n^{n-2}(2^{n-1}-1)}$$

► Réponses et corrigés page 225

Intégration II

Quelques calculs généraux pour commencer

Calcul 17.1

4444

Calculer et donner le résultat sous forme de fraction irréductible.

a)
$$3 \times \frac{2}{9}$$

a)
$$3 \times \frac{2}{9}$$
 b) $\frac{77}{15} \times \frac{10}{33}$ c) $\frac{\frac{1}{2} + \frac{1}{3}}{\frac{3}{4} - \frac{2}{5}}$

c)
$$\frac{\frac{1}{2} + \frac{1}{3}}{\frac{3}{4} - \frac{2}{5}}$$

Calcul 17.2

4444

Calculer:

a)
$$1-3 \times (-5-(-1)^2 \times 4)$$

b)
$$-1^3 \times 0.25 \times (-3)^3 \times 4 \dots$$

Calcul 17.3

4444

Écrire sous la forme d'une seule puissance.

a)
$$\frac{2^8 + 2^8}{2^{12}}$$

c)
$$\frac{((-2)^{-4})^{-1} \times 8^{-3}}{4^3 \times 16} \dots$$

b)
$$\frac{3^4 \times 27^3}{(9^{-1})^2}$$

d)
$$\frac{(-5)^4 \times 15^8}{(3^2)^4}$$

Calcul 17.4

4444

On note, pour $x \in \mathbb{R}$, $f(x) = \frac{-3x^2 + 2x - 1}{x^2 + 1}$. Calculer f(x) dans chacun des cas suivants.

a) si
$$x = 1$$
 b) si $x = -1$

b) si
$$x = -1$$

c) si
$$x = -2$$

Calculs d'intégrales

Calcul 17.5 — Fonctions usuelles (I).

0000

Calculer:

a)
$$\int_2^5 \pi \, \mathrm{d}x \, \dots$$

c)
$$\int_0^1 x^2 \, \mathrm{d}x \, \dots$$

b)
$$\int_{-1}^{3} u \, \mathrm{d}u \, \dots$$

$$d) \int_{-1}^{0} e^{x} dx \dots$$

Calcul 17.6 — Fonctions usuelles (II).

0000

Calculer:

a)
$$\int_{-1}^{2} 3t^3 dt$$

c)
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx \dots$$

b)
$$\int_{1}^{2} \frac{x^4}{2} dx$$

d)
$$\int_{2}^{3} \frac{-3}{t^{2}} dt$$

Calcul 17.7 — Puissances.

0000

Calculer:

a)
$$\int_{-2}^{1} (3x^2 - 5x + 1) dx \dots$$

b)
$$\int_0^1 \left(\frac{x^4}{3} + \frac{1}{2} \right) dx \dots$$

c)
$$\int_{1}^{4} \left(\frac{2}{\sqrt{x}} + \frac{1}{x^2} + \frac{4}{x^3} \right) dx$$

..|

Calcul 17.8 — Divers (I).

0000

Calculer:

a)
$$\int_0^1 e^{4x} dx \dots$$

c)
$$\int_{-1}^{1} (2x+1)^2 dx \dots$$

b)
$$\int_0^1 e^{4x-1} dx \dots$$

d)
$$\int_{1}^{4} \frac{3}{\sqrt{2x+1}} dx \dots$$

Calcul 17.9 — Divers (II).

0000

Calculer:

a)
$$\int_0^1 2x(x^2-1) dx \dots$$

c)
$$\int_{1}^{2} \frac{e^{\frac{1}{t}}}{t^{2}} dt$$

d)
$$\int_{-1}^{1} (4x-3)(4x^2-6x+3)^3 dx$$

Calcul 17.10 — Divers (III).

0000

Calculer:

a)
$$\int_0^1 \frac{x}{\sqrt{x^2 + 1}} \, \mathrm{d}x \, \dots$$

c)
$$\int_3^4 \frac{x-1}{x^2(x-2)^2} \, \mathrm{d}x \dots$$

b)
$$\int_{-1}^{1} \exp(t + e^{t}) dt$$

d)
$$\int_{-1}^{0} \frac{1-x^2}{(x^3-3x+1)^3} dx \dots$$

Calculs plus avancés

Calcul 17.11

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{2x} + 3e^x + 1}{(e^x + 1)^2}$.

- a) À l'aide d'une identité remarquable, factoriser $e^{2x} + 2e^x + 1$
- b) En déduire la valeur de $\int_0^1 f(x) dx$

Calcul 17.12 — Décomposition en éléments simples.

0000

Soit f la fonction définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{2x^3 + 3x^2 + 3}{(x+1)^2}$.

- a) Déterminer les réels a, b et c tels que $f(x) = ax + b + \frac{c}{(x+1)^2}$.
- b) En déduire $\int_0^1 f(x) dx$

Calcul 17.13 — Avec des valeurs absolues.

Calculer
$$\int_{-1}^{2} (|x-1| - |4x+2|) dx$$

Calcul 17.14 — Intégrale dépendant d'un paramètre.

Soit f une fonction définie sur \mathbb{R} telle que, pour tout $x \in \mathbb{R}$, on ait $\int_{-1}^{x} f(t) dt = -6x^3 - 8x^2 - 3x - 1$.

Calculer
$$F(x) = \int_{x}^{2} f(t) dt$$

Réponses mélangées

► Réponses et corrigés page 227

Intégration III

Quelques calculs généraux pour commencer

Calcul 18.1 — Des équations.

4444

Résoudre les équations suivantes, en donnant la valeur de l'unique solution.

a)
$$\frac{1}{2x-3} = 4$$

c)
$$\frac{2x+3}{x-2} = 4$$

b)
$$\frac{2x+3}{x+1} = 1$$

d)
$$\frac{5x+2}{2x+5} = 4$$

Calcul 18.2 — Des équations à paramètre.

4444

Résoudre les équations suivantes, où m est un paramètre, en donnant la valeur de l'unique solution.

a)
$$\frac{1}{4x+5} = m \text{ où } m \neq 0 \dots$$

c)
$$\frac{4x+1}{x+3} = 2m \text{ avec } m \neq 2 ...$$

b)
$$\frac{x+2}{x-1} = m$$
 où $m \neq 1 \dots$

d)
$$\frac{x-1}{3x+3} = -m \text{ où } m \neq -\frac{1}{3}$$
.

Calculs d'intégrales

Calcul 18.3

Calculer les intégrales suivantes.

a)
$$\int_0^2 (t^3 + \exp(t)) dt$$

b)
$$\int_{1}^{5} \frac{3}{t} dt$$

c)
$$\int_{1}^{4} \frac{2}{t^2} dt$$

$$d) \int_2^4 \left(\frac{4}{t} + \frac{1}{t^3}\right) dt \dots$$

Calcul 18.4

Calculer les intégrales suivantes.

a)
$$\int_{-1}^{4} 4 \exp(2t+2) dt$$

b)
$$\int_0^3 \frac{2}{5t+3} \, dt$$

c)
$$\int_{-2}^{1} \frac{-2}{(t+4)^2} dt$$

d)
$$\int_{-2}^{1} \frac{1}{2t-3} dt$$

Calcul 18.5

Calculer les intégrales suivantes.

a)
$$\int_{-2}^{4} \frac{2t+1}{t^2+t+1} dt$$

b)
$$\int_0^{\frac{1}{2}} (t^2 + 1) \exp(2t^3 + 6t) dt$$

c)
$$\int_{1}^{4} \frac{t + \frac{1}{2}}{\sqrt{2t^2 + 2t + 1}} dt$$

d)
$$\int_0^1 \frac{\frac{1}{4}t^2 + \frac{1}{6}t}{(t^3 + t^2 + 1)^4} dt$$

Calcul 18.6

Calculer les intégrales suivantes.

a)
$$\int_{1}^{2} \frac{1}{(\frac{t}{3}+1)^{2}} dt$$

b)
$$\int_{1}^{2} \frac{\frac{1}{2}t^{2} + \frac{1}{3}t}{t^{3} + t^{2} - \frac{1}{2}} dt$$

c)
$$\int_{-4}^{-1} \frac{2t+5}{t^2+5t-1} dt$$

Calcul 18.7

Calculer l'intégrale suivante.

$$\int_{1}^{4} \frac{t+1}{t^{2}+2t-2} \ln(t^{2}+2t-2)^{3} dt \dots$$

Calcul 18.8

0000

Calculer les intégrales suivantes où n est un entier supérieur ou égal à 2.

a)
$$\int_0^1 \frac{t^{n-1}}{t^n + 2} dt$$

b)
$$\int_0^1 t^{n-2} \exp(t^{n-1}) dt$$

c)
$$\int_{2}^{3} t^{n-1} \sqrt{t^n + 3} \, dt$$

Calcul 18.9 — Calcul d'une intégrale par décomposition (I).

0000

Trouver deux réels a et b qui rendent les égalités suivantes vraies.

a)
$$\frac{1}{t(t+1)} = \frac{a}{t} + \frac{b}{t+1}$$

b)
$$\frac{1}{t(t+2)} = \frac{a}{t} + \frac{b}{t+2}$$

À l'aide des résultats précédents, calculer les intégrales suivantes.

c)
$$\int_{1}^{2} \frac{1}{t(t+1)} dt$$

d)
$$\int_{2}^{3} \frac{1}{t(t+2)} dt$$

Calcul 18.10 — Calcul d'une intégrale par décomposition (II).

0000

Trouver deux réels a et b qui rendent les égalités suivantes vraies.

a)
$$\frac{t+3}{(t+1)(t+2)} = \frac{a}{t+1} + \frac{b}{t+2}$$

b)
$$\frac{t+2}{t(t-1)} = \frac{a}{t} + \frac{b}{t-1}$$

À l'aide des résultats précédents, calculer les intégrales suivantes.

c)
$$\int_{-4}^{-3} \frac{t+3}{(t+1)(t+2)} dt$$

d)
$$\int_2^3 \frac{t+2}{t(t-1)} \, \mathrm{d}t \quad \dots$$

Calculs plus avancés

Calcul 18.11 — En forçant le dénominateur à apparaı̂tre.

00000

a) Calculer l'intégrale $\int_1^2 \frac{t}{t+1} dt$ en remplaçant au numérateur t par (t+1)-1.

.....

Calculer les intégrales suivantes en suivant la même méthode.

- b) $\int_{1}^{2} \frac{t}{t+5} dt$
- c) $\int_{1}^{2} \frac{t}{2t+1} dt$
- d) $\int_{1}^{2} \frac{t^{2} t}{t^{2} + t + 1} dt$
- e) $\int_{1}^{2} \frac{2t^{2} t 2}{2t^{2} + 3t + 1} dt$

Réponses mélangées

$$3\ln(5) \quad \frac{1}{6}\ln\left(\frac{23}{3}\right) \quad \frac{3}{2} \quad \frac{1-5m}{4m} \quad 1+\ln\left(\frac{3}{7}\right) \quad -2 \quad 3+e^2$$

$$a=2 \text{ et } b=-1 \quad 1+\ln\left(\frac{2}{5}\right) \quad a=-2 \text{ et } b=3 \quad \frac{3}{32}+4\ln(2) \quad 2(e^{10}-1)$$

$$\frac{2}{5}\ln(6) \quad a=1 \text{ et } b=-1 \quad \frac{1-3m}{1+3m} \quad 1+\ln\left(\frac{2}{3}\right) \quad \frac{1}{2}\left(\sqrt{41}-\sqrt{5}\right) \quad 1+5\ln\left(\frac{6}{7}\right)$$

$$\frac{13}{486} \quad 0 \quad \frac{1}{8}\ln(22)^4 \quad \frac{13}{8} \quad \frac{1}{n-1}(e-1) \quad \frac{1}{2}+\frac{1}{4}\ln\left(\frac{3}{5}\right) \quad -\frac{3}{5} \quad \frac{m+2}{m-1}$$

$$-6 \quad \frac{1}{6}\left(e^{\frac{13}{4}}-1\right) \quad \ln\left(\frac{32}{9}\right) \quad \frac{1}{2}\ln\left(\frac{6}{5}\right) \quad \ln\left(\frac{8}{9}\right) \quad \frac{1-6m}{2(m-2)} \quad \ln\left(\frac{4}{3}\right)$$

$$a=\frac{1}{2} \text{ et } b=-\frac{1}{2} \quad \frac{9}{20} \quad \frac{1}{n}\ln\left(\frac{3}{2}\right) \quad \ln(7) \quad -\frac{\ln(7)}{4} \quad \frac{2}{3n}\left((3^n+3)^{\frac{3}{2}}\right) \quad \frac{11}{2}$$

Intégration par parties I

Quelques calculs généraux pour commencer

Calcul 19.1

Calculer f'(x) pour chacune des fonctions f définies par les expressions suivantes.

On ne se souciera pas du domaine de dérivabilité.

a)
$$f(x) = xe^x$$

$$d) \quad f(x) = e^{\sqrt{x}} \quad \dots$$

b)
$$f(x) = x \ln(x)$$

e)
$$f(x) = \sqrt{4x^2 + 3}$$

c)
$$f(x) = \frac{e^x}{x}$$

f)
$$f(x) = \frac{1}{x^6 + 3}$$

Calcul 19.2

 ${\bf Factoriser} \ {\bf puis} \ {\bf simplifier} \ {\bf chacune} \ {\bf des} \ {\bf expressions} \ {\bf suivantes}.$

a)
$$(1-7x)(3x+5)-(9x+15)(x-4)$$

b)
$$xe^x - 3e^x$$

d)
$$e^{2x} + 4e^x + 4 \dots$$

c)
$$3\ln(x) - \ln(x^2)$$

Premières intégrations par parties

Calcul 19.3

Calculer à l'aide d'une intégration par parties :

a)
$$\int_0^1 t e^t dt \dots$$

b)
$$\int_1^e t \ln(t) dt \dots$$

Calcul 19.4

Calculer à l'aide d'une intégration par parties :

a)
$$\int_{1}^{e} \frac{\ln(t)}{t^{2}} dt \dots$$

c)
$$\int_0^{10} (2t+1)e^{-t} dt \dots$$

b)
$$\int_{1}^{e} t^{2} \ln(t) dt \dots$$

d)
$$\int_{-\frac{1}{2}}^{0} (4-3t)e^{3t+1} dt \dots$$

Primitives du logarithme et de ses puissances

Calcul 19.5

Calculer à l'aide d'une intégration par parties :

a)
$$\int_1^5 \ln(t) dt \dots$$

c)
$$\int_{1}^{5} (\ln(t))^{2} dt$$

b)
$$\int_{e}^{x} \ln(t) dt$$
 avec $x > 0$

d)
$$\int_{1}^{5} (\ln(t))^{3} dt \dots$$

Doubles intégrations par parties

Calcul 19.6

Calculer à l'aide de deux intégrations par parties :

a)
$$\int_0^1 t^2 e^t dt \dots$$

b)
$$\int_{1}^{e} t^{2} (\ln(t))^{2} dt \dots$$

Calcul 19.7

Calculer à l'aide de deux intégrations par parties :

a)
$$\int_0^1 t^2 e^{2t+1} dt \dots$$

b)
$$\int_{1}^{7} \frac{(\ln(t))^{2}}{t^{3}} dt \dots$$

Intégrales paramétrées

Calcul 19.8

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{1+t} dt$.

a) Calculer I_0

b) Trouver a et b tels que $\frac{t}{1+t} = a + \frac{b}{1+t}$

c) Calculer I_1

d) Exprimer $I_{n+1} + I_n$ en fonction de n

e) En déduire la valeur de I_3

Calculs plus avancés

Calcul 19.9 — Limite et intégrations par parties (I).

ಿರೆರೆರೆ

Calculer
$$\lim_{x \to +\infty} \int_0^x t^3 e^{-\frac{t^2}{2\pi}} dt$$

Calcul 19.10 — Limite et intégrations par parties (II).

Pour $n \in \mathbb{N}$ et $A \in \mathbb{R}$, on pose $I(n,A) = \int_0^A t^n e^{-t} dt$. On admet, pour tout $n \in \mathbb{N}$, l'existence de :

$$J(n) = \lim_{A \to +\infty} \int_0^A t^n e^{-t} dt.$$

a) Calculer
$$J(0)$$

b) Exprimer
$$J(n+1)$$
 en fonction de $J(n)$

Réponses mélangées

$$\frac{1}{n+1} \frac{e^2+1}{4} \ln(x) \frac{5}{27} e^3 - \frac{2}{27} 5 \ln(5)^2 - 10 \ln(5) + 8 \quad n! \quad x \ln(x) - x$$

$$= (n+1)J(n) \frac{5e}{3} - 2 \frac{e^x(x-1)}{x^2} (e^x+2)^2 \quad 5 \ln(5) - 4 \quad 2\pi^2$$

$$\frac{1}{2\sqrt{x}} e^{\sqrt{x}} \frac{4x}{\sqrt{4x^2+3}} \frac{\frac{1}{98} \left(-(\ln 7)^2 \\ -\ln 7 + 24\right)}{5e^x} \frac{5}{6} - \ln(2) \frac{5 \ln(5)^3 - 15 \ln(5)^2 \\ +30 \ln(5) - 24}{8e^x} \frac{1}{\sqrt{4x^2+3}} \left(3x+5\right)(13-10x) \quad e-2 \quad -\frac{6x^5}{(x^6+3)^2} \frac{1}{4}e^3 - \frac{1}{4}e \quad \ln(2) \quad a=1 \text{ et } b=-1$$

$$1 - \ln(2) \quad e^x(x-3) \quad 1 \quad 3 - 23e^{-10} \quad 1 \quad \frac{2e^3+1}{9} \quad (x+1)e^x \quad \frac{e-2}{e} \quad \ln(x) + 1$$

► Réponses et corrigés page 233

Intégration par parties II

Quelques calculs généraux pour commencer

Calcul 20.1 — Des logarithmes et des exponentielles.

4444

Simplifier les expressions suivantes.

a)
$$\ln(\sqrt{e^5}) - 5 + \frac{1}{2}e^{\ln(5)} \dots$$

c)
$$\frac{e \times (e^{-3})^2}{e^2 \times (e^{-1})^2}$$

b)
$$4\ln(2) - 2\ln(4)$$

d)
$$(e^{-6})^2 \times \sqrt{e^{24}}$$

Calcul 20.2 — Un peu de dérivation.

4444

Calculer f'(x) pour f définie par les expressions suivantes.

a)
$$f(x) = (x+1)x$$

c)
$$f(x) = \frac{1}{1-x}$$

b)
$$f(x) = \frac{1}{1+x^2}$$

d)
$$f(x) = \sqrt{1-x}$$

Avec une seule intégration par parties

Calcul 20.3 — Deux premières intégration par parties.

Calculer les intégrales suivantes à l'aide d'une intégration par parties.

a)
$$\int_{1}^{2} \ln(x) dx \dots$$

b)
$$\int_0^1 (x+1)e^{-x} dx$$

Calcul 20.4 — Avec un paramètre.

On considère un entier relatif a différent de -1.

Calculer, par intégration par parties, $\int_1^4 x^a \ln(x) dx$

Calcul de primitives par intégration par parties

Calcul 20.5 — Un exemple guidé.

On considère les fonctions f et g définies, pour x dans $]-1,+\infty[$, par

$$f(x) = \frac{x}{\sqrt{1+x}}$$
 et $g(x) = \int_0^x \frac{t}{\sqrt{1+t}} dt$.

- a) Soit x>-1. À l'aide d'une intégration par parties, calculer g(x) ...
- b) Calculer $\int_0^1 f(x) dx \dots$
 - c) Calculer $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx \dots$
- d) Calculer g'(x), pour x > -1
- e) L'application g est-elle, « oui » ou « non », la primitive de f qui s'annule en 0?

Calcul 20.6 — Un deuxième exemple.

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \frac{\ln(x)}{\sqrt{x}}$.

......

a) À l'aide d'une intégration par parties, déterminer l'expression de F(x), où F est la primitive de f qui s'annule en 1.

On procèdera comme ci-dessus.

...

b) Pour a et b dans I, calculer $\int_a^b \frac{\ln(x)}{\sqrt{x}} dx$

Calcul 20.7 — Un troisième exemple, avec un paramètre.

On considère un réel a et la fonction f_a définie sur $]a, +\infty[$ par $f_a(x) = \ln(x-a)$.

a) À l'aide d'une intégration par parties, déterminer la primitive F_a de f_a qui s'annule en a+1.

.....

- .
- b) Calculer $I_a = \int_2^3 f_a(x) dx$
- c) En déduire la valeur de $\int_2^3 \ln(x^2 1) dx$

Avec plusieurs intégrations par parties successives

Calcul 20.8

Calculer les intégrales suivantes à l'aide de plusieurs intégrations par parties successives.

a)
$$\int_{2}^{0} (x^{2} + 1)e^{x} dx \dots$$

b)
$$\int_{1}^{2} (x^{2} - 2x + 1)e^{2x} dx \dots$$

Calcul 20.9

 ${\it Calculer les int\'egrales suivantes \`a l'aide de plusieurs int\'egrations par parties successives.}$

a)
$$\int_{-1}^{1} (x^2 + 2x + 1)^2 e^{-x} dx$$
.

b)
$$\int_{-1}^{0} (x^3 - 2x + 1) e^{\frac{x}{2}} dx \dots$$

Calcul 20.10 — Un calcul d'intégrales classiques.

Pour $n \in \mathbb{N}^*$, on considère les intégrales

$$I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$$
 et $J_n = \int_0^1 \frac{x^2}{(1+x^2)^n} dx$.

- a) Exprimer J_{n+1} en fonction de I_n et I_{n+1}
- b) À l'aide d'une intégration par parties, exprimer I_n en fonction de J_{n+1} et de n.

- c) En déduire une relation de récurrence entre I_n et I_{n+1}
- e) Calculer I_4

Calculs plus avancés

Calcul 20.11

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \ln(1+\sqrt{x}).$

À l'aide d'une intégration par parties, déterminer la primitive F de f qui s'annule en 1.

Calcul 20.12 — Une limite d'intégrales.

අදුරුදුර

Pour $n, p \in \mathbb{N}$, on définit $f_{n,p}$ sur]0,1] par $f_{n,p}(x) = \int_x^1 t^n (\ln(t))^p dt$.

On considère également $I_{n,p} = \lim_{x \to 0} f_{n,p}(x)$.

- a) Calculer $I_{n,0}$
- c) En déduire l'expression de $I_{n,p}$ en fonction de n et de p

Réponses mélangées

$$0 \quad 2x+1 \quad \frac{1}{(a+1)^2} - \frac{4^{a+1}}{(a+1)^2} + \frac{4^{a+1}}{a+1} \ln(4) \quad \frac{-1}{2\sqrt{1-x}} \quad \frac{4}{3} - \frac{2}{3}\sqrt{2} \quad \frac{15\pi + 44}{192}$$

$$1 \quad \frac{x}{\sqrt{1+x}} \quad \text{oui} \quad 3 - 3e^2 \quad J_{n+1} = I_n - I_{n+1} \quad \frac{3\pi + 8}{32} \quad \frac{1}{n+1}$$

$$(-1)^p \frac{p!}{(n+1)^{p+1}} \quad (3-a)\ln(3-a) - (2-a)\ln(2-a) - 1 \quad 2(\ln(x) - 2)\sqrt{x} + 4$$

$$\frac{-2x}{(1+x^2)^2} \quad I_{n,p} = -\frac{p}{n+1}I_{n,p-1} \quad I_n = \frac{1}{2^n} + 2nJ_{n+1} \quad \frac{2x-4}{3}\sqrt{1+x} + \frac{4}{3} \quad 0$$

$$2(\ln(b) - 2)\sqrt{b} - 2(\ln(a) - 2)\sqrt{a} \quad e^{-5} \quad \frac{1}{(1-x)^2} \quad I_{n+1} = \frac{1}{n2^{n+1}} + \frac{2n-1}{2n}I_n$$

$$\frac{5\sqrt{2} - 3\sqrt{6}}{6} \quad 24e - 168e^{-1} \quad (x-a)\ln(x-a) - (x-a-1) \quad 2\ln(2) - 1 \quad 2 - \frac{3}{e}$$

$$\frac{e^4 - e^2}{4} \quad 10\ln(2) - 3\ln(3) - 2 \quad 144e^{-\frac{1}{2}} - 86 \quad (x-1)\ln(1+\sqrt{x}) - \frac{1}{2}(x-2\sqrt{x}+1)$$

► Réponses et corrigés page 237

Intégration des fonctions trigonométriques

Quelques calculs généraux pour commencer

Calcul 21.1

Soit $x \in \mathbb{R}$. Factoriser les expressions suivantes.

a)
$$(2x+1)(3x-2)-(x+1)(2x+1)$$

b)
$$(x-1)^2 + (3-3x)(x-5)$$

c)
$$x^2 - 6x + 9$$

d)
$$3xe^{x+x^2} - 6x^2e^x$$

Calcul 21.2

Pour tout $x \in \mathbb{R}$, calculer l'expression de f'(x) dans les cas suivants.

a)
$$f(x) = (x-1)(x+1)$$

c)
$$f(x) = 5\cos\left(-x + \frac{\pi}{7}\right) \dots$$

b)
$$f(x) = -(1-x)^2$$

d)
$$f(x) = e^{3x}$$

Premières intégrales

Calcul 21.3 — Pour commencer.

Calculer les intégrales suivantes.

a)
$$\int_0^{\pi} \sin(t) dt$$

b)
$$\int_0^{\frac{\pi}{4}} 2\cos(t) dt$$

c)
$$\int_0^{\pi} (\cos(t) - \sin(t)) dt \dots$$

d)
$$\int_0^{\frac{\pi}{2}} (3\sin(t) + 5\cos(t)) dt$$

Calcul 21.4 — Avec des bornes plus compliquées.

0000

Calculer les intégrales suivantes.

a)
$$\int_0^{2\pi} \sin(t) dt \dots$$

$$d) \int_{\frac{\pi}{6}}^{2\pi + \frac{\pi}{3}} \sin(t) dt \dots$$

b)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(t) dt \dots$$

e)
$$\int_{-\pi - \frac{2\pi}{3}}^{\frac{11\pi}{4}} \sin(t) dt$$

c)
$$\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \sin(t) dt \dots$$

f)
$$\int_{-\frac{9\pi}{6}}^{\frac{25\pi}{6}} \sin(t) dt \dots$$

Calcul 21.5 — Composition avec des fonctions affines.

0000

Calculer les intégrales suivantes.

a)
$$\int_0^{\frac{\pi}{2}} (-2\sin(-2t) - 2) dt \dots$$

c)
$$\int_{-\frac{1}{a}}^{1} \cos\left(3\pi t + \frac{\pi}{2}\right) dt \dots$$

b)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(3t) dt \dots$$

d)
$$\int_{-\frac{1}{6}}^{1} \left(3\cos(\pi t) + \frac{\pi}{2} \right) dt \dots$$

Secondes intégrales

Calcul 21.6 — Reconnaître la dérivée d'une composée (I).

0000

Calculer les intégrales suivantes.

a)
$$\int_0^{\frac{\sqrt{\pi}}{2}} 2t \cos(t^2) dt \dots$$

$$d) \int_0^{\frac{\pi}{2}} \sin(t) \cos^2(t) dt \dots$$

b)
$$\int_0^{\frac{\pi}{4}} \sin(t) \cos(t) dt \dots$$

e)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos(t)}{\sin^2(t)} dt \dots$$

c)
$$\int_0^{\frac{\pi}{6}} \sin(3t)\cos(3t) dt \dots$$

f)
$$\int_0^{\frac{\pi}{4}} \frac{\sin(t)}{\cos^3(t)} dt \dots$$

Calcul 21.7 — Reconnaître la dérivée d'une composée (II).

0000

Calculer les intégrales suivantes.

a)
$$\int_0^1 e^t \sin(e^t) dt \dots$$

c)
$$\int_0^{\frac{\pi}{4}} e^{-3\sin(2t)+1}\cos(2t) dt \dots$$

b)
$$\int_0^{\frac{\pi}{2}} e^{\sin(t)} \cos(t) dt \dots$$

d)
$$\int_0^1 t e^{t^2} \cos(e^{t^2}) dt$$

Calcul 21.8 — Une formule générale.

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Combien vaut $\int_0^{\frac{n}{2}} \cos(t) \sin^n(t) dt$?

- \widehat{a} n

- (b) n+1 (c) n-1 (d) $\frac{1}{n}$ (e) $\frac{1}{n+1}$ (f) $\frac{1}{n-1}$

Calcul 21.9 — À l'aide d'une intégration par parties (I).

Calculer les intégrales suivantes. On pourra intégrer par parties.

a)
$$\int_0^{\frac{\pi}{2}} t \cos(t) dt \dots$$

c)
$$\int_0^{\frac{\pi}{2}} t^2 \cos(t) dt \dots$$

b)
$$\int_0^{\frac{\pi}{2}} t \sin(t) dt \dots$$

d)
$$\int_{0}^{\frac{\pi}{2}} (t^2 + t + 1) \sin(t) dt \dots$$

Calcul 21.10 — À l'aide d'une intégration par parties (II).

Calculer les intégrales suivantes. On pourra intégrer par parties.

a)
$$\int_0^{\frac{\pi}{2}} e^t \cos(t) dt \dots$$

c)
$$\int_0^{\frac{\pi}{2}} e^{2t} \sin(t) dt \dots$$

b)
$$\int_0^{\frac{\pi}{2}} e^t \sin(t) dt \dots$$

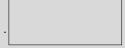
$$d) \int_0^{\frac{\pi}{6}} e^{-2t} \sin(3t) dt \dots$$

Calculs plus avancés

Calcul 21.11 — Intégrales de Wallis.

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

a) Calculer $I_0 \ldots \ldots$



b) Calculer $I_1 \ldots \ldots$

c) Soit $n \in \mathbb{N}$. À l'aide d'une intégration par parties, déterminer laquelle des relations suivantes est vraie.

$$(a) I_{n+2} = \frac{n+1}{n+2} I_n$$

(a)
$$I_{n+2} = \frac{n+1}{n+2}I_n$$
 (b) $I_{n+2} = \frac{n}{n+1}I_n$ (c) $I_{n+2} = \frac{n+2}{n+1}I_n$ (d) $I_{n+2} = \frac{n+1}{n}I_n$

L'objectif des questions suivantes est de déterminer une formule générale pour I_{2n+1} et I_{2n} .

Dans ce but, pour les questions d), e), f) et g), on utilisera le résultat de la question c) et on ne cherchera pas à calculer les produits d'entiers intervenant lors de ces calculs.

d) Calculer $I_2 \ldots \ldots$

f) Calculer $I_4 \ldots I_4 \ldots I_4$

e) Calculer I_3

g) Calculer I_5

Soit $n \in \mathbb{N}$.

h) Déterminer une expression de I_{2n+1} à l'aide de produits d'entiers

En déduire une expression de I_{2n+1} à l'aide de factorielles \dots

Déterminer une expression de I_{2n} à l'aide de produits d'entiers

Réponses mélangées

► Réponses et corrigés page 241

Cardinaux et coefficients binomiaux

Prérequis

Le cardinal d'un ensemble E est le nombre d'éléments de cet ensemble. On le note Card(E).

Quelques calculs généraux pour commencer

Calcul 22.1 — Des fractions de fractions.

4444

Écrire sous forme d'une fraction irréductible :

a)
$$\frac{2}{\frac{1}{5} - \frac{7}{15}}$$
 ..

b)
$$\frac{\frac{2}{3} - \frac{1}{6}}{\frac{3}{5} - \frac{1}{6}} \dots$$

c)
$$\frac{2-\frac{3}{7}}{\frac{1}{5}+\frac{3}{7}} \dots$$

Calcul 22.2

4444

Écrire les expressions suivantes sous la forme $a\sqrt{b}$, avec a et b entiers et où b est le plus petit possible.

a)
$$\sqrt{32}$$

b)
$$\sqrt{45}$$

b)
$$\sqrt{45}$$
 c) $\sqrt{1200}$... d) $\sqrt{432}$...

d)
$$\sqrt{432}$$

Cardinal et opérations ensemblistes

Calcul 22.3 — Formule d'inclusion-exclusion pour deux ensembles.

Soient A et B deux ensembles finis. On rappelle que

$$\mathsf{Card}(A \cup B) = \mathsf{Card}(A) + \mathsf{Card}(B) - \mathsf{Card}(A \cap B).$$

Cette formule est appelée formule d'inclusion-exclusion.

- a) On suppose que Card(A) = 5, Card(B) = 10 et $Card(A \cap B) = 2$. Déterminer $Card(A \cup B)$
- b) On suppose que Card(A) = 7, Card(B) = 8 et $Card(A \cup B) = 12$. Déterminer $Card(A \cap B)$
- c) On suppose que Card(A) = 3, $Card(A \cup B) = 8$ et $Card(A \cap B) = 2$. Déterminer Card(B)

Calcul 22.4	— Des	équations	avec	des	cardinaux.
Calcul 22.4	Des	equations	avec	ues	cai uiliaux.

0000

Soient A et B deux ensembles finis.

a) On suppose que $\mathsf{Card}(B) = 2 \times \mathsf{Card}(A)$, que $\mathsf{Card}(A \cap B) = 4$ et que $\mathsf{Card}(A \cup B) = 8$.

Combien vaut Card(A)?

b) On suppose que $\operatorname{\mathsf{Card}}(A) = 3$, que $\operatorname{\mathsf{Card}}(A \cup B) = 13$ et que $\operatorname{\mathsf{Card}}(A \cap B) = 1$.

Combien vaut Card(B)?

c) On suppose que $\operatorname{Card}(A \cap B) = 2$, que $\operatorname{Card}(A \cup B) = 9$ et $\operatorname{Card}(A) = \operatorname{Card}(B) - 5$.

Combien vaut Card(B)?

Factorielle et coefficients binomiaux

Calcul 22.5 — Des multiplications à foison.

0000

On rappelle que la factorielle de n est définie par $n! = 1 \times 2 \times 3 \times \cdots \times n$ pour $n \in \mathbb{N}^*$.

Donner les valeurs des factorielles suivantes.

- a) 1! ...
- c) 3! ...
- e) 5! ...
- g) 7! ...

- b) 2! ...
- d) 4! ...
- f) 6! ...
- h) 0! ...

Calcul 22.6 — Des simplifications à foison.

Calculer les expressions suivantes.

La réponse attendue est un entier ou une fraction irréductible.

- a) $\frac{5!}{3!}$
- d) $\frac{3! \times 6!}{4! \times 5!}$
-

- b) $\frac{101!}{99!}$
- e) 4! 3!
- c) $\frac{7!}{3!^2}$
- f) 7! 6!

Calcul 22.7

Calculer les expressions suivantes.

 $La\ r\'eponse\ attendue\ est\ une\ fraction\ irr\'eductible.$

- a) $\frac{1}{5!} \frac{1}{4!} \dots$
- b) $\frac{3 \times 3!}{2^4} \frac{5}{4!} \dots$
- c) $\frac{7}{4!} \frac{3 \times 3!^2}{6!}$.

Calcul 22.8 — Calcul littéral avec la factorielle (I).

On rappelle que les factorielles de deux entiers naturels consécutifs n et n+1 sont reliées par la formule :

$$(n+1)! = (n+1) \times n!$$

Soit n un entier naturel non nul. Simplifier les expressions suivantes.

a)
$$\frac{(n+2)!}{(n-1)!}$$
 b) $\frac{(2n+2)!}{(2n)!}$... c) $\frac{(n^2-1)n!}{(n+2)!}$...

b)
$$\frac{(2n+2)!}{(2n)!}$$
 ...

c)
$$\frac{(n^2-1)n!}{(n+2)!}$$
 ...

Calcul 22.9 — Calcul littéral avec la factorielle (II).

Soit n un entier naturel non nul. Simplifier les expressions suivantes.

b)
$$\frac{(n+1)!}{2^{2(n+1)}} - \frac{n!}{2^{2n}} \dots$$

c)
$$\frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{n \times n!}$$

Calcul 22.10 — Calculs explicites de coefficients binomiaux.

Calculer les coefficients binomiaux suivants.

a)
$$\binom{4}{2}$$

a)
$$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 c) $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$

e)
$$\begin{pmatrix} 45 \\ 44 \end{pmatrix}$$

b)
$$\binom{9}{8}$$

$$d) \quad \binom{125}{0} \quad \dots \quad .$$

f)
$$\binom{9}{3}$$

Calcul 22.11 — Calcul littéral avec le coefficient binomial.

Soit n un entier naturel supérieur ou égal à 3. Simplifier les expressions suivantes.

a)
$$\binom{n}{1} + \binom{n}{3} \dots \dots \dots$$

c)
$$\binom{n+1}{n} - \binom{n}{n-1} \dots$$

b)
$$\binom{n}{2} + \binom{n}{3} \dots$$

$$\mathbf{d}) \quad \frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} \quad \dots$$

Dénombrement

Calcul 22.12 — Des fruits!

Une corbeille de fruits est composée de trois fruits. Pour la former, on dispose d'une pomme, d'une poire, d'une banane, d'un kiwi et d'une orange.

Combien y a-t-il de corbeilles possibles?

Calcul 22.13 -	– Mains au poker.
----------------	-------------------

On tire 5 cartes d'un jeu de 52 cartes; on obtient ce que l'on appelle une main. On rappelle qu'un tel jeu est composé de 13 cartes de chacune des quatre couleurs (cœur, carreau, trèfle ou pique) et qu'il y a 3 figures (valet, dame et roi) pour chaque couleur.

Déterminer le nombre de mains vérifiant chacun des critères suivants.

On exprimera les réponses à l'aide de coefficients binomiaux, qu'on ne cherchera pas à calculer.

a)	Cinq cartes quelconques			
b)	Cinq cartes d'une même couleur			
c)	Uniquement des figures			
d)	Deux piques, un cœur et deux carreaux			
e)	Exactement un trèfle			
f) Ina	Au moins un valetlication : faire le lien avec les mains sans valet.			
g) Ind	Au moins une dame et un neuf			
	Exactement deux rois et deux cœurs		oi de cœur.	
Ca	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +			0000
	appelle anagramme d'un mot tout autre mot co	_		n ordre quelconque.
Co	mbien les mots suivants ont-il d'anagrammes?			
On	exprimera les réponses à l'aide de coefficients	binomiaux, qu'on ne ch	erchera pas à	calculer.
a)	« MAISON »	b) « radar »		
Ca	lcul 22.15 — Anagrammes (II).			0000
Co	mbien les mots suivants ont-il d'anagrammes?			
a)	« Mississippi »	b) « ABRACADAE	8RA »	

Calculs plus avancés

Calcul 22.16 — Formule d'inclusion-exclusion pour trois ensembles.

ಿರೆರೆರೆ

On rappelle que si A et B sont deux ensembles finis, alors on a

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B).$$

Soient A, B et C trois ensembles finis. Donner une formule analogue pour $\mathsf{Card}(A \cup B \cup C)$

.....

Calcul 22.17 — Monotonie d'une suite.

Pour tout $n \in \mathbb{N}$, on pose $u_n = 2^{-2n} \binom{2n}{n}$.

- a) Simplifier le quotient $\frac{u_{n+1}}{u_n}$
- b) La suite $((n+1)u_n^2)_{n\geqslant 0}$ est-elle : (a) croissante? (b) décroissante?

Calcul 22.18 — Produit d'entiers pairs consécutifs.

Soit n un entier naturel non nul. Expliciter le produit des entiers pairs consécutifs de 2 à 2n à l'aide d'une puissance de 2 et d'une factorielle.

 $2 \times 4 \times \cdots \times (2n-2) \times 2n$

Calcul 22.19 — Produit d'entiers impairs consécutifs.

Soit n un entier naturel non nul. On note respectivement I le produit des entiers impairs consécutifs de 1 à 2n + 1 et P le produit des entiers pairs consécutifs de 2 à 2n:

$$I = 1 \times 3 \times 5 \times \cdots \times (2n-1) \times (2n+1) \qquad \text{et} \qquad P = 2 \times 4 \times \cdots \times (2n-2) \times 2n.$$

Calcul 22.20 — Une somme remarquable.

ರೆ ರೆ ರೆ ರೆ

Soient n et p deux entiers naturels, et $(a_k)_{k\geqslant 0}$ une suite de réels.

- a) Si $p \le n$, expliciter la somme $\sum_{k=p}^{n} (a_k a_{k+1})$ en fonction de a_{n+1} et a_p
- c) En déduire une simplification de la somme $\sum_{k=0}^{n} {p+k \choose p}$

► Réponses et corrigés page 245

Dénombrement I

Quelques calculs généraux pour commencer

Calcul 23.1 — Des fractions.

4444

Simplifier:

b)
$$\frac{5}{7} - \left(\frac{2}{21} + \frac{5}{14}\right)$$

Calcul 23.2 — Un peu de factorielles (I).

4444

On rappelle que la factorielle de n est définie par $n! = 1 \times 2 \times 3 \times \cdots \times n$ pour $n \in \mathbb{N}^*$.

Calculer, en simplifiant autant que possible :

a)
$$\frac{10!}{8!}$$

b)
$$\frac{10 \times 8 \times 6 \times 4}{5!} \dots$$

Calcul 23.3 — Un peu de factorielles (II).

4444

Soit n un entier naturel supérieur ou égal à 2. Simplifier :

a)
$$\frac{n!}{(n-2)!}$$

c)
$$\frac{(n^2-1)n!}{(n+1)!}$$

b)
$$\frac{(n-1)!}{(n+3)!}$$

d)
$$\frac{(3!)^4 \times 4!}{2^7}$$

Des dénombrements élémentaires

Calcul 23.4 — Une corbeille de fruits.

Une corbeille de fruits est composée de pommes et/ou d'oranges et comporte cinq fruits.

- a) Déterminer le nombre de corbeilles possibles
- b) Déterminer le nombre de corbeilles comportant au moins une orange
- c) Déterminer le nombre de corbeilles comportant plus d'oranges que de pommes

Remarque

Dans cette fiche, pour les exercices de dénombrement, quand les réponses seront des expressions faisant intervenir des coefficients binomiaux, des puissances, des produits ou des factorielles, on ne cherchera pas à les calculer explicitement.

Par exemple, si la réponse est

$$15 \times 14 \times 13$$
 ou 26^4 ou $\binom{10}{6}$,

on la laissera telle quelle.

Calcul 23.5 — Peinture.
Une maison possède trois chambres. Son propriétaire dispose de quinze couleurs de peinture possibles. O souhaite peindre les trois chambres de trois couleurs différentes.
Déterminer le nombre de façons d'associer une couleur à chaque chambre
Calcul 23.6 — Un aérodrome.
Les aérodromes de loisir sont identifiés par un code à quatre lettres. La première lettre indique la régio du monde et la deuxième le pays.
Combien peut-on identifier d'aérodromes :
a) Si toutes les lettres de l'alphabet peuvent être utilisées?
b) En Europe (la première lettre serait alors « E »)?
c) En France (la deuxième lettre doit être « F »)?
Calcul 23.7 — À l'hippodrome.
On organise une course de chevaux dans laquelle quinze chevaux participent. Déterminer :
a) Le nombre de tiercés dans l'ordre possibles
b) Le nombre de quintés dans l'ordre possibles
c) Le nombre de tiercés dans l'ordre dans lesquels le cheval « Étalon Noir » apparaît.
d) Le nombre de quintés dans l'ordre dans lesquels le cheval « Étalon Noir » n'est pas présent.

Calcul 23.8 — Une urne.
Une urne contient n boules. Elles sont rouges ou vertes, toutes de couleur unie et de même taille.
a) Déterminer le nombre d'urnes possibles
b) Déterminer le nombre d'urnes contenant au moins deux boules rouges
Calcul 23.9 — Un groupe d'amis.
Dans un ensemble de dix personnes dont trois garçons, on s'intéresse à un groupe d'amis comportant six personnes.
a) Déterminer le nombre de groupes possibles
b) Déterminer le nombre de groupes ne comportant pas de garçon.
c) Déterminer le nombre de groupes comportant au moins un garçon.
d) Déterminer le nombre de groupes comportant autant de garçons que de filles.
Calcul 23.10 — Un jeu de lettres.
Au Scrabble, on a tiré sept lettres différentes. Un mot est une succession de lettres. On ne tiendra pas compte du sens des mots.
Déterminer le nombre de mots de quatre lettres que l'on peut former
Calcul 23.11 — Un week-end entre amis.
Un groupe de sept amis part en week-end. Déterminer le nombre de façons de choisir un responsable de la vaisselle, un responsable du rangement et un responsable du ménage.
a) Si aucun membre ne peut cumuler plusieurs fonctions
b) Si un même membre peut cumuler plusieurs fonctions
c) Si un même membre ne peut cumuler au plus que deux fonctions

110 Fiche n° 23. Dénombrement I

Ca	lcul 23.12 — Des codes.		0000
Un	cadenas est sécurisé par un code à quatre chiffres. Calculer le nombre d	e codes :	
a)	En tout		
b)	Avec des chiffres tous différents		
c)	Avec des chiffres pairs uniquement		
d)	Se terminant par le chiffre « 9 »		
e)	Avec des chiffres tous différents et rangés dans l'ordre croissant		
On	lcul 23.13 — Anagrammes. s'intéresse aux anagrammes du mot « FICHE », qu'elles aient un sens, o mbien d'anagrammes peut-on former :	u non.	0000
a)	En tout?		
b)	Si l'on commence par les voyelles?		
c)	Si le mot se termine par un « E »?		
d)	Si l'on souhaite qu'il y ait alternance entre les voyelles et les consonnes	?	
On	lcul 23.14 — Organisation d'un dressing. dispose de cinq jeans différents qu'on veut ranger dans un meuble à tro terminer le nombre de façon de ranger ces jeans :	is tiroirs.	0000
a)	En tout		
b)	De sorte que tous les jeans soient dans le même tiroir		
c)	De sorte qu'un seul tiroir soit vide		
d)	De sorte qu'aucun tiroir ne reste vide		

Calcul	23 15	— Una	association.
Caicui	Z0.10	— Une	association.

Douze personnes constituent une association et doivent choisir un bureau, composé d'un président, d'un trésorier et d'un secrétaire.

Dé	terminer le nombre de bureaux :	
a)	En tout	
b)	Sachant que Pierre et Jean ne veulent pas siéger ensemble	
c)	Ne contenant pas les deux personnes les plus jeunes du groupe	
d)	Contenant le doyen et la personne la plus jeune du groupe	
Ca	lcul 23.16 — Pour les amateurs de poker.	0000
	poker se joue avec un jeu de 52 cartes, composé des cartes de 2 à 1 atre couleurs (carreau, cœur, pique et trèfle).	0 puis valet, dame, roi et as dans les
Dé	terminer le nombre de mains de cinq cartes :	
a)	En tout	
b)	Contenant un carré (une même carte dans les quatre couleurs)	
a)	Où toutes les cartes sont de la même couleur	
c)	Ou toutes les cartes soit de la meme couleur	
d)	Contenant au moins un roi	
e)	Contenant au plus un roi	
f)	Contenant trois rois et deux as	
g)	Contenant un full (deux cartes identiques et trois autres cartes id	entiques).

Calculs plus avancés

Calcul 23.17

Soient p et n deux entiers naturels.

Déterminer le nombre de façons de ranger p + n éléments en deux groupes de n éléments et p éléments respectivement.

Calcul 23.18 — Deux limites.

ර ර ර ර

Soit p un entier naturel.

b) Déterminer
$$\lim_{n \to \infty} \frac{\binom{n}{p}}{2^n}$$

Réponses mélangées

$$13 \times 12 \times \begin{pmatrix} 4 \\ 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 10 \\ 6 \end{pmatrix} - 7 \qquad 7^3 \qquad 15 \times 14 \times 13 \qquad 26^3 \qquad 6 \qquad 3^5 - 3 \times 2^5 + 3$$

$$3 \qquad n+1 \qquad 15 \times 14 \times 13 \times 12 \times 11 \qquad 3 \times 14 \times 13 \qquad 4 \times \begin{pmatrix} 13 \\ 5 \end{pmatrix} \qquad 4! \qquad 3 \times 2 \times 10 \qquad 10^3$$

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad 90 \qquad 5! \qquad 12 \times 11 \times 10 \qquad 10 \times 9 \times 8 \times 7 \qquad 7 \times 6 \times 5 \qquad \begin{pmatrix} 52 \\ 5 \end{pmatrix} \qquad n-1$$

$$\begin{pmatrix} 52 \\ 5 \end{pmatrix} - \begin{pmatrix} 48 \\ 5 \end{pmatrix} \qquad n(n-1) \qquad 3 \times 2 \times 2 \qquad \begin{pmatrix} 10 \\ 4 \end{pmatrix} \qquad 3 \times (2^5 - 2) \qquad 14 \times 13 \times 12 \times 11 \times 10 \qquad 0$$

$$26^4 \qquad \begin{pmatrix} 48 \\ 5 \end{pmatrix} + 4 \times \begin{pmatrix} 48 \\ 4 \end{pmatrix} \qquad 7 \qquad 2! \times 3! \qquad \frac{1}{(n+3)(n+2)(n+1)n} \qquad 0 \qquad 26^2 \qquad 10 \times 9 \times 8$$

$$\frac{11}{30} \qquad 5^4 \qquad 3 \qquad 16 \qquad 13 \times 48 \qquad 7 \times 6 \times 5 \times 4 \qquad 243 \qquad \frac{11}{42} \qquad \begin{pmatrix} n+p \\ n \end{pmatrix} \qquad \begin{pmatrix} 10 \\ 6 \end{pmatrix}$$

$$15 \times 14 \times 13 \qquad \frac{12 \times 11 \times 10}{-3 \times 2 \times 10} \qquad 7^3 - 7 \qquad 3^5 \qquad 10^4 \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix} \times \begin{pmatrix} 7 \\ 3 \end{pmatrix} \qquad 5 \qquad n-1$$

► Réponses et corrigés page 253

Dénombrement II

Remarque

Dans cette fiche, on ne simplifiera pas entièrement les résultats qui sont des valeurs numériques. Par exemple, on pourra laisser tels quels des résultats comme $20\times19\times18$.

Quelques calculs généraux pour commencer

Calcul 24.1	4444
Exprimer les nombres suivants sans utiliser ni coefficien	ats binomiaux, ni factorielles.
On pourra écrire les coefficients binomiaux à l'aide de fe	actorielles puis faire les simplifications nécessaires.
a) $\binom{10}{3}$	
b) $\binom{n}{2}$ pour $n \geqslant 2$	
c) $\binom{n+2}{n+1}$ pour $n \in \mathbb{N}$	
d) $\binom{n+3}{n}$ pour $n \in \mathbb{N}$	
Calcul 24.2 — Quelques fractions.	4444
Calculer:	
a) $\frac{\binom{10}{0}}{\binom{10}{1}}$	c) <u>5!</u>
b) 10!	d) $\frac{\binom{11}{5}}{\binom{10}{4}}$
Calcul 24.3 — Des simplifications.	4444
Simplifier les factorielles suivantes.	
	c) $\frac{((n+1)!)^2}{(n!)^2}$
b) $\frac{(n+1)!}{n!}$	d) $\frac{(n+1)! \times (n+2)!}{n! \times (n+3)!}$

Pour commencer

Calcul 24.4 — Quelques propriétés des coefficients binomiaux. a) Soit $n \in \mathbb{N}$ tel que $n \ge 4$. À quel réel est égal $\binom{n}{4}$?				0000
(2.1)	$\operatorname{égal}\binom{21}{3} + \binom{21}{4}?$	(01)	(99)	
		\bigcirc $\binom{21}{3}$		
c) À quel réel est	$\operatorname{égal} \binom{n+2}{k+1} + \binom{n+1}{k}$	2)?		
		$\bigcirc \binom{n+3}{k+1}$		
Dénombren	nents : cas pra	atiques		
a) J'ai deux pant	Dénombrements de la lons, trois chemises et ons différentes puis-je	t quatre chapeaux.		
b) J'ai six chansoDe combien de faç	_	les unes après les auti	res (une seule fois chaque)	?
,	alons différents et j'en e ons puis-je la remplir?		plir ma valise.	
	Combien de résultats		que je lance sur une cible cenir (en supposant que je	

.....

Calcul 24.6 — Codes secrets.	0000
a) Mon antivol a cinq roues crantées, chacune déterminant un entier de 0 à 9.	
Combien y a-t-il de codes possibles pour mon antivol?	
b) Mon digicode est un mot de trois lettres différentes, parmi les lettres A, B, C, D, E.	
Combien y a-t-il de digicodes possibles?	
c) Un numéro de téléphone est composé de dix chiffres de 0 à 9.	
Combien y a-t-il de numéros de téléphone commençant par « 06 » ?	
Calcul 24.7 — Nombre de tiercés.	0000
Une course de chevaux a lieu à Longchamp : vingt chevaux sont au départ.	
a) Combien y a-t-il de tiercés dans l'ordre?	
b) Combien y a-t-il de tiercés dans le désordre?	
Calcul 24.8 — Choisir des fromages.	0000
a) J'ai cinq fromages différents, je décide d'en prendre un.	
De combien de façons puis-je remplir mon assiette?	
b) J'ai cinq fromages différents, je décide d'en prendre trois.	
De combien de façons puis-je remplir mon assiette?	
c) J'ai cinq fromages différents, de combien de façons puis-je remplir mon assiette?	
(Éventuellement, en n'en prenant aucun)	
Calcul 24.9 — Fromage et dessert. J'ai cinq fromages différents et trois desserts différents.	0000
a) Je décide de prendre un fromage et un dessert.	
De combien de façons puis-je remplir mon assiette?	
b) Je décide de prendre trois fromages et un dessert.	
De combien de façons puis-je remplir mon assiette?	
c) Je peux prendre ce que je veux (y compris rien).	
De combien de façons puis-je remplir mon assiette?	

116 Fiche n° 24. Dénombrement II

Calcul 24.10 — Anagrammes.	0000
a) Combien d'anagrammes peut-on former avec le mot « LAPIN » ?	
b) Combien d'anagrammes peut-on former avec le mot « CAROT ₁ T ₂ E »?	
Les deux « T » sont distincts car numérotés T ₁ et T ₂	
c) Combien d'anagrammes peut-on former avec le mot « CAROTTE » ?	
Les deux « T » sont identiques	
Dénombrements : cas théoriques	
Calcul 24.11 — Nombre de segments.	0000
On considère n points A_1, A_2, \ldots, A_n deux à deux distincts. Combien peut-on tracer de segments (non réduits à un point) dont les extrémités son	nt narmi ees naints?
Complen peut-on tracer de segments (non reduits à un point) dont les extremites soi	nt parmi ces points:
Calcul 24.12 — Nombre de diagonales.	0000
On considère un polygone régulier à n sommets, c'est-à-dire un polygone dont tous angles sont égaux.	s les côtés et tous les
Combien ce polygone possède-t-il de diagonales?	
	•
Calculs plus avancés	
Calcul 24.13 — Palindromes.	<i>ိ</i> ်င်င်
Un <i>palindrome</i> est un mot qui est identique s'il est lu de la gauche vers la droite o gauche. Par exemple, « RESSASSER » est un palindrome ; « LAPIN » n'en est pas un.	u de la droite vers la
On considèrera que « Zzz » est un palindrome même s'il ne figure pas dans le diction	nnaire.
a) Combien y a-t-il de palindromes de quatre lettres?	
b) Combien y a-t-il de palindromes de cina lettres?	

Fiche n° 24. Dénombrement II

Calcul 24.14 — Au poker.

a) Au poker, un brelan est une main de cinq cartes dont trois sont de même hauteur, et les deux autres différentes. Par exemple trois rois, un « 7 » et un « 2 » forment un brelan.

Avec un jeu de 52 cartes, combien de brelans peut-on former?

.....

b) Au poker, une double paire est une main de cinq cartes composée de deux couples de cartes de même hauteur (mais distinctes) et d'une cinquième carte différente. Par exemple deux rois, deux « 10 » et un « 7 » forment une double paire.

Avec un jeu de 52 cartes, combien de doubles paires peut-on former?

Calcul 24.15 — Dénombrements de suites.

Quel est le nombre de suites strictement croissantes de p éléments à valeurs dans [1, n]?

Réponses mélangées

$$24 \quad \frac{7!}{2} \quad 256 \quad (n+1)^2 \quad 120 \quad 26^2 \quad \frac{(n+3)(n+2)(n+1)}{6} \quad \frac{11}{5}$$

$$n+1 \quad 60 \quad 10^5 \quad 10 \times 9 = 90 \quad 30 \quad \boxed{c} \quad \binom{13}{1} \times \binom{4}{3} \times \binom{12}{2}$$

(d)
$$\frac{n(n-3)}{2}$$
 32 $\frac{1}{42}$ 15 10^8 $n+2$ $\binom{20}{3}$ $\frac{n+1}{n+3}$

$$\frac{n(n-1)}{2} \qquad 720 \qquad \frac{1}{(n+2)} \qquad \frac{\binom{13}{2} \times \binom{4}{2} \times \binom{4}{2}}{\times \binom{11}{1} \times \binom{4}{1}} \qquad 20 \times 19 \times 18$$

26³ (a) 5! 7! $\binom{n}{p}$ 64 10 5 $\frac{1}{10}$ $\frac{n(n-1)}{2}$

Généralités sur les probabilités

Quelques calculs généraux pour commencer

4444 Calcul 25.1

Écrire sous forme d'un produit de puissances de nombres premiers les expressions suivantes.

a)
$$27^2 \times 12 \dots$$

b)
$$\frac{49 \times 64}{14}$$
 c) $\frac{81 \times 51}{17}$

c)
$$\frac{81 \times 51}{17}$$

4444 Calcul 25.2

Soit x un nombre réel. Factoriser les expressions suivantes.

a)
$$x^2 - 2x + 1$$

c)
$$x^4 - 1$$

b)
$$x^2 - 6x + 9$$

d)
$$2x^2 + 24x + 72 \dots$$

Calculs de probabilités

Calcul 25.3 0000

Soit X une variable aléatoire qui prend les valeurs $-\frac{3}{2}$, 0, 2 et 3. On suppose que

$$P(X = -\frac{3}{2}) = \frac{1}{10}, \quad P(X = 0) = \frac{1}{5} \text{ et } P(X = 2) = \frac{1}{5}.$$

Déterminer :

a)
$$P(X = 3)$$

b)
$$P(X \le 1)$$

c)
$$P(X \ge 3)$$

d)
$$P(X < 0)$$

Calcul	25 4	— IIn	double	hasard.
Caiciii	40.4	— On	aoubie	nasaru.

Une élève dispose de deux paquets de cartes :

- un paquet dont les cartes sont numérotées de 1 à 32;
- un paquet dont les cartes sont numérotées de 1 à 52.

Elle choisit un des deux paquets au hasard, puis elle tire une carte de ce paquet.

On définit les événements :

T: « L'élève choisit le paquet de 32 cartes »

S : « Elle tire la carte numéro 7 ».

a)	En utilisant l'énoncé, déterminer (sans justification) $P(T)$
b)	En utilisant l'énoncé, déterminer (sans justification) $P_T(S)$
c)	En utilisant l'énoncé, déterminer (sans justification) $\mathrm{P}_{\overline{T}}(S)$
d)	Exprimer $P(S)$ en fonction de $P_T(S)$ et $P_{\overline{T}}(S)$
e)	Calculer $P(S)$
Ca	1 dcul 25.5 — Une question de cours.
	de professeure pose une question à un élève et elle lui demande de choisir la réponse parmi trois réponses ssibles, une seule étant juste. L'élève ne connaît que 60% de son cours.
•	• Si la question est dans la partie du cours qu'il connaît, il répond juste.
•	• Sinon, il choisit aléatoirement la réponse parmi les 3 proposées.
On	définit les événements :

 $C: \mbox{\ensuremath{\mbox{$\scriptscriptstyle C$}}}$ La question fait partie du cours que l'élève connaît »

J: « L'élève répond juste à la question ».

a)	En utilisant l'énoncé, déterminer (sans justification) $P_C(J)$	
b)	En utilisant l'énoncé, déterminer (sans justification) $\mathbf{P}_{\overline{C}}(J)$	
c)	Exprimer $P(J)$ en fonction de $P_C(J)$ et $P_{\overline{C}}(J)$	
d)	Calculer $P(J)$	

Ca	1 dcul 25.6 — Une urne et des boules.	0000
Un	e urne contient trois boules dont deux sont rouges et une est noire.	
On	tire, sans remise, deux boules de l'urne. On définit les événements :	
	R_1 : « La première boule tirée est rouge » R_2 : « La seconde boule tirée est rouge ».	
a)	En utilisant l'énoncé, déterminer (sans justification) $P(R_1)$	
b)	En utilisant l'énoncé, déterminer (sans justification) $P_{R_1}(R_2)$	
c)	En utilisant l'énoncé, déterminer (sans justification) $P_{\overline{R_1}}(R_2)$	
d)	Exprimer $P(R_2)$ en fonction de $P_{R_1}(R_2)$ et $P_{\overline{R_1}}(R_2)$	
e)	Calculer $P(R_2)$	
Ca	dcul 25.7 — Tirages de cartes.	0000
Un	le élève dispose d'un paquet de dix cartes numérotées de 1 à 10.	
Elle	e tire aléatoirement une carte du paquet.	
a)	Déterminer la probabilité qu'elle ne tire pas un 7	
b)	Déterminer la probabilité qu'elle tire un nombre pair	
On	définit les événements :	
	R : « Elle tire une carte dont le numéro est pair » T : « Elle tire une carte dont le numéro est un multiple de 3 ».	
c)	Exprimer $P(R \cup T)$ en fonction de $P(R)$ et de $P(T)$	

d) Calculer $P(R \cap T)$

e) Calculer la probabilité que le nombre tiré soit pair ou un multiple de 3 \dots

L'élève tire maintenant aléatoirement, successivement et sans remise deux cartes du paquet.

On cherche la probabilité p que le numéro de la première carte soit inférieur à celui de la deuxième.

f) Déterminer le nombre de tirages distincts pouvant être obtenus

g) Si la 1^{re} carte tirée est numérotée 1, déterminer le nombre de tirages favorables

h) Si la 1^{re} carte tirée est numérotée 2, déterminer le nombre de tirages favorables

i) En généralisant, déterminer le nombre total de tirages favorables

j) Déterminer p

k) Reprendre la question précédente avec un paquet de dix-sept cartes

Calculs d'espérances et de variances

Calcul 25.8

Soit X une variable aléatoire dont la loi est donnée par

k	-2	-1	0	1	2
P(X = k)	1/10	1/5	1/2	1/10	1/10

Déterminer :

a) $P(X \le 0)$

c) E(X)

b) P(X < 2)

d) V(X)

Calcul 25.9 — Trois urnes.

Une élève se trouve face à trois urnes numérotées de 1 à 3.

- L'urne 1 contient une unique boule numérotée 1.
- L'urne 2 contient deux boules numérotées 1 et 2.
- L'urne 3 contient trois boules numérotées 1, 2 et 3.

L'élève choisit aléatoirement, avec la même probabilité, une des trois urnes, puis tire une boule de l'urne. On note X le numéro de la boule tirée.

Déterminer :

a) P(X = 3)

c) P(X = 1)

e) V(X)

b) P(X = 2)

d) E(X)

Soit p > 0. On considère X une variable aléatoire dont la loi est donnée par

k	-3/2	0	5/2
P(X=k)	1/4	1/2	p

Déterminer :

Calcul 25.11

Soit $\alpha > 0$. On considère X une variable aléatoire dont la loi est donnée par

k	1	2	3	4	
P(X=k)	α	2α	3α	4α	

Déterminer :

b)
$$E(X)$$

c)
$$V(X)$$

Fonctions et sommes de variables aléatoires

Calcul 25.12

Soit X une variable aléatoire d'espérance 12 et de variance 4. On pose Y=3X+4. Déterminer :

a) l'espérance de
$$Y$$

b) la variance de
$$Y$$

Calcul 25.13

Soit X une variable aléatoire d'espérance 3 et de variance 5. On pose $Y = \frac{-X+2}{5}$. Déterminer :

a) l'espérance de
$$Y$$

b) la variance de
$$Y$$

Calcul 25.14

0000

Soit X une variable aléatoire suivant une loi de Bernoulli de paramètre $\frac{4}{5}$. On pose Y=10X-3.

 $\label{eq:determiner:equation} D \acute{\text{e}} terminer:$

a) l'espérance de
$$Y$$

c) les valeurs prises par
$$Y$$

b) la variance de
$$Y$$

d)
$$P(Y = 7)$$

Soit X une variable aléatoire dont loi est donnée par

k	-5	10
P(X=k)	2/3	1/3

On pose $Y = \frac{X+5}{15}$. Déterminer :

- a) l'ensemble des valeurs prises par Y
- b) P(Y = 0)

Calcul 25.16 — Des lancers de dés.

Soit $n \in \mathbb{N}$. On considère un dé équilibré dont les six faces sont numérotées de 1 à 6.

Le dé est lancé successivement n fois. On note X_1, \ldots, X_n les résultats des lancers successifs et indépendants.

- b) Déterminer la variance de X_1

On note $S_n = \sum_{k=1}^n X_k = X_1 + \dots + X_n$ la somme des n résultats obtenus.

Calcul 25.17

Soit X une variable aléatoire d'espérance 3 et de variance 5. On pose $Y=X^2$.

- b) En déduire $\mathrm{E}(Y)$

Calculs plus avancés

Calcul 25.18

Soit X une variable aléatoires à valeurs dans $\{0,1\}$.

Déterminer $E(X) - E(X^2)$

Calcul 25.19

0000

Soit X une variable aléatoire réelle. On note

$$f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mathrm{E}((X-x)^2). \end{array} \right.$$

a) Soit $x \in \mathbb{R}$. Développer l'expression f(x) et l'écrire sous la forme d'un trinôme

e

b) Déterminer le point en lequel f atteint son minimum

...

c) Exprimer le minimum de f en fonction de $\mathrm{V}(X)$

Soit $n \in \mathbb{N}$, soit $m \in \mathbb{R}$ et soit $\sigma \in \mathbb{R}_+^*$.

8888

Calcul 25.20 — Une variable aléatoire centrée réduite.

On considère X_1, \ldots, X_n des variables aléatoires indépendantes d'espérance m et de variance σ^2 et on pose

$$S_n = \frac{1}{\sigma\sqrt{n}} \left(\left(\sum_{k=1}^n X_k \right) - n \times m \right).$$

- b) Déterminer la variance de S_n

							,cp	011303	1110	iang.	.00						
1	$\frac{1}{4}$ $\frac{9}{10}$	_	11 15 -	$\frac{1}{3}$ -3 et 7	$\frac{3}{10}$	$P_C(\overline{J}) + P_{\overline{C}}$	5 V) P	$0 e$ (C) $P(\overline{C})$	t 1	$\frac{\sqrt{7n}}{2}$	V(X)	8	$\frac{21}{832}$ 45		$\frac{2}{3}$	$\frac{1}{32}$	$ \frac{1}{10} $ $ \frac{11}{18} $
x^2	-2E(X			$2^5 \times$	7	$\frac{1}{2}$ 109		$\frac{1}{10}$	17		$S) P(\overline{r}(S))$	(T) $P(\overline{T})$		$\frac{1}{5}$	3	$\frac{1}{52}$	$\frac{1}{10}$
9	$-\frac{1}{10}$,	ŕ	$-\mathrm{E}(X)^2$		$\overline{100}$		9	36		36	90)	3^5	0	5 1	$\frac{1}{2}$
		(x-1)	35n	(x - 3)	2	$\frac{33}{16}$	2	2(x -	$+6)^2$	4	16	$\frac{1}{2}$	D/	$\frac{1}{2}$	$\frac{1}{10}$	$\frac{1}{2}$	$\frac{1}{4}$
_	$\frac{1}{5}$	$\frac{1}{2}$	$\frac{39n}{12}$	40		1	$\frac{\overline{3}}{3}$	<u>-</u>)	$\frac{4}{5}$		$\frac{1}{2}$		P(R)	P(T) $\cap T$	$\frac{2}{3}$	1
2	$^2 \times 3^7$	1	-]	$\frac{7}{10}$		(R_2)				$\frac{5}{18}$		14	$(x \cdot$	- 1)(a	(x + 1)((x^2+1)	$\frac{1}{2}$

► Réponses et corrigés page 261

Autour de la loi binomiale

Quelques calculs généraux pour commencer

Calcul 26.1 — Développement d'expressions polynomiales.

4444

Soit $x \in \mathbb{R}$. Développer, réduire et ordonner les expressions suivantes.

- a) $(x^2 + 3x + 1)(2x^2 x 2)$
- b) $(x^3 x^2 + 4)(x^2 x + 1)$
- c) $(2x+1)^2(x^2+3x-2)$
- d) $(x+1)(x+2)(x^2-3x+1)$

Calcul 26.2 — Factorisation d'expressions polynomiales.

4444

Soit $x \in \mathbb{R}$. Factoriser les expressions suivantes.

- c) $x^2 3x + 2$ a) $4x^2 - 9$
- b) $9x^2 + 6x + 1$
- d) $(x^2 + 3x)(x-2) + x(x+3)$

Premiers calculs

Calcul 26.3 — Définition de la loi binomiale.

Soit $n \in \mathbb{N}^*$ et soit $p \in [0,1]$. Soit X une variable aléatoire de loi binomiale $\mathcal{B}(n,p)$ et soit $k \in [0,n]$. Quelle est l'expression correcte pour P(X = k)?

Calcul 26.4 — Valeurs particulières.

Soit $n \in \mathbb{N}^*$ et soit $p \in [0,1]$. Soit X une variable aléatoire de loi binomiale $\mathcal{B}(n,p)$.

Calculer les probabilités suivantes.

d)
$$P(X = n - 1)$$

b)
$$P(X = n)$$

e)
$$P(X = 2)$$

c)
$$P(X = 1)$$

f)
$$P(X = n-2)$$

Calcul 26.5 — Cas $p = \frac{1}{2}$.

Soit $n \in \mathbb{N}^*$. Soit X une variable aléatoire de loi binomiale $\mathscr{B}\left(n, \frac{1}{2}\right)$.

Soit $k \in [0, n]$. Calculer les expressions suivantes.

a)
$$P(X = k)$$

b)
$$P(X = 0) - P(X = n)$$

d)
$$P(X \le 1)$$

Calcul **26.6** — Cas $p = \frac{1}{4}$.

Soit $n \in \mathbb{N}^*$. Soit X une variable aléatoire de loi binomiale $\mathscr{B}\left(n, \frac{1}{4}\right)$.

Pour chacune des questions suivantes, choisir la bonne réponse parmi les propositions.

a) Que vaut P(X=0)?

b) Que vaut P(X = n)?

- c) Que vaut P(X = 1)?

Reconnaître une loi binomiale

Entraînement 26.7 — Détermination des parametres des situations suivantes, la variable Donner le couple (n, p) de ses paramètres.	
a) On lance cinq fois une pièce de monnaie équili	brée et on note X le nombre de « pile » obtenus.
o) On lance trois dés équilibrés à six faces et on 1	note X le nombre de « 1 » obtenus \dots
On tire successivement, avec remise, six boules dibbtenues.	lles vertes et une boule jaune, indiscernables au toucher. e cette urne et on note X le nombre de boules bleues
Entraînement 26.8 — Lancer de dés.	0000
Soit un entier $n \ge 2$. On lance successivement n de a variable aléatoire X suit-elle une loi binomiale?	lés équilibrés à six faces. Dans chacun des cas suivants,
Si X ne suit pas une loi binomiale, on écrira « no Sinon, on donnera le couple (n,p) tel que X suive	-
a) X est le résultat du premier lancer	
o) X est la somme des chiffres affichés par les dés	S
c) X est le nombre de « 6 » obtenus	
d) X est le nombre de chiffres pairs obtenus	
Entraînement 26.9 $-$ Tirages dans une urn	e. 0000
Une urne contient trois boules rouges et cinq bou \cos s suivants, la variable aléatoire X suit-elle une le	les bleues, indiscernables au toucher. Dans chacun des pi binomiale?
Si X ne suit pas une loi binomiale, on écrira « no Sinon, on donnera le couple (n,p) tel que X suive	
a) On tire successivement 4 boules avec remise et on note X le nombre de boules rouges tirées.	b) On tire successivement 4 boules sans remise et on note X le nombre de boules rouges tirées.

Espérance, variance

Calcul 26.10 — Propriétés de l'espérance.	0000
Soit $n \in \mathbb{N}^*$ et soit $p \in [0, 1]$. Soit X une variable aléatoire de loi binomiale $\mathcal{B}(n, p)$.	
Calculer les espérances suivantes.	
a) $E(X)$	
b) $E(3X)$	
Calcul 26.11 — Propriétés de la variance.	0000
Soit $n \in \mathbb{N}^*$ et soit $p \in [0, 1]$. Soit X une variable aléatoire de loi binomiale $\mathscr{B}(n, p)$.	
Calculer les variances suivantes.	
a) $V(X)$	
b) $V(3X)$	
${ m Calcul}\; {f 26.12} \; - { m Fr\'equence}\; { m d'apparition}.$	0000
On lance 100 fois un dé équilibré à six faces. On note respectivement X le nombre d'apparit	ions du « 1 »
et Y la fréquence d'apparition du « 1 », c'est-à-dire $Y = \frac{X}{100}$.	
a) Donner l'espérance de X	
b) Donner l'espérance de Y d) Donner la variance de Y	
$ ext{Calcul 26.13} - ext{Variable centrée réduite.}$	0000
Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$. Soit X une variable aléatoire de loi binomiale $\mathscr{B}(n,p)$. On note	
$Y = \frac{X - np}{\sqrt{np(1 - p)}} .$	

b) Donner la variance de Y

a) Donner l'espérance de Y

Mise en œuvre pratique

Calcul 26.14 — Relecture d'un texte.

0000

Un texte comporte 10 erreurs. Lors de sa relecture, un correcteur relève chaque erreur indépendamment avec une probabilité p=0,9. Pour tout $k\in [\![1,10]\!]$, on note $X_k=1$ si la k-ième erreur a été corrigée après relecture, $X_k=0$ sinon.

On note enfin $X=X_1+X_2+\cdots+X_{10}$ le nombre d'erreurs corrigées après la relecture.

- a) Donner la loi de X_1
- b) Donner la loi de X

Calculer les probabilités suivantes.

- c) P(X = 0)
- f) P(X = 9)
- d) P(X = 1)
- g) P(X = 10)
- e) P(X = 2)
- h) Calculer E(X)

On suppose maintenant que le texte est soumis à deux relectures indépendantes.

- i) Calculer $P(X_1 = 0)$ dans ce cas
- j) Donner la loi de X dans ce cas

Calcul 26.15 — Tirages dans une urne.

Une urne contient trois boules rouges et cinq boules bleues, indiscernables au toucher. On tire successivement, avec remise, 10 boules de cette urne. On note X le nombre de boules rouges tirées.

- a) Calculer P(X = 0)
- b) En déduire une expression de $P(X \ge 1)$
- c) De même, donner une expression de $P(X \ge 2)$
- d) Donner une expression de la probabilité conditionnelle $P_{(X\geqslant 1)}(X\geqslant 2)$

Calculs plus avancés

Calcul 26.16 — Réponses au hasard dans un QCM. Dans une interrogation de mathématiques, un questionnaire à choix multiples comporte n questions. Pour chaque question, quatre réponses sont possibles et une seule d'entre elles est correcte. Une bonne réponse rapporte 3 points, une mauvaise réponse retire 1 point, l'absence de réponse n'apporte ni ne retire aucun point. a) Un élève A n'a pas révisé avant l'interrogation et ne connaît pas du tout son cours. Il décide de répondre à toutes les questions, en choisissant au hasard la réponse. On note X le nombre de bonnes réponses qu'il obtient. Quelle est l'espérance de X? 8888 Calcul 26.17 — Étude d'un sondage. Lors d'un scrutin, des électeurs doivent choisir entre deux candidats A et B. Avant le vote, un institut de sondage appelle n = 500 personnes et leur demande leur intention de vote afin d'estimer la proportion inconnue p d'électeurs qui donneront leur voix au candidat A. On note X le nombre de personnes interrogées lors du sondage qui voteront pour le candidat A. On admet que X suit la loi binomiale $\mathcal{B}(n,p)$. On rappelle l'inégalité de Bienaymé-Tchebychev : si Y est une variable aléatoire d'espérance μ et de variance V alors, pour tout réel $\delta > 0$, on a $P(|Y - \mu| \ge \delta) \le \frac{V}{\kappa^2}$. a) Soit $\delta > 0$. Donner un majorant de la probabilité $P\left(\left|\frac{X}{n} - p\right| \geqslant \delta\right)$. b) A-t-on $p(1-p) \le \frac{1}{4}$? c) Soit $\alpha \in]0,1[$. Donner une valeur de δ pour laquelle on a $P\left(\left|\frac{X}{n}-p\right| \geqslant \delta\right) \leqslant \alpha$. d) En déduire un intervalle I tel que $P(p \in I) \ge 1 - \alpha$. Un tel intervalle est appelé intervalle de confiance pour p au niveau $1-\alpha$. e) À l'issue du sondage, sur les 500 personnes interrogées, 220 personnes ont indiqué qu'elles voteront

Donner un intervalle de confiance pour p au niveau 95%

pour le candidat A.

Réponses mélangées

► Réponses et corrigés page 267

Droites dans l'espace

Quelques calculs généraux pour commencer

Calcul 27.1 — Des sommes de puissances.

4444

Soit $n \in \mathbb{N}$. Calculer les sommes suivantes.

a)
$$1+2+2^2+2^3+\cdots+2^n$$
.

c)
$$1+2^2+2^4+2^6\cdots+2^{2n}$$
..

b)
$$3+3^2+\cdots+3^n$$

d)
$$1 + e + e^2 + \dots + e^n \dots$$

Calcul 27.2

4444

Résoudre les inéquations suivantes.

On attend la solution sous la forme d'un intervalle ou d'une réunion d'intervalles.

a)
$$|x-3| \le 4$$

c)
$$|-x+3| \leqslant 7$$

b)
$$|2x+1| \ge 5 \dots$$

Remarque

Dans toute la fiche, on travaille dans l'espace muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

Vecteurs dans l'espace

Calcul 27.3 — Sont-ils colinéaires ?

0000

Les vecteurs \overrightarrow{u} et \overrightarrow{v} suivants sont-ils colinéaires, « oui » ou « non »?

a)
$$\vec{u} \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$

d)
$$\vec{u} \begin{pmatrix} e \\ 1 \\ e^2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

b)
$$\vec{u} \begin{pmatrix} 3 \\ 6 \\ -9 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -2 \\ -4 \\ 6 \end{pmatrix}$

c)
$$\vec{u} \begin{pmatrix} 1 \\ 1+\sqrt{3} \\ 1-\sqrt{3} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \sqrt{3}-1 \\ 2 \\ 2\sqrt{3}-4 \end{pmatrix}$

Calcul 27.4 — Coplanarité (I).

Les vecteurs \vec{u} , \vec{v} et \vec{w} suivants sont-ils coplanaires, « oui » ou « non »?

Calcul 27.5 — Coplanarité (II).

Dans chacun des cas suivants, les vecteurs $\overrightarrow{u} \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix}$, $\overrightarrow{v} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ et \overrightarrow{w} sont-ils coplanaires, « oui » ou « non » ?

Calcul 27.6 — Coplanarité à paramètre.

Déterminer la valeur de m pour que les vecteurs \vec{u} , \vec{v} et \vec{w} suivants soient coplanaires.

Calcul 27.7

a) Les vecteurs
$$\vec{u} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$ sont-ils coplanaires?

b) Déterminer un triplet
$$(a,b,c)$$
 tel que $\begin{pmatrix} 1\\1\\1 \end{pmatrix} = a\vec{u} + b\vec{v} + c\vec{w}$

Points dans l'espace

Calcul 27.8 — Une question d'alignement (I).

On considère les points A(1, -2, 1), B(3, -1, 2), C(a, b, 0), E(0, 4, 3), et F(-4, x, 1).

- a) Déterminer (a,b) pour que les points A, B, C soient alignés
- b) Déterminer x pour que (AB) et (EF) soient parallèles

Calcul 27.9 — Une question d'alignement (II).	0000
On considère les points $A(-2,1,1)$, $B(1,3,2)$, $C(a,5,2)$ et $D(-5,0,b)$.	
a) Peut-on déterminer a pour que A, B, C soient alignés?	
Si oui, préciser la valeur de a	
b) Peut-on déterminer b pour que A, B, D soient alignés?	
Si oui, préciser la valeur de b	
c) Peut-on déterminer (a, b) pour que B, C, D soient alignés?	
Si oui, préciser la valeur de (a,b)	
Calcul 27.10 — Coplanarité de points (I).	0000
Dans chacun des cas suivants, les points $\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}$ sont-ils coplanaires, « oui » ou « no	n » ?
a) $A(2,-1,3)$, $B(2,1,1)$, $C(5,0,3)$ et $D(8,1,4)$	
b) $A(2,2,0), B(1,1,-1), C(0,6,2)$ et $D(1,1,-1)$	
c) $A(1,-7,1)$, $B(5,2,-2)$, $C(7,3,0)$ et $D(1,2,-8)$	
Calcul 27.11 — Coplanarité de points (II).	0000
Soient $A(2,1,3)$, $B(4,2,2)$, $C(-2,-2,2)$ et $D(a,2,3)$. On suppose que A,B,C,D sont contractions of $A(2,1,3)$, $B(4,2,2)$, $C(-2,-2,2)$ et $D(a,2,3)$.	oplanaires.
Déterminer la valeur de a	
Droites dans l'espace	
Calcul 27.12 — Une mise en jambes. (0)	0000
On considère la droite (d) passant par $A(1,2,3)$ et dirigée par le vecteur $\overrightarrow{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.	
a) Donner la réprésentation paramétrique de (d)	
Dire (« oui » ou « non ») si les points suivants appartiennent à (d) .	
b) $C(1,2,4)$	
Déterminer les valeurs du réel x pour que les points suivants appartiennent à (d) .	
d) $D(1,2,x)$	

Calcul 27.13 — Une deuxième mise en jambes.

Soit A(1,6,-3). On considère la droite (d) passant par A et dirigée par le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

Déterminer, dans chacun des cas suivants et quand ce la est possible, les valeurs des réels x et y pour que le point considéré appartienne à la droite (d).

- a) B(1,6,x)
- b) C(2,4,x)
- c) D(1,5,x)
- d) $E(x, x^2, y)$

Calcul 27.14 — Intersections.

Soit A(1,6,-3). On considère la droite (d) passant par A et dirigée par le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

Dans chacun des cas suivants, déterminer les points d'intersection de (d) avec les droites suivantes, définies par un point et un vecteur directeur.

- a) B(2,6,-2) et $\overrightarrow{v}\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$

- d) E(5,2,-3) et $\vec{a} \begin{pmatrix} -2\\0\\3 \end{pmatrix}$

Calculs plus avancés

Calcul 27.15

On considère la droite (d) définie par le point A(1, -2, -3) et le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

point(s) d'intersection

- a) Déterminer les valeurs du paramètre m pour que l'intersection de (d) et de la droite (d') définie par le point B(6,-5,m) et le vecteur $\overrightarrow{v}\begin{pmatrix}1\\-3\\2\end{pmatrix}$ ne soit pas vide, et préciser alors les coordonnées du ou des

Réponses mélangées

$$\frac{4^{n+1}-1}{3} \quad \text{non} \quad 3 \quad \text{oui} \quad \varnothing \quad \text{non} \quad \text{non} \quad 1 \quad 7 \quad \text{oui} \quad \varnothing \quad \text{oui}$$

$$[-1,7] \quad 2^{n+1}-1 \quad \text{non} \quad \text{impossible} \quad \text{oui} \quad x=2 \quad \frac{\mathrm{e}^{n+1}-1}{\mathrm{e}-1} \quad (2,-2) \text{ et } (-4,-8)$$

$$\text{non} \quad -3 \quad m=4, \, \mathrm{M}(4,1,0) \quad (0,-1,1) \quad \mathrm{M}(-1,10,-5) \quad \mathrm{A}\begin{pmatrix} 1\\2\\3 \end{pmatrix} + t \vec{k} \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$\text{oui} \quad m=\frac{3}{8} \quad -2 \quad \text{oui} \quad \frac{7}{2} \quad \text{non} \quad \varnothing \quad \text{oui} \quad [-4,10] \quad 3 \times \frac{3^n-1}{2}$$

$$]-\infty, -3] \cup [2,+\infty[\quad (5,2) \quad \text{non} \quad (-1,-3) \quad \text{oui} \quad \text{non} \quad x \in \mathbb{R} \quad \text{non}$$

► Réponses et corrigés page 272

Produit scalaire dans l'espace

Quelques calculs généraux pour commencer

Calcul 28.1 — Évaluation d'un polynôme.

4444

On considère le polynôme $P = X^2 + \frac{1}{2}X + \frac{1}{3}$.

Donner les valeurs exactes de :

- a) P(1)
- c) $P(\frac{3}{2})$
- b) P(-4)

Calcul 28.2 — Des suites entrelacées.

4444

Soient $(u_n)_n$, $(v_n)_n$ et $(w_n)_n$ les suites telles que $u_0 = v_0 = u_0 = u_0 = u_0$ et telles que, pour tout entier $n \ge 0$:

$$u_{n+1} = u_n + n + 1, \ v_{n+1} = v_n + n, \ w_{n+1} = w_n - n + 1.$$

Calculer:

- a) u_1 ...

Remarque

Dans toute cette fiche, l'espace est muni d'un repère orthonormé.

Vecteurs orthogonaux

Calcul 28.3 — Test d'orthogonalité.

On considère les vecteurs suivants :

$$\vec{a} \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix}$$

$$\overrightarrow{b} \begin{pmatrix} 14 \\ -1 \\ -8 \end{pmatrix}$$

$$\vec{c} \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

$$\vec{d} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$

Dans chacun des cas suivants, dire si « oui » ou « non » les vecteurs proposés sont orthogonaux.

- a) \vec{a} et \vec{b} e) \vec{b} et \vec{d} b) \vec{a} et \vec{c} d) \vec{b} et \vec{c} f) \vec{c} et \vec{d}

Calcul 28.4 — Avec des racines.

On considère les vecteurs suivants :

$$\vec{a} \begin{pmatrix} 4 \\ -\sqrt{6} \\ 3\sqrt{2} \end{pmatrix}$$

$$\vec{a} \begin{pmatrix} 4 \\ -\sqrt{6} \\ 3\sqrt{2} \end{pmatrix} \qquad \vec{b} \begin{pmatrix} -2 \\ \sqrt{3} + \sqrt{6} \\ 1 - 3\sqrt{2} \end{pmatrix} \qquad \vec{c} \begin{pmatrix} 2 \\ \sqrt{3} \\ 1 \end{pmatrix}$$

$$\vec{c} \begin{pmatrix} 2 \\ \sqrt{3} \\ 1 \end{pmatrix}$$

$$\vec{d} \begin{pmatrix} -2\sqrt{3} \\ 3 - \sqrt{2} \\ \sqrt{3} + \sqrt{6} \end{pmatrix}$$

Dans chacun des cas suivants, dire si « oui » ou « non » les vecteurs proposés sont orthogonaux.

a)
$$\vec{a}$$
 et \vec{b}

c) \vec{a} et \vec{d}

e) \vec{b} et \vec{d}

b) \vec{a} et \vec{c}

f) \vec{c} et \vec{d}

c)
$$\vec{a}$$
 et \vec{d}

e)
$$\vec{b}$$
 et \vec{d}

b)
$$\vec{a}$$
 et \vec{c}

d)
$$\vec{b}$$
 et \vec{c}

f)
$$\vec{c}$$
 et \vec{d}

Calcul 28.5 — Avec un paramètre (I).

Dans chacun des cas suivants, déterminer l'ensemble des réels t tels que \vec{v} et \vec{w} soient orthogonaux.

a)
$$\vec{v} \begin{pmatrix} 4 \\ 2t \\ 1 \end{pmatrix}$$
 et $\vec{w} \begin{pmatrix} t+3 \\ 3 \\ 4 \end{pmatrix}$

b)
$$\vec{v} \begin{pmatrix} 2t \\ 2+t \\ 5 \end{pmatrix}$$
 et $\vec{w} \begin{pmatrix} t \\ 2-t \\ -1 \end{pmatrix}$...

Calcul 28.6 — Avec un paramètre (II).

Dans chaque cas, déterminer l'ensemble des réels t tels que \vec{v} et \vec{w} soient orthogonaux.

b)
$$\vec{v} \begin{pmatrix} t-1 \\ t+2 \\ t-3 \end{pmatrix}$$
 et $\vec{w} \begin{pmatrix} t+1 \\ t+2 \\ 3-t \end{pmatrix}$...

Autour de la bilinéarité du produit scalaire

Calcul 28.7

Soient \vec{v} et \vec{w} deux vecteurs. Exprimer chacun des produits scalaires en fonction de $||\vec{v}||$, $||\vec{w}||$ et $\vec{v} \cdot \vec{w}$.

a)
$$2\vec{v} \cdot (3\vec{w} - \vec{v})$$

c)
$$(3\vec{v} - \vec{w}) \cdot (2\vec{v} + 3\vec{w}) \dots$$

b)
$$(\vec{v} + 2\vec{w}) \cdot (3\vec{w} - \vec{v}) \dots$$

d)
$$(\vec{v} + 3\vec{w}) \cdot (3\vec{w} - \vec{v}) \dots$$

Calcul 28.8

Soient \vec{v} et \vec{w} deux vecteurs. Exprimer chacun des carrés scalaires en fonction de $||\vec{v}||$, $||\vec{w}||$ et $|\vec{v}| \cdot \vec{w}$.

a)
$$\|\vec{v} + 2\vec{w}\|^2$$

c)
$$\left\|2\vec{v} + \sqrt{3}\vec{w}\right\|^2 \dots$$

b)
$$||3\vec{v} - \vec{w}||^2$$

d)
$$\left\| 2\vec{v} - \sqrt{5}\vec{w} \right\|^2 \dots$$

Calcul 28.9 — Avec des vecteurs orthogonaux.

Soient \vec{u} , \vec{v} et \vec{w} des vecteurs orthogonaux deux à deux et tels que : $\|\vec{u}\| = \sqrt{2}$, $\|\vec{v}\| = 1$ et $\|\vec{w}\| = 3$. Calculer :

- a) $(2\vec{v} 3\vec{w}) \cdot (3\vec{v} + 2\vec{w}) \dots$
- d) $||2\vec{v} + 3\vec{w}||^2$
- b) $(2\vec{v} 3\vec{w}) \cdot (3\vec{u} + 2\vec{w}) \dots$
- e) $\left\|\sqrt{2}\vec{u} + \vec{w}\right\|^2 \dots$
- c) $(\vec{u} + \vec{w}) \cdot (2\vec{u} 2\vec{w})$
- f) $\|\vec{u} + \vec{v} + \vec{w}\|^2$

Équations cartésiennes de plans

Calcul 28.10

Dans chaque cas, donner une équation du plan \mathcal{P} passant par le point A et de vecteur normal \vec{n} .

- a) A(2,5,6) et $\vec{n} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$
- b) A(1,-2,3) et $\overrightarrow{n} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$
- c) A(2, -4, 5) et $\vec{n} \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$

Calcul 28.11

On considère les points A(1,0,2) et B(2,1,0). Indiquer l'équation du plan passant par A et perpendiculaire à la droite (AB) parmi celles proposées ci-dessous :

(a) x + 2z + 3 = 0

(c) x + y + 2z - 5 = 0

(b) x + y - 2z + 3 = 0

(d) x + 2z - 5 = 0

Calcul 28.12

On considère les plans \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_3 et \mathcal{P}_4 d'équations respectives :

$$\mathcal{P}_1: x+y+z+3=0, \quad \mathcal{P}_2: 2x-y+5=0, \quad \mathcal{P}_3: x-2y+z-3=0, \quad \mathcal{P}_4: x+2y+z+2=0.$$

Dans chacun des cas suivants, dire si « oui » ou « non » les plans proposés sont perpendiculaires.

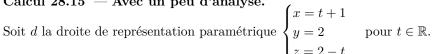
- a) \mathcal{P}_1 et \mathcal{P}_2
- c) \mathcal{P}_1 et \mathcal{P}_4
- e) \mathcal{P}_2 et \mathcal{P}_4

- b) \mathcal{P}_1 et \mathcal{P}_3
- d) \mathcal{P}_2 et \mathcal{P}_3
- f) \mathcal{P}_3 et \mathcal{P}_4

Projetés orthogonaux et calculs de distances

Coloul 28 12 Distance d'un point à une ducite	0000
Calcul 28.13 — Distance d'un point à une droite. On considère les points $A(3,4,12)$, $B(3,0,2)$ et $C(1,2,3)$. On souhaite déterminer la distance	du point A
à la droite (BC). $ (6, 1, 12), B(6, 6, 2) = C(1, 2, 6). $	
a) Déterminer les coordonnées du vecteur \overrightarrow{BC}	
h) Denner une représentation peremétrique de la droite (PC)	
b) Donner une représentation paramétrique de la droite (BC)	
c) Donner une équation du plan ${\mathcal P}$ passant par A et de vecteur normal $\overrightarrow{\mathrm{BC}}$	
d) Déterminer les coordonnées de H, le projeté orthogonal de A sur (BC)	
a) Beterminer les coordonnees de 11, 10 project érenégonia de 11 sur (Be).	
e) Calculer la longueur AH	
Calcul 28.14 — Avec une représentation paramétrique.	0000
Soit d la droite de représentation paramétrique :	
$\int x = 3 + t$	
$\begin{cases} x = 3 + t \\ y = 5 + 2t \\ z = 1 - t \end{cases}, \ t \in \mathbb{R}.$	
(z=1-t)	
On souhaite déterminer la distance du point $A(5,0,3)$ à la droite d .	
a) Déterminer une équation du plan ${\cal P}$ perpendiculaire à d passant par A	
.,	
b) Déterminer les coordonnées du projeté orthogonal H du point A sur la droite d	
c) Déterminer la longueur AH	

Calcul 28.15 — Avec un peu d'analyse.



On souhaite déterminer la distance du point A(2,4,0) à la droite d.

À tout réel t, on associe le point M de d de coordonnées M(t+1,2,2-t).

Soit f la fonction définie sur \mathbb{R} qui, à tout réel t, associe f(t) = AM.

- a) Calculer f(t)
- b) Calculer f'(t)
- c) Déterminer la distance de A à d

Calcul 28.16 — Distance d'un point à un plan.

Soit \mathcal{P} le plan d'équation cartésienne x - 3y + 2z + 3 = 0.

On souhaite déterminer la distance du point A(2,4,0) au plan \mathcal{P} .

Soit H le projeté orthogonal de A sur \mathcal{P} .

a) Donner une représentation paramétrique de la droite (AH)

Déterminer :

- b) les coordonnées de H
- c) la distance de A à \mathcal{P}

Calculs plus avancés

Calcul 28.17 — Cas général.

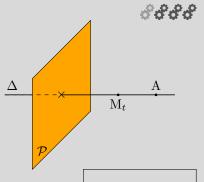
Soient $A(x_A, y_A, z_A)$ un point et P le plan d'équation ax + by + cz + d = 0, où a, b, c et d sont des réels avec a, b et c non simultanément nuls.

On souhaite déterminer la distance de A au plan \mathcal{P} .

Soit Δ la droite perpendiculaire à \mathcal{P} passant par A.

À tout réel t, on associe le point $M_t(x_A + at, y_A + bt, z_A + ct)$.

On admet que la droite Δ est l'ensemble des points M_t avec t réel.

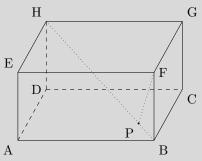


- a) Soit t un réel, exprimer la longueur AM_t en fonction de t, a, b et c
- En utilisant l'équation de \mathcal{P} , déterminer le réel t_{H} tel que $\mathrm{M}_{t_{\mathrm{H}}}$ appartienne à \mathcal{P} .
- c) En déduire la distance de A à ${\mathcal P}$

Calcul 28.18 — En perdant les repères.

Soit ABCDEFGH un pavé droit avec AE=EH=1 et AB=2. Soit P le projeté orthogonal de F sur la droite (BH).

On se propose de calculer la distance du point F à la droite (BH).



- e) En déduire la distance de F à (BH) à l'aide du théorème de Pythagore

Calcul 28.19 — Une aire de triangle.

On considère les points A(1,1,1), B(4,2,2) et C(2,3,3). On souhaite calculer l'aire du triangle ABC.

- a) Donner une représentation paramétrique de (BC)
- b) Déterminer la distance de A à (BC)
- c) En déduire l'aire de ABC

Réponses mélangées

$$\sqrt{2t^2 - 6t + 9} \quad -48 \quad \frac{11}{6} \quad \operatorname{H}\left(\frac{4}{3}, \frac{5}{3}, \frac{8}{3}\right) \quad \text{oui} \quad \text{non} \quad \|\vec{v}\|^2 + 4\|\vec{w}\|^2 + 4\vec{v} \cdot \vec{w}$$

$$\frac{5\sqrt{3}}{3} \quad \frac{7\sqrt{3}}{3} \quad \left\{-5 - \sqrt{31}, -5 + \sqrt{31}\right\} \quad -2x + 2y + z - 14 = 0 \quad \text{oui} \quad 5x + 6y + 14 = 0$$

$$10 \quad 4\|\vec{v}\|^2 + 3\|\vec{w}\|^2 + 4\sqrt{3} \, \vec{v} \cdot \vec{w} \quad \text{non} \quad \operatorname{H}\left(\frac{5}{2}, \frac{5}{2}, 1\right) \quad 9\|\vec{w}\|^2 - \|\vec{v}\|^2$$

$$-\frac{ax_A + by_A + cz_A + d}{a^2 + b^2 + c^2} \quad x + 2y - z - 2 = 0 \quad -14 \quad 13 \quad \text{non} \quad \text{non} \quad \left(\frac{-2}{2}\right)$$

$$\left\{-\frac{8}{5}\right\} \quad 4\|\vec{v}\|^2 + 5\|\vec{w}\|^2 - 4\sqrt{5} \, \vec{v} \cdot \vec{w} \quad \text{(b)} \quad \operatorname{AM}_t = |t|\sqrt{a^2 + b^2 + c^2} \quad 1 \quad 4\sqrt{5}$$

$$6\|\vec{v}\|^2 - 3\|\vec{w}\|^2 + 7\, \vec{v} \cdot \vec{w} \quad \frac{3\sqrt{2}}{2} \quad 2x - y + 2z - 10 = 0 \quad \frac{43}{3} \quad \text{oui} \quad \text{non}$$
 oui
$$\operatorname{BP} \times \operatorname{BH} \quad \begin{cases} x = 3 - 2t \\ y = 2t \\ z = 2 + t \end{cases} \quad t \in \mathbb{R} \quad \text{oui} \quad \text{non} \quad 9\|\vec{v}\|^2 + \|\vec{w}\|^2 - 6\, \vec{v} \cdot \vec{w}$$

$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2t \end{cases} \quad t \in \mathbb{R} \quad 12$$

$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2t \end{cases} \quad t \in \mathbb{R} \quad 2t - 3$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ y = 2 + t \\ t \end{cases} \quad t \in \mathbb{R} \quad 2t - 3$$

$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ y = 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 + t \end{cases} \quad \text{oui}$$

$$\begin{cases} x = 4 - 2t \\ 2 +$$

► Réponses et corrigés page 276

Plans et sphères dans l'espace

Quelques calculs généraux pour commencer

Calcul 29.1 — Intersection de droites dans le plan.

4444

Déterminer l'intersection éventuelle des droites déterminées par les équations suivantes.

Il s'agit de résoudre des systèmes de deux équations à deux inconnues.

a)
$$2x + y + 5 = 0$$
 et $y = -2x + 4$...

c)
$$2x + y + 3 = 0$$
 et $y = -3x + 6$...

b)
$$2x - 2y = 1$$
 et $y = x - \frac{1}{2}$

Calcul 29.2 — Signe d'un trinôme.

4444

Résoudre les inéquations suivantes.

On donnera les solutions sous la forme d'un intervalle ou d'une réunion d'intervalles.

a)
$$(2x-3)(x+1) > 0$$

b)
$$(5-2x)(3+x) > 0$$

c)
$$\frac{2x+1}{x-5} \le 0$$

Remarque

Dans toute la fiche, on travaille dans l'espace muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

Autour des équations cartésiennes

Calcul 29.3 — Pour s'échauffer (I).

Pour chacune des équations cartésiennes de plan suivantes, donner un point appartenant à ce plan.

a)
$$x + 2y = 3$$

c)
$$x = 6$$

b)
$$y - 3z = 4$$

d)
$$x + y - 2z = 18$$

Calcul 29.4 — Pour s'échauffer (II).

Déterminer une équation du plan passant par le point A(1,2,1) et normal au vecteur indiqué.

- a) $\overrightarrow{n_1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \dots$
- c) $\overrightarrow{n_3} \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$
- b) $\overrightarrow{n_2} \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$

Calcul 29.5 — Pour s'échauffer (III).

Pour chacune des équations cartésiennes de plan suivantes, donner un vecteur normal à ce plan.

a)
$$x + 2y = 3$$

c) x = 6

d) x + y - 2z = 18

Calcul 29.6 — Des vecteurs remarquables.

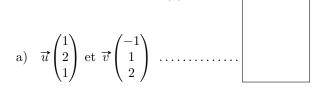
En déterminant un vecteur orthogonal aux deux vecteurs \vec{u} et \vec{v} , déterminer une équation du plan passant par A(1,2,3) et dirigé par les deux vecteurs \vec{u} et \vec{v} .

Dans chacun des cas, on pourra remarquer qu'il existe un vecteur orthogonal à \vec{u} et \vec{v} « remarquable ».

- a) $\vec{u} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
- c) $\vec{u} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$
- b) $\vec{u} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
- d) $\vec{v} \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 2 \\ -5 \end{pmatrix}$

Calcul 29.7 — Vecteurs orthogonaux à deux vecteurs.

Dans chacun des cas suivants, déterminer un vecteur \vec{n} orthogonal aux vecteurs \vec{u} et \vec{v} . On cherchera un vecteur \vec{n} de la forme $\vec{n} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$.



b)
$$\vec{u} \begin{pmatrix} -2\\1\\3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

Calcul 29.8 — Équations cartésiennes de plan (I).	0000
Déterminer une équation cartésienne du plan passant par $A(1,2,-3)$ e ci-dessous. On commencera par déterminer un vecteur \vec{n} orthogonal à \vec{u}	
a) $\vec{u} \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}$	
b) $\vec{u} \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$	
Calcul 29.9 — Équations cartésiennes de plan (II).	0000
Déterminer une équation cartésienne du plan passant par $A(1,2,-3)$ e ci-dessous. On commencera par déterminer un vecteur \vec{n} orthogonal à \vec{u}	
a) $\vec{u} \begin{pmatrix} 4 \\ 1 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ -2 \\ -5 \end{pmatrix}$	
b) $\vec{u} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 4 \\ 8 \\ 3 \end{pmatrix}$	
Avec des points	
Calcul 29.10 — Équation de plan (I).	0000
Dans chacun des cas suivants, déterminer une équation cartésienne du pla la forme $ax+by+cz=1$.	an défini par les points A, B, C de
Il s'agit de résoudre des systèmes de trois équations à trois inconnues.	
a) $A(1,0,1)$, $B(2,-1,0)$ et $C(3,-2,0)$	
b) $A(1,0,1)$, $B(2,-1,0)$ et $C(3,-2,2)$	
c) $A(1,0,1)$, $B(2,-1,1)$ et $C(3,-1,1)$	
Calcul 29.11 — Équation de plan (II).	0000
On considère les points $A(\alpha,0,0), B(0,\beta,0)$ et $C(0,0,\gamma)$ où α,β,γ sont t	crois réels non nuls.
Déterminer une équation cartésienne du plan défini par les points A, B, C	C de la forme $ax + by + cz = 1$.

Calcul 29.12 — Plan médiateur.

Dans chacun des cas suivants, déterminer une équation du plan \mathcal{P} passant par le milieu du segment [AB] et orthogonal à (AB).

a)
$$A(2,0,0)$$
 et $B(-4,0,0)$

b)
$$A(2,1,-3)$$
 et $B(4,-1,-3)$

Intersections

Calcul 29.13 — Intersection d'une droite et d'un plan (I).

On considère la droite (d) définie par le point A(1,2,-1) et le vecteur directeur $\overrightarrow{u}\begin{pmatrix} 1\\-1\\2 \end{pmatrix}$. Dans chacun des cas suivants, déterminer l'intersection de (d) et de \mathcal{P} .

On utilisera une représentation paramétrique de la droite.

a)
$$\mathcal{P}: x + 2y = 6$$

b)
$$\mathcal{P}: x + y + 2z = 8$$

c)
$$\mathcal{P}: 2x - z = 4$$

Calcul 29.14 — Intersection d'une droite et d'un plan (II).

On considère la droite (d) définie par le point A(1,2,-1) et le vecteur directeur $\overrightarrow{u}\begin{pmatrix} 1\\-1\\2 \end{pmatrix}$. Dans chacun des cas suivants, déterminer l'intersection de (d) et de \mathcal{P} .

a)
$$\mathcal{P}: x - y + 2z = 6$$

b)
$$\mathcal{P}: 2x - z = 3...$$

Calcul 29.15 — Intersection de deux plans (I).

Dans chacun des cas suivants, déterminer l'intersection des deux plans \mathcal{P}_1 et \mathcal{P}_2 . On attend pour la réponse un point et un vecteur directeur de la droite d'intersection.

a)
$$\mathcal{P}_1: x = 1 \text{ et } \mathcal{P}_2: y = -1 \dots$$

b)
$$\mathcal{P}_1: x+z=1 \text{ et } \mathcal{P}_2: z=-1 \dots$$

c)
$$\mathcal{P}_1: x + 2y = 1 \text{ et } \mathcal{P}_2: x = -1 \dots$$

Calcul 29.16 — Intersection de deux plans (II).

0000

Même exercice.

- a) $\mathcal{P}_1: x + y 2z = 6 \text{ et } \mathcal{P}_2: y + z = 12 \dots$
- b) $\mathcal{P}_1: x + y 2z = 6 \text{ et } \mathcal{P}_2: x y + z = 12 \dots$
- c) $\mathcal{P}_1: 2x + y 2z = 10 \text{ et } \mathcal{P}_2: x 2y + z = -5 \dots$
- d) $\mathcal{P}_1: 3x 2y 6z = 5$ et $\mathcal{P}_2: 2x 3y + 5z = 0$...

Calcul 29.17 — Intersection de trois plans.

Dans chacun des cas suivants, déterminer les coordonnées du point d'intersection des plans \mathcal{P}_1 , \mathcal{P}_2 et \mathcal{P}_3 .

- a) $\mathcal{P}_1: x + y = 1, \, \mathcal{P}_2: y z = 0 \text{ et } \mathcal{P}_3: x z = 3 \dots$
- b) $\mathcal{P}_1: x + y + 2z = 1, \, \mathcal{P}_2: y z = 2 \text{ et } \mathcal{P}_3: y + 3z = 4 \dots$
- c) $\mathcal{P}_1: x + 2y 3z = 14, \, \mathcal{P}_2: x y z = 28 \text{ et } \mathcal{P}_3: y + 4z = 0 \dots$

Sphères

Calcul 29.18 — Équations de sphère.

Dans chacun des cas suivants, donner l'équation de la sphère de centre Ω et de rayon R.

 $On\ donnera\ l'équation\ sous\ forme\ développée\ et\ ordonnée.$

- a) $\Omega(1,2,3)$ et R=7
- b) $\Omega(1, -2, 1)$ et R = 2

Calcul 29.19 — Éléments caractéristiques d'une sphère (I).

Identifier les ensembles définis par l'équation cartésienne ci-dessous. En particulier s'il s'agit de sphères, préciser leur centre Ω et leur rayon R.

- a) $x^2 + y^2 + z^2 = 4$
- b) $x^2 + y^2 + z^2 + 2x 4y 3z + 10 = 0$
- c) $x^2 + y^2 + z^2 + 2x 4y 6z + 1 = 0$

Calcul 29.20 — Éléments caractéristiques d'une sphère (II).

Les équations suivantes décrivent des sphères. Déterminer leur centre Ω et leur rayon R.

a)
$$x^2 + y^2 + z^2 - x - 3y + z - \frac{5}{4} = 0$$

b)
$$x^2 + y^2 + z^2 - 2\cos(\alpha)x - 2\sin(\alpha)y - 3 = 0$$

Calcul 29.21 — Intersection d'une droite et d'une sphère.

On s'intéresse à l'intersection d'une droite et d'une sphère.

a) Donner l'équation cartésienne de la sphère S de centre $\Omega(1,2,1)$ et de rayon R=1.

b) Donner une représentation paramétrique de la droite (d) passant par $\mathcal{A}(1,1,1)$ et dirigée par \overrightarrow{u}

c) Déterminer les deux points d'intersection de (d) et ${\mathcal S}\,$. .

Calcul 29.22 — Intersections.

En suivant le même plan de résolution que dans l'exercice précédent, déterminer l'intersection de la sphère \mathcal{S} de l'exercice précédent avec les droites suivantes.

- a) (d_2) définie par B(3,5,-2) et dirigée par $\overrightarrow{v}\begin{pmatrix} -2\\1\\0 \end{pmatrix}$
- b) (d_3) définie par $C\left(2,4,1+\frac{\sqrt{2}}{2}\right)$ et dirigée par $\overrightarrow{w}\begin{pmatrix}1\\1\\0\end{pmatrix}$

Calculs plus avancés

Calcul 29.23

Déterminer l'intersection des plans suivants.

a)
$$\mathcal{P}_1: 2x + 3y - 4z = 12, \ \mathcal{P}_2: x + 3y - 5z = -18 \text{ et } \mathcal{P}_3: -x + 2y - 3z = 6 \dots$$

b)
$$\mathcal{P}_1: x - 2y + 3z = 12$$
, $\mathcal{P}_2: 2x - 3y + 2z = -18$ et $\mathcal{P}_3: 5x - 8y + 7z = -24$

Calcul 29.24

0000

Même exercice.

a)
$$\mathcal{P}_1: 2x - 4y + z = 1$$
, $\mathcal{P}_2: x - 2y + z = -2$ et $\mathcal{P}_3: 3x - 6y + 2z = 6$

b)
$$\mathcal{P}_1: 2x - 4y + z = 5$$
, $\mathcal{P}_2: x - 2y + z = -10$ et $\mathcal{P}_3: x + 3y - z = 10$

Réponses mélangées

► Réponses et corrigés page 282

Réponses et corrigés

Fiche nº 1. Limites de fonctions

Réponses		
1.1 a)	1.8 b) +∞	1.17 b)
1.1 b)	1.8 c) $-\frac{1}{4}$	1.17 c)
1.1 c) $x+1+x^2$	1	1.18 0
1.2 a) e^x	1.8 d) $\frac{1}{2}$	1.19 a)
1.2 b) e^{2x}	1.9 a)	1.19 b)
1.2 c) e^{3x+1}	1.9 b) $\frac{5}{2}$	1.20 a)
1.2 d) e^{4x+1}	1.10 a)	1.20 b)
1.3 a)	1.10 b)	1.20 c)
1.3 b) +∞	1.11 a) oui	1.20 d) $ \frac{1}{2} $
1.3 c)	1.11 b)	1.21 a)
1.3 d)	1.11 c)	1.21 b)
1.4 a)	1.12 a)	1.21 c)
1.4 b)	1.12 b)	1.21 d)
1.4 d)	1.13 a) 0	1.22 a) $ \frac{1}{2} $
1.5 a)	1.13 b) +∞	1.22 b)
1.5 b)	1.13 c) $e^{-7} + 3$	1
1.5 c)	1.13 d) $+\infty$	$1.23 \ldots \qquad \qquad \boxed{\frac{1}{4}}$
1.5 d)	1.14 a) +∞	1.24 a)
1.6 a)	1.14 b)	1.24 b)
1.6 b)	1.15 a) [+∞]	1.24 c)
	1.15 b)	1.25 a)
1.7 a)	1.15 c)	1 07 1)
1.7 b)	$1.15 \text{ d})$ $+\infty$	1.25 b) $\left[-\frac{1}{2} \right]$
1.7 c)	1.16	1.26 a)
1.7 d)	1.17 a) $ \frac{\sqrt{2}}{2} $	1.26 b)

Corrigés

1.1 a) On a
$$\frac{x^3 + x^2}{x} = \frac{x(x^2 + x)}{x} = x^2 + x$$
.

1.2 a) On a
$$e^{2x} \times e^{-x} = e^{2x-x} = e^x$$
.

1.2 b) On a
$$\frac{e^{3x}}{e^x} = e^{3x-x} = e^{2x}$$
.

1.2 c) On a
$$\frac{e^{2x+1}}{e^{-x}} = e^{2x+1-(-x)} = e^{3x+1}$$
.

1.3 b) On a
$$\lim_{x \to -\infty} e^x = 0$$
, d'où le résultat.

Ce n'est pas une forme indéterminée puisqu'on a $\lim_{x\to 0^+}\ln(x)=-\infty$, d'où le résultat par quotient.

1.4 a) On a
$$\lim_{x\to 0^+} \cos(x) = 1$$
, d'où le résultat par quotient.

1.4 b) On a
$$\lim_{x\to 0^+} \sin(x) = 0$$
, il s'agit donc d'une forme indéterminée.

1.4 c) On a
$$\lim_{x \to \frac{\pi}{2}^-} \sin(x) = 1$$
 et $\lim_{x \to \frac{\pi}{2}^-} \cos(x) = 0^+$, d'où le résultat par quotient.

Comme ci-dessus, mais cette fois-ci on a
$$\lim_{x \to \frac{\pi}{2}^+} \cos(x) = 0^-$$
.

1.5 a) On simplifie
$$\frac{x^2+1}{x}=x+\frac{1}{x}$$
 et on en déduit la limite.

$$\frac{x^3+1}{x^2-x} = \frac{x^3\left(1+\frac{1}{x^3}\right)}{x^2\left(1-\frac{1}{x}\right)} = \frac{x\left(1+\frac{1}{x^3}\right)}{1-\frac{1}{x}}.$$

On en déduit la limite.

1.5 c) On factorise par les termes dominants en écrivant

$$\frac{3x^2 - 2}{x^2 + x} = \frac{x^2 \left(3 - \frac{2}{x^2}\right)}{x^2 \left(1 + \frac{1}{x}\right)} = \frac{3 - \frac{2}{x^2}}{1 + \frac{1}{x}}.$$

On en déduit la limite.

.....

1.5 d) On factorise par les termes dominants en écrivant

$$\frac{x+3}{x^2+x+1} = \frac{x\left(1+\frac{3}{x}\right)}{x^2\left(1+\frac{1}{x}+\frac{1}{x^2}\right)} = \frac{1+\frac{3}{x}}{x\left(1+\frac{1}{x}+\frac{1}{x^2}\right)}.$$

On en déduit la limite.

.....

1.6 a) On met en facteur les termes dominants. On trouve :

$$\frac{\sqrt{x^2 + x}}{x + 2} = \frac{\sqrt{x^2 \left(1 + \frac{1}{x}\right)}}{x \left(1 + \frac{2}{x}\right)} = \frac{\sqrt{x^2} \sqrt{1 + \frac{1}{x}}}{x \left(1 + \frac{2}{x}\right)} = \frac{\sqrt{1 + \frac{1}{x}}}{1 + \frac{2}{x}}.$$

On en déduit la limite.

- 1.6 b) On procède comme ci-dessus en mettant x^4 en facteur dans la racine et x^2 en facteur au dénominateur.
- **1.7** a) On met au même dénominateur en écrivant $\frac{1}{x} \frac{1}{x^2} = \frac{x-1}{x^2}$. On en déduit le résultat par quotient.
- 1.7 b) On y voit plus clair en développant : on a $(x+2)^2 x^2 = 4x + 4$; on en déduit le résultat. On pouvait aussi factoriser en reconnaissant l'expression $a^2 b^2$.
- 1.7 c) En l'absence d'idée, on peut mettre au même dénominateur et simplifier. Il est plus judicieux de multiplier « en haut et en bas » par x. On écrit

$$\frac{\frac{1}{x} - \frac{1}{x^2}}{\frac{1}{\sqrt{x}} + \frac{1}{x}} = \frac{1 - \frac{1}{x}}{\sqrt{x} + 1},$$

et on en déduit le résultat.

.....

1.7 d) On développe

$$\left(x + \frac{1}{\sqrt{x}}\right)^2 - x(x+1) = x^2 + 2\sqrt{x} + \frac{1}{x} - x^2 - x = x\left(\frac{2}{\sqrt{x}} + \frac{1}{x^2} - 1\right).$$

On en déduit le résultat.

1.8 a) On a
$$\frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$
. Donc, $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} x + 1 = 2$.

1.8 b) On a
$$\frac{x^2 - 1}{x^2 - 2x + 1} = \frac{(x+1)(x-1)}{(x-1)^2} = \frac{x+1}{x-1}$$
. On en déduit le résultat.

1.8 c) On a
$$\frac{x+2}{x^2-4} = \frac{x+2}{(x+2)(x-2)} = \frac{1}{x-2}$$
. Donc, $\lim_{x \to -2} \frac{x+2}{x^2-4} = \lim_{x \to -2} \frac{1}{x-2} = -\frac{1}{4}$.

1.8 d) On a
$$\frac{2x-1}{4x^2-1} = \frac{2x-1}{(2x-1)(2x+1)} = \frac{1}{2x+1}$$
. On en déduit le résultat.

1.9 a) Le polynôme $x^2 - 3x + 2$ s'annule en 1 et 2, ainsi on a $x^2 - 3x + 2 = (x - 1)(x - 2)$. On en déduit

$$\frac{x^2 - 1}{x^2 - 3x + 2} = \frac{(x+1)(x-1)}{(x-1)(x-2)} = \frac{x+1}{x-2},$$

puis la limite demandée.

1.9 b) Le polynôme $x^2 - x - 6$ s'annule en 3 et -2, ainsi on a $x^2 - x - 6 = (x - 3)(x + 2)$. On en déduit

$$\frac{x^2 - x - 6}{x^2 + 2x} = \frac{(x - 3)(x + 2)}{x(x + 2)} = \frac{x - 3}{x},$$

puis la limite demandée.

1.10 a) On a
$$\frac{x^3 - 1}{x - 1} = \frac{(x - 1)(x^2 + x + 1)}{x - 1} = x^2 + x + 1$$
. On en déduit le résultat.

1.10 b) On note que $-8 = (-2)^3$, donc on applique la formule avec a = x et b = -2. On a

$$\frac{x^3+8}{x+2} = \frac{(x+2)(x^2-2x+4)}{x+2} = x^2-2x+4.$$

On en déduit le résultat.

- **1.11** a) On a simplement multiplié « en haut et en bas » par $\sqrt{x^2 + 1} + x$.
- **1.11** b) On reconnaît une identité remarquable du type (a b)(a + b), ce qui donne

$$(\sqrt{x^2+1}-x)(\sqrt{x^2+1}+x) = \sqrt{x^2+1}^2 - x^2 = x^2+1-x^2 = 1.$$

- 1.11 c) C'est direct grâce au calcul précédent.
- 1.12 a) On utilise le conjugué en écrivant

$$\frac{1}{\sqrt{x^2 + x} - x} = \frac{\sqrt{x^2 + x} + x}{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)} = \frac{\sqrt{x^2 + x} + x}{x} = \sqrt{1 + \frac{1}{x}} + 1.$$

On en déduit la limite.

1.12 b) On utilise le conjugué :

$$\sqrt{x+\sqrt{x}} - \sqrt{x} = \frac{(\sqrt{x+\sqrt{x}} - \sqrt{x})(\sqrt{x+\sqrt{x}} + \sqrt{x})}{\sqrt{x+\sqrt{x}} + \sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x+\sqrt{x}} + \sqrt{x}}.$$

Ce n'est pas tout à fait fini : on factorise au dénominateur

$$\frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x(1+\frac{1}{\sqrt{x}})}+\sqrt{x}} = \frac{1}{\sqrt{1+\frac{1}{\sqrt{x}}}+1}.$$

On en déduit le résultat.

.....

1.13 a) C'est direct, par croissance comparée.

1.13 b) On met en facteur les termes dominants en écrivant

$$\frac{e^x - x^8}{x+1} = \frac{e^x}{x} \times \frac{1 - \frac{x^8}{e^x}}{1 + \frac{1}{x}}.$$

Or, par croissance comparée, on a $\lim_{x \to +\infty} \frac{x^8}{e^x} = 0$ et donc on a $\lim_{x \to +\infty} \frac{1 - \frac{x^8}{e^x}}{1 + \frac{1}{1}} = 1$. Toujours par croissance comparée,

on a $\lim_{x\to+\infty} = \frac{e^x}{x} = +\infty$. On conclut par produit de limites.

1.13 c) Les exponentielles se simplifient quand on écrit :

$$\frac{e^{x-7} + 3e^x}{e^x + x} = \frac{e^x(e^{-7} + 3)}{e^x \left(1 + \frac{x}{e^x}\right)} = \frac{e^{-7} + 3}{1 + \frac{x}{e^x}}.$$

Or, par croissance comparée, on a $\lim_{x\to +\infty}\frac{x}{{\rm e}^x}=0.$ On en déduit le résultat.

On simplifie par e^x et on procède comme ci-dessus.

On a $\lim_{x\to 0^+} x e^{\frac{1}{x}} = \lim_{X\to +\infty} \frac{e^X}{X} = +\infty$, par croissance comparée.

On a $\lim_{x\to 0^+} \frac{\mathrm{e}^{-\frac{1}{x}}}{x^3} = \lim_{X\to +\infty} X^3 \mathrm{e}^{-X} = 0$, par croissance comparée.

On factorise par x^2 en écrivant $x^2 - \ln(x) = x^2 \left(1 - \frac{\ln(x)}{x^2}\right)$.

Or, par croissance comparée, on a $\lim_{x\to +\infty} \frac{\ln(x)}{x^2}=0.$ On en déduit la limite.

1.15 b) On factorise par x « en haut et en bas » et on conclut comme ci-dessus.

On a $\frac{\ln(x) - \sqrt{x}}{\sqrt{x+1}} = \frac{\sqrt{x} \left(\frac{\ln(x)}{\sqrt{x}} - 1\right)}{\sqrt{x} \times \sqrt{1 + \frac{1}{x}}} = \frac{\frac{\ln(x)}{\sqrt{x}} - 1}{\sqrt{1 + \frac{1}{x}}}$. Or, par croissance comparée, on a $\lim_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}} = 0$.

On en déduit la limite.

1.15 d) On factorise par $\ln(x)$ « en haut et en bas ».

1.16 C'est un cas de croissance comparée.

1.17 a) Grâce à la définition, on a

$$\left(\frac{1}{2}\right)^{\frac{1}{2}} = e^{\frac{1}{2}\ln(\frac{1}{2})} = e^{-\frac{1}{2}\ln(2)} = \frac{1}{e^{\frac{1}{2}\ln(2)}} = \frac{1}{e^{\ln(\sqrt{2})}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

On peut retenir que, avec cette définition, on a, pour x > 0, $x^{\frac{1}{2}} = \sqrt{x}$.

1.17 b) C'est un calcul similaire.

1.17 c) Par croissance comparée, on a $\lim_{x\to 0^+} x \ln(x) = 0$. On obtient le résultat par passage à l'exponentielle, ce qui est possible par continuité de la fonction exponentielle : on a

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln(x)} = e^0 = 1.$$

.....

1.18 On a

$$\ln(e^x + 4x) = \ln(e^x(1 + 4xe^{-x})) = \ln(e^x) + \ln(1 + 4xe^{-x}) = x + \ln(1 + 4xe^{-x}).$$

Ainsi, on a $\lim_{x \to +\infty} (\ln(e^x + 4x) - x) = \lim_{x \to +\infty} \ln(1 + 4xe^{-x}).$

Or, on a $\lim_{x \to +\infty} x e^{-x} = 0$ par croissance comparée. Donc, finalement, on a $\lim_{x \to +\infty} (\ln(e^x + 4x) - x) = \ln(1) = 0$.

1.19 a) On factorise : $\sqrt{\ln(x)} - \ln(x) = \sqrt{\ln(x)} \left(1 - \sqrt{\ln(x)}\right)$, et on en déduit la limite par produit de limites.

1.19 b) On a $\frac{e^{\sqrt{\ln(x)}}}{x} = \frac{e^{\sqrt{\ln(x)}}}{e^{\ln(x)}} = e^{\sqrt{\ln(x)} - \ln(x)}$. On conclut avec la question précédente.

1.20 a) On reconnaît le taux d'accroissement de cos en 0. Puisque cos est dérivable en 0, on a

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = \lim_{x \to 0} \frac{\cos(x) - \cos(0)}{x - 0} = \cos'(0) = -\sin(0) = 0.$$

1.20 b) On introduit $f(x) = \ln(1+x)$ et on raisonne comme à la question précédente. Puisque la fonction f est dérivable en 0, on a

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0).$$

Comme on a $f'(x) = \frac{1}{1+x}$, on a f'(0) = 1. D'où le résultat.

1.20 c) On reconnaît le taux d'accroissement de sin en 0. Puisque la fonction sin est dérivable en 0, on a

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\sin(x) - \sin(0)}{x - 0} = \sin'(0) = \cos(0) = 1.$$

1.20 d) On procède comme ci-dessus.

1.21 a) On a $\lim_{x\to 0} \frac{e^{x^2}-1}{x^2} = \lim_{X\to 0} \frac{e^X-1}{X} = 1$, d'après le rappel.

1.21 b) On écrit
$$\frac{e^{x^2} - 1}{x} = x \times \frac{e^{x^2} - 1}{x^2}$$
 et on utilise la question précédente pour effectuer un produit de limites.

1.21 c) On écrit
$$\frac{e^{2x}-1}{x}=2$$
 $\frac{e^{2x}-1}{2x}$. Or, on a $\lim_{x\to 0}\frac{e^{2x}-1}{2x}=\lim_{X\to 0}\frac{e^X-1}{X}=1$. On en déduit la limite.

1.21 d) On écrit
$$x(e^{\frac{1}{x}} - 1) = \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}}$$
. Or, on a $\lim_{x \to +\infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} = \lim_{X \to 0} \frac{e^X - 1}{X} = 1$.

1.22 a) On écrit
$$\frac{x}{\ln(1+2x)} = \frac{1}{2} \times \frac{2x}{\ln(1+2x)}$$
. Or, on a $\lim_{x\to 0} \frac{\ln(1+2x)}{2x} = \lim_{X\to 0} \frac{\ln(1+X)}{X} = 1$. On conclut par quotient de limites.

.....

1.22 b) On fait apparaître des taux d'accroissement :

$$\frac{1-\cos(x)}{\ln(1+x)} = \frac{1-\cos(x)}{x} \times \frac{1}{\frac{\ln(1+x)}{2}}.$$

On conclut en remarquant qu'il s'agit de taux d'accroissement dont on peut calculer la limite.

1.23 Notons f(x) l'expression dont on cherche la limite.

On utilise une première fois la technique de la quantité conjuguée pour écrire

$$f(x) = \frac{\left(\sqrt{x^3 + \sqrt{x^4 + 2x^{\frac{7}{2}} + 1}} - \sqrt{x^3 + \sqrt{x^4 + x^{\frac{7}{2}} + 1}}\right)\left(\sqrt{x^3 + \sqrt{x^4 + 2x^{\frac{7}{2}} + 1}} + \sqrt{x^3 + \sqrt{x^4 + x^{\frac{7}{2}} + 1}}\right)}{\sqrt{x^3 + \sqrt{x^4 + 2x^{\frac{7}{2}} + 1}} + \sqrt{x^3 + \sqrt{x^4 + x^{\frac{7}{2}} + 1}}}$$

Au numérateur, on utilise la formule « $(a-b)(a+b)=a^2-b^2$ » ; les termes en x^3 se simplifient. On trouve

$$f(x) = \frac{\sqrt{x^4 + 2x^{\frac{7}{2}} + 1} - \sqrt{x^4 + x^{\frac{7}{2}} + 1}}{\sqrt{x^3 + \sqrt{x^4 + 2x^{\frac{7}{2}} + 1}} + \sqrt{x^3 + \sqrt{x^4 + x^{\frac{7}{2}} + 1}}}.$$

Le numérateur est toujours une forme indéterminée! On applique une deuxième fois la technique de la quantité conjuguée. Des simplifications similaires conduisent à trouver

$$f(x) = \frac{x^{\frac{7}{2}}}{\left(\sqrt{x^3 + \sqrt{x^4 + 2x^{\frac{7}{2}} + 1}} + \sqrt{x^3 + \sqrt{x^4 + x^{\frac{7}{2}} + 1}}\right)\left(\sqrt{x^4 + 2x^{\frac{7}{2}} + 1} + \sqrt{x^4 + x^{\frac{7}{2}} + 1}\right)}.$$

On met en facteur les termes dominants dans chaque racine, et un facteur global $x^{\frac{7}{2}}$ apparaît au dénominateur. Après simplification, on en déduit la limite.

1.24 a) En posant X = ax, on trouve

$$\lim_{x \to 0} \frac{\ln(1+ax)}{x} = a \lim_{x \to 0} \frac{\ln(1+ax)}{ax} = a \lim_{X \to 0} \frac{\ln(1+X)}{X} = a.$$

1.24 b) En posant $X = \frac{1}{\pi}$, on trouve

$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) = \lim_{X \to 0} \frac{\ln(1+X)}{X} = 1.$$

.....

$$\left(1 + \frac{1}{x}\right)^x = e^{x \ln\left(1 + \frac{1}{x}\right)}.$$

Or, on a trouvé à la question précédente que $\lim_{x\to +\infty}x\ln\left(1+\frac{1}{x}\right)=1$. On obtient le résultat par passage à l'exponentielle, ce qui est possible par continuité de la fonction exponentielle.

1.25 a) On utilise la formule (appelée formule de duplication) :
$$\cos(x) = \cos\left(2 \times \frac{x}{2}\right) = 1 - 2\sin^2\left(\frac{x}{2}\right)$$
.

$$\frac{\cos(x) - 1}{x^2} = -\frac{2\sin^2(\frac{x}{2})}{x^2}.$$

Or, en utilisant l'indication de l'énoncé, on a

$$\lim_{x \to 0} \frac{2\sin^2(\frac{x}{2})}{x^2} = \lim_{x \to 0} \frac{2\sin^2(\frac{x}{2})}{4 \times \left(\frac{x}{2}\right)^2} = \frac{1}{2} \lim_{X \to 0} \left(\frac{\sin(X)}{X}\right)^2 = \frac{1}{2}.$$

1.26 a) On utilise une formule de duplication :
$$\frac{\sin(2x)}{\sin(x)} = \frac{2\sin(x)\cos(x)}{\sin(x)} = 2\cos(x).$$
 On en déduit la limite.

1.26 b) On a
$$\frac{\cos(x) - \sin(x)}{\cos(2x)} = \frac{\cos(x) - \sin(x)}{\cos^2(x) - \sin^2(x)} = \frac{1}{\cos(x) + \sin(x)}$$
. On en déduit la limite.

Fiche nº 2. Limites de suites

Réponses

Repolises		
2.1 a) $\frac{-1}{c}$	2.6 a)	2.11 d) +∞
0	2.6 b)	2.12 a)
2.1 b) $\left \frac{1}{5} \right $	2.7 a)	2.12 b)
2.1 c)	2.7 b)	2.12 c) $\sqrt{\frac{\sqrt{2}-1}{2}}$
	2.7 c)	[5]
2.2 a)	2.7 d)	2.12 d) $\left \frac{\sqrt{3}}{2\sqrt{2}} \right $
2.2 b) $\left -\infty, \frac{1}{2} \right \cup \left[\frac{2}{3}, +\infty \right] $	2.7 e) $(a, b, c) = (3, 3, 4)$	2.13 a)
2.2 c)	2.7 f) $\left\{-1, \frac{-1}{2}, 0\right\}$	2.13 b) $+\infty$
	1	2.13 c)
2.2 d) $ []-\infty, -3] \cup]0, 3] $ 2.3 a) $ []$ non	2.7 g)	2.13 d) $-\frac{1}{2}$
,	2.8 a)	
2.3 b) oui 2.3 c) non	2.8 b)oui	2.14 a) $ \exists n_0 \in \mathbb{N}, \\ \forall n > n_0, u_{n+1} \geqslant u_n $
2.3 d) oui	2.8 c) oui	0, 1,12, 10
	2.8 d)	2.14 b)
2.3 e)	2.9 a)	2.14 c)
2.3 g)	2.9 b) oui	2.15 a)
2.3 h)	2.9 c)non	2.15 b)
	2.9 d)	1
2.4 a)	2.10 a)	2.15 c) $\left \frac{1}{2} \right $
2.4 b)	2.10 b) +∞	2.16 a
2.4 c)	2.10 c)	2.16 a)
2.5 a)	2.10 d) $\sqrt{2}$	2.16 b)
	2.11 a) $\frac{3}{5}$	2.16 c) e
2.5 b) $a^2 - a + 1$	2.11 a)	2.17 a)
2.5 c)	2.11 b)	2.17 b) +∞
2.5 d)	2.11 c) +∞	

Corrigés

2.1 a) On a les équivalences suivantes :

$$\frac{10}{3}x + \frac{5}{9} = 0 \iff \frac{10}{3}x = -\frac{5}{9} \iff x = \frac{-5}{3 \times 10} = \frac{-1}{3 \times 2} = \frac{-1}{6}.$$

2.1 b) Avant de commencer, il faut remarquer que x ne peut pas prendre la valeur $\frac{3}{2}$.

On a les équivalences suivantes :

$$\frac{3x+2}{-2x+3} = 1 \iff 3x+2 = -2x+3 \iff 3x+2x = 3-2 \iff 5x = 1 \iff x = \frac{1}{5}.$$

2.2 a) On a les équivalences suivantes :

$$\frac{2}{7}x-6>0\iff\frac{2}{7}x>6\iff x>6\times\frac{7}{2}\iff x>21.$$

2.2 b) Le produit (2x-1)(2-3x) est négatif ou nul lorsque les facteurs sont de signes contraires. On a

x	$-\infty$		$\frac{1}{2}$		$\frac{2}{3}$		$+\infty$
2x-1		_	ø	+		+	
2-3x		+		+	0	_	
(2x-1)(2-3x)		_	0	+	0	_	

On en déduit l'équivalence : $(2x-1)(2-3x) \leqslant 0 \iff x \in \left]-\infty, \frac{1}{2}\right] \cup \left[\frac{2}{3}, +\infty\right[.$

2.2 c) Un quotient est positif lorsque le numérateur et le dénominateur sont de même signe.

Avec la condition $x \neq 1$, il faut étudier les signes du numérateur et du dénominateur, ce qu'on résume par :

x	$-\infty$		1		6		$+\infty$
2x - 12		_		-	ø	+	
1-x		+	0	_		_	
$\frac{2x-12}{1-x}$		_		+	0	-	

On en déduit l'équivalence : $\frac{2x-12}{1-x}\geqslant 0\iff x\in]1,6].$

2.2 d) On factorise le numérateur $x^2 - 9 = (x - 3)(x + 3)$ et on procède avec un tableau de signes.

2.3 a) La suite $(-1)^n$ prend alternativement les valeurs -1 et 1. Elle est donc divergente et n'a pas de limite.

2.3 b) Pour tout $n \in \mathbb{N}$, 2n + 1 est impair. Donc, pour tout $n \in \mathbb{N}$, $(-1)^{2n+1} = -1$, qui a pour limite -1.

2.3 c) La série alterne : les termes de rang pair $u_{2n} = 2n(-1)^{2n} = 2n$ tendent vers $+\infty$. et les termes de rang impair $u_{2n+1} = (2n+1)(-1)^{2n+1} = (2n+1) \times (-1)$ tendent vers $-\infty$. La suite est donc divergente.

2.3 d) Par comparaison, $n + (-1)^n \ge n - 1$ qui tend vers $+\infty$.

2.3 e) La suite alterne entre 2n et -2n donc diverge et n'admet pas de limite.

2.3 f) Pour tout $n \in \mathbb{N}$, l'exposant 2n est pair. Donc $(-1)^{2n} = 1$ et la suite $n(-1)^{2n} = n$ tend vers $+\infty$.

2.3 g) Pour les termes de rang pair, on a $\cos((-1)^n \pi) = \cos(\pi) = -1$. Et pour les termes de rang impair, on a $\cos((-1)^n \pi) = \cos(-\pi) = -1$. La suite est donc constante de valeur -1.

2.3 h) Pour les termes de rang pair, on a $\sin((-1)^n \pi) = \sin(\pi) = 0$. Et pour les termes de rang impair, on a $\sin((-1)^n \pi) = \sin(-\pi) = 0$. La suite est donc constante de valeur 0.

 $\sin((-1)^n\pi) = \sin(-\pi) = 0$. La suite est donc constante de valeur 0.

2.4 a) On a $\frac{13}{17} < 1$ donc $\lim_{n \to \infty} \left(\frac{13}{17}\right)^n = 0$. D'un autre côté, on a l'encadrement $-1 \leqslant \cos(n) \leqslant 1$ donc, par le théorème des gendarmes, $\lim_{n \to \infty} \left(\frac{13}{17}\right)^n \cos(n) = 0$.

2.4 b) On recommence l'encadrement $-1 \le (-1)^n \le 1$ et donc $9-1 \le 9+(-1)^n \le 9+1$. Finalement, on a $8 \times (0,2)^n \le (9+(-1)^n) \times (0,2)^n \le 10 \times (0,2)^n$ et les deux suites de gauche et de droite tendent vers 0 (car 0,2 < 1). Donc le théorème des gendarmes donne que $\lim_{n \to \infty} (9+(-1)^n) \times (0,2)^n = 0$.

 $n{
ightarrow}\infty$

2.4 c) On a $-1 \le \sin(n\pi/2) \le 1$ donc, après calcul, on a

$$\frac{n-1}{3n} \leqslant \frac{n+\sin(n\pi/2)}{3n} \leqslant \frac{n+1}{3n}.$$

Comme $\lim_{n\to\infty} \frac{n-1}{3n} = \lim_{n\to\infty} \frac{n+1}{3n} = \frac{1}{3}$, par le théorème des gendarmes, on a $\lim_{n\to\infty} \frac{n+\sin(n\pi/2)}{3n} = \frac{1}{3}$.

2.5 c) Pour que le théorème des gendarmes s'applique, il faut que les limites des termes de gauche et de droite soient égales. Donc, il faut que $a^2 - a + 1 = a$. Or, on a $a^2 - 2a + 1 = 0 \iff (a - 1)^2 = 0 \iff a = 1$.

2.6 a) Si n impair alors $\frac{n+(-1)^n}{n-(-1)^n} = \frac{n-1}{n-(-1)} = \frac{n-1}{n+1}$. Si n pair alors $\frac{n+(-1)^n}{n-(-1)^n} = \frac{n+1}{n-(+1)} = \frac{n+1}{n-1}$. Or, pour tout entier n > 1, on a $\frac{n-1}{n+1} \leqslant \frac{n+1}{n-1}$.

2.6 b) On a $\lim_{n\to\infty} \frac{n-1}{n+1} = \lim_{n\to\infty} \frac{n+1}{n-1} = 1$. Par le théorème des gendarmes, la suite $(u_n)_n$ tend donc vers 1.

2.7 a) Le polynôme $(X+1)^6$ est de degré 6 et son coefficient dominant vaut 1. Donc, le polynôme $(X+1)^6 - X^6$ est de degré au plus 5 : il y a « chute de degré » car les termes en X^6 se simplifient.

Le polynôme $(X+1)^6 - X^6 - 2X - 1$ est de degré 5. Son coefficient « en X^5 » vaut, après calcul, 6.

.....

2.7 e) On calcule :

$$(X+1)^6 - X^6 - 2X - 1 = 4X + 15X^2 + 20X^3 + 15X^4 + 6X^5$$
$$X(X+1)(2X+1)(aX^2 + bX + c) = cX + (b+3c)X^2 + (a+3b+2c)X^3 + (3a+2b)X^4 + 2aX^5.$$

En identifiant les termes « en X », on trouve c=4; en identifiant les termes « en X^5 », on trouve a=3; enfin, en identifiant les termes « en X^2 », on trouve b+3c=15 et donc b=15-3c=15-12=3.

.....

2.7 f) On vérifie que la suite définie par $\left(\frac{na+\sqrt{n}+n}{n}\right)^6-1-\frac{a^6}{n}$ admet $(a+1)^6-1$ comme limite. De même,

la suite $\left(a+\frac{a}{n}\right)^6+\frac{2an^2+7n+18}{n^2+n+1}$ admet a^6+2a comme limite. Pour appliquer le théorème des gendarmes, il faut donc que $(a+1)^6-1=a^6+2a$. D'après la question précédente, il n'y a donc que ces trois valeurs possibles pour a qui sont $-1, \frac{-1}{2}$ et 0.

2.7 g) Pour a = -1, on trouve une limite valant -1; pour $a = \frac{-1}{2}$, on trouve une limite valant $\frac{1}{2^6} - 1$; pour a = 0, on trouve une limite valant 0.

- 2.8 a) Non. En effet, on a $\lim_{n\to\infty} n^2 = +\infty$ et $\lim_{n\to\infty} 3n = +\infty$ donc $\lim_{n\to\infty} n^2 + 3n + 1 = +\infty$.
- **2.9** c) On remarque que $\frac{1}{3^{-n}} = 3^n$ et donc que $\lim_{n \to \infty} \frac{1}{3^{-n}} = +\infty$ et $\ln\left(\frac{1}{n}\right) = -\ln(n)$, qui tend vers $-\infty$.

 $\text{Donc} \lim_{n \to \infty} \frac{\ln \left(\frac{1}{n}\right)}{3^{-n}} = \lim_{n \to \infty} 3^n \ln \left(\frac{1}{n}\right) = -\infty.$

- **2.9** d) Il suffit de remarquer que $(-1)^n \pi = \pm \pi$ donc $\cos((-1)^n \pi) = -\pi$ pour tout n entier.
- **2.10** a) On factorise par le terme dominant $n\sqrt{\ln(n)}$, ce qui donne

$$n\sqrt{\ln(n)}\left(1 - \frac{\sqrt{\ln(n)}^3}{\sqrt{n}}\right) = n\sqrt{\ln(n)}\left(1 - \sqrt{\frac{\ln(n)^3}{n}}\right).$$

Pour montrer que $\lim_{n\to\infty}\frac{\ln(n)^3}{n}=0,$ on peut procéder de la manière suivante. On a

$$\frac{\ln(n)^3}{n} = 27 \frac{\left(\frac{1}{3}\ln(n)\right)^3}{n} = 27 \frac{\left(\ln(\sqrt[3]{n})\right)^3}{n} = 27 \left(\frac{\ln(\sqrt[3]{n})}{\sqrt[3]{n}}\right)^3.$$

Comme $\lim_{n\to\infty} \sqrt[3]{n} = +\infty$ et comme $\lim_{u\to+\infty} \frac{\ln(u)}{u} = 0$, par composition des limites, on a $\lim_{n\to\infty} \frac{\ln(\sqrt[3]{n})}{\sqrt[3]{n}} = 0$, ce qui permet de conclure.

2.10 b) On factorise par les termes dominants 2^n et n^2 , ce qui donne $\frac{2^n \left(1 - \left(\frac{1}{4}\right)^n\right)}{n^2 \left(1 - \left(\frac{1}{n}\right)^4\right)}$.

On conclut en montrant que $\lim_{n\to\infty}\frac{2^n}{n^2}=+\infty$. Pour cela, on écrit

$$\ln\left(\frac{2^{n}}{n^{2}}\right) = n\ln(2) - 2\ln(n) = n\left(\ln(2) - 2\frac{\ln(n)}{n}\right).$$

Comme $\lim_{n\to\infty}\frac{\ln(n)}{n}=0$ et $\ln(2)>0$, on en déduit que $\lim_{n\to\infty}\ln\left(\frac{2^n}{n^2}\right)=+\infty$. On conclut en raisonnant par composition des limites, grâce à $\lim_{u\to+\infty}\exp(u)=+\infty$.

- **2.10** c) En factorisant par 5^n , on obtient $\frac{5^n 1}{10^n + 5} = \frac{5^n (1 \frac{1}{5^n})}{5^n (\frac{10^n}{5^n} + \frac{5}{5^n})} = \frac{1 \frac{1}{5^n}}{\left(\frac{10}{5}\right)^n + \frac{1}{5^{n-1}}} = \frac{1 \frac{1}{5^n}}{2^n + \frac{1}{5^{n-1}}}.$
- **2.10** d) En factorisant par n, pour $n \ge 1$, on a $\frac{n(\sqrt{2} 1/n)}{n(1 + \sqrt{2}/n)} = \frac{\sqrt{2} 1/n}{1 + \sqrt{2}/n}$.
- **2.11** a) En factorisant le numérateur et le dénominateur par n^3 , on trouve $\frac{n^3(3-\frac{1}{n}-\frac{17}{n^3})}{n^3(5+\frac{9}{n}+\frac{1}{n^2})} = \frac{3-\frac{1}{n}-\frac{17}{n^3}}{5+\frac{9}{n}+\frac{1}{n^2}}$.

2.11 b) On peut par exemple factoriser le dénominateur pour simplifier l'expression étudiée; on trouve

$$\frac{(3-n)(2+\sqrt{n})}{9-n^2} = \frac{(3-n)(2+\sqrt{n})}{(3-n)(3+n)} = \frac{2+\sqrt{n}}{3+n}.$$

Puis, en factorisant, on a $\frac{2+\sqrt{n}}{3+n} = \frac{n\left(\frac{2}{n} + \frac{1}{\sqrt{n}}\right)}{n\left(\frac{3}{n} + 1\right)} = \frac{\frac{2}{n} + \frac{1}{\sqrt{n}}}{\frac{3}{n} + 1}$, ce qui permet de trouver la limite.

2.11 c) On lève l'indétermination en écrivant $\left(\frac{8}{11}\right)^n \times \left(\frac{121}{24}\right)^n = \left(\frac{8 \times 11^2}{11 \times 3 \times 8}\right)^n = \left(\frac{11}{3}\right)^n$.

2.11 d) Pour lever la forme indéterminée, on factorise par 8^{7n} , ce qui donne

$$8^{7n} - 56^n = 8^{7n} \left(1 - \frac{56^n}{8^{7n}} \right) = 8^{7n} \left(1 - \left(\frac{56}{8^7} \right)^n \right).$$

On conclut en remarquant que $8^7 > 56$.

2.12 a) On utilise la quantité conjuguée pour lever l'indétermination :

$$\sqrt{n+4} - \sqrt{n} = \frac{\sqrt{n+4} - \sqrt{n}}{1} = \frac{\left(\sqrt{n+4} - \sqrt{n}\right)\left(\sqrt{n+4} + \sqrt{n}\right)}{\left(\sqrt{n+4} + \sqrt{n}\right)} = \frac{n+4-n}{\sqrt{n+4} + \sqrt{n}} = \frac{4}{\sqrt{n+4} + \sqrt{n}}.$$

2.12 b) On a

$$\sqrt{n^2 + 2n} - n = \frac{\left(\sqrt{n^2 + 2n} - n\right)\left(\sqrt{n^2 + 2n} + n\right)}{\sqrt{n^2 + 2n} + n} = \frac{2n}{\sqrt{n^2 + 2n} + n} = \frac{2n}{n\sqrt{1 + \frac{2}{n}} + n} = \frac{2}{\sqrt{1 + \frac{2}{n}} + 1}.$$

2.12 c) On factorise par n^2 dans la racine, puis par n sur tout le numérateur :

$$\frac{\sqrt{2n^2-n+1}-n}{2n+12} = \frac{\sqrt{n^2(2-\frac{1}{n}+\frac{1}{n^2})}-n}{2n+12} = \frac{n(\sqrt{2-\frac{1}{n}+\frac{1}{n^2}}-1)}{n(2+\frac{12}{n})} = \frac{\sqrt{2-\frac{1}{n}+\frac{1}{n^2}}-1}{2+\frac{12}{n}}.$$

2.12 d) On utilise la quantité conjuguée pour lever l'indétermination :

$$\sqrt{2n + \sqrt{3n}} - \sqrt{2n} = \frac{\left(\sqrt{2n + \sqrt{3n}} - \sqrt{2n}\right)\left(\sqrt{2n + \sqrt{3n}} + \sqrt{2n}\right)}{\sqrt{2n + \sqrt{3n}} + \sqrt{2n}} = \frac{2n + \sqrt{3n} - 2n}{\sqrt{2n + \sqrt{3n}} + \sqrt{2n}}$$

$$= \frac{\sqrt{n}\sqrt{3}}{\sqrt{n}\left(\sqrt{2 + \frac{\sqrt{3}}{\sqrt{n}}} + \sqrt{2}\right)} = \frac{\sqrt{3}}{\sqrt{2 + \frac{\sqrt{3}}{\sqrt{n}}} + \sqrt{2}}.$$

2.13 b) En factorisant le numérateur et le dénominateur par e^{2n} , on obtient $\frac{-3e^n + 5e^{3n}}{e^{2n} - 4e^n} = \frac{-3e^{-n} + 5e^n}{1 - 4e^{-n}}$.

Être croissant à partir du rang n_0 veut dire que tous les termes de la suite sont supérieurs au précédent à partir de n_0 . Ceci s'écrit : $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_{n+1} \geqslant u_n$.

Non, une suite peut tendre vers $+\infty$ sans être croissante. La suite $(u_n)_n$ définie par $u_n = n + (-1)^n$ fournit un contre-exemple. On a en effet $u_{2n} = 2n + (-1)^{2n} = 2n + 1$ et $u_{2n+1} = (2n+1) + (-1)^{2n+1} = 2n$. Donc, on a $u_{2n} > u_{2n+1}$, ce qui montre que $(u_n)_n$ n'est pas croissante.

Mais, comme on a, pour tout $n \in \mathbb{N}$, $u_n \ge n-1$, on en déduit que $\lim_{n \to \infty} u_n = +\infty$.

2.14 c) Pour la même raison que précédemment, la suite peut « se rapprocher en oscillant » vers sa limite.

La suite $(u_n)_n$ définie par $u_n = 2 - \frac{1}{n}$ si n est pair et $u_n = 2 - \frac{1}{n^2}$ si n est impair fournit un contre-exemple.

2.15 a) Comme
$$\ln'(x) = \frac{1}{x}$$
, on a $\lim_{h \to 0} \frac{\ln(1+h)}{h} = \lim_{h \to 0} \frac{\ln(1+h) - \ln(1)}{h} = \ln'(1) = \frac{1}{1} = 1$.

On a $\lim_{n\to\infty} \frac{1}{n} = 0$ et $\cos' = -\sin$. On a

$$\lim_{n \to \infty} \frac{\cos\left(\frac{1}{n}\right) - 1}{\frac{1}{n}} = \lim_{h \to 0} \frac{\cos(h) - 1}{h} = \lim_{h \to 0} \frac{\cos(0 + h) - \cos(0)}{h} = \cos'(0) = -\sin(0) = 0.$$

On remarque que $n\left(\sqrt{1+\frac{1}{n}}-1\right)=\frac{\sqrt{1+\frac{1}{n}}-1}{\frac{1}{n}}$ et on reconnaît un taux d'accroissement.

2.16 b) On a
$$v_n = \ln(u_n) = n \ln(1 + \frac{1}{n}) = \frac{\ln(1 + \frac{1}{n})}{\frac{1}{n}}$$
. Donc, $\lim_{n \to \infty} v_n = \lim_{h \to 0} \frac{\ln(1 + h)}{h} = 1$.

On finit par $u_n = e^{v_n}$, ce qui donne $\lim_{n \to \infty} u_n = \lim_{n \to \infty} e^{v_n} = e^1 = e$, par continuité de l'exponentielle. **2.16** c)

2.17 a) On a
$$\left(1 + \frac{1}{n}\right)^{\sqrt{n}} = e^{\sqrt{n}\ln\left(1 + \frac{1}{n}\right)}$$
 et $\sqrt{n}\ln\left(1 + \frac{1}{n}\right) = \frac{n}{\sqrt{n}}\ln\left(1 + \frac{1}{n}\right) = \frac{1}{\sqrt{n}}\frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}$.

2.17 b) On a
$$\left(1 + \frac{1}{\sqrt{n}}\right)^n = e^{n \ln\left(1 + \frac{1}{\sqrt{n}}\right)}$$
 et $n \ln\left(1 + \frac{1}{\sqrt{n}}\right) = \sqrt{n} \frac{\ln\left(1 + \frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}}$.

Fiche n° 3. Propriétés algébriques du logarithme I

Réponses

responses		
3.1 a)	3.4 f) $\boxed{\frac{1}{2}\ln(2) + \frac{1}{2}\ln(3)}$	3.9 f) $ > 0 $ 3.10 a) $ 0 < x < e $
3.1 b)	3.5 a) 2	3.10 b)
3.1 c)	3.5 b)	3.11 a) $x \ge -2$ 3.11 b) $1 < x < 1 + e$
3.1 d)	3.5 d) $\frac{2}{7}$	3.11 c) $x \ge 1$ ou $x \le -1$
3.2 a) $\frac{7}{3}$	3.6 a) $\frac{2}{\frac{7}{5}}$	3.11 d) $-2 \leqslant x \leqslant \frac{e^2 - 5}{2}$
3.2 b)	3.6 b)	3.12 a) $\left\lfloor \frac{1}{2} < x < 4 \right\rfloor$
3.2 c)	3.6 c) $ \frac{1}{\ln(3)} $	3.12 b) $0 < x \le 1$ 3.12 c) $1 < x \le 2$
3.2 d) $x = \frac{24}{55}$	3.7 a)	3.12 d) $x \in \left[-\sqrt{e}, 0\left[\cup\right]0, \sqrt{e}\right]$
3.3 a)	3.7 b)	3.13 a) $x = 3$ 3.13 b) $x = e$ ou $x = e^2$
3.3 b)	3.7 d)	3.14 a) $\frac{1}{e} \leqslant x \leqslant e$
3.4 a)	3.8 a)	3.14 b) tous les réels
3.4 b)	3.8 c) $x > 1$	$3.15 \dots \qquad \boxed{ \begin{bmatrix} -4, -3[\cup]0, 1] \end{bmatrix}}$
3.4 c) $2 \ln(2) + \ln(3)$	3.9 a)	3.16 a) $\left\lfloor \frac{k-1}{k} \right\rfloor$
3.4 d) $\ln(3) - \ln(2)$	3.9 c)	3.16 b) $\left[\ln(k-1) - \ln(k) \right]$
3.4 e) $\left \frac{3}{2} \ln(3) \right $	3.9 d)	3.16 c)
	3.9 e)<	3.17 $2x$

Corrigés

3.1 a) On a
$$\frac{36}{45} = \frac{9 \times 4}{9 \times 5} = \frac{4}{5}$$
.

3.1 b) On a
$$\frac{2}{7} \times \frac{28}{16} = \frac{2}{7} \times \frac{4 \times 7}{16} = \frac{2 \times 4}{16} = \frac{1}{2}$$
.

3.1 c) On a
$$\frac{\frac{9}{25}}{\frac{3}{10}} = \frac{9}{25} \times \frac{10}{3} = \frac{3 \times 3}{5 \times 5} \times \frac{2 \times 5}{3} = \frac{6}{5}$$
.

3.1 d) On a
$$\frac{10^3 \times 3^5}{6^4 \times 5^2} = \frac{2^3 \times 5^3 \times 3^5}{2^4 \times 3^4 \times 5^2} = \frac{5 \times 3}{2} = \frac{15}{2}$$
.

3.2 c) On a les équivalences suivantes :

$$\frac{4}{3}x - \frac{1}{2} = \frac{1}{6}x + \frac{1}{2} \iff \frac{8}{6}x - \frac{1}{6}x = \frac{1}{2} + \frac{1}{2} \iff \frac{7}{6}x = 1 \iff x = \frac{6}{7}.$$

3.2 d) On a les équivalences suivantes :

$$\frac{5}{3}x = \frac{3}{4}x + \frac{2}{5} \iff \frac{20}{12}x - \frac{9}{12}x = \frac{2}{5} \iff \frac{11}{12}x = \frac{2}{5} \iff x = \frac{2}{5} \times \frac{12}{11} \iff x = \frac{24}{55}$$

3.3 a) On a
$$\ln(3) + \ln\left(\frac{1}{3}\right) = \ln(3) - \ln(3) = 0$$
.

3.3 b) On a
$$\ln(10) - \ln(2) = \ln\left(\frac{10}{2}\right) = \ln(5)$$
.

3.3 c) On a
$$2 \ln(\sqrt{7}) = \ln(\sqrt{7}^2) = \ln(7)$$
.

3.4 a) On a
$$ln(32) = ln(2^5) = 5 ln(2)$$
.

3.4 b) On a
$$\ln\left(\frac{1}{81}\right) = -\ln(81) = -\ln(3^4) = -4\ln(3)$$
.

3.4 c) On a
$$\ln(12) = \ln(2^2 \times 3) = \ln(2^2) + \ln(3) = 2\ln(2) + \ln(3)$$
.

3.4 e) On a
$$\ln(\sqrt{27}) = \frac{1}{2}\ln(27) = \frac{1}{2}\ln(3^2) = \frac{3}{2}\ln(3)$$
.

3.5 a) On a
$$\ln(e^2) = 2\ln(e) = 2 \times 1 = 2$$
.

3.5 c) On a
$$\ln(\sqrt{e}) = \frac{1}{2}\ln(e) = \frac{1}{2}$$
.

3.6 a) On a
$$e^{\ln(7) - \ln(5)} = e^{\ln(\frac{7}{5})} = \frac{7}{5}$$
.

3.6 b) On a
$$e^{3\ln(10)} = e^{\ln(10^3)} = 10^3 = 1000$$
.

3.7 a) On a $\ln(\sqrt{3}-1) + \ln(\sqrt{3}+1) = \ln((\sqrt{3}-1)(\sqrt{3}+1))$. Or (par identité remarquable), on a

$$(\sqrt{3}-1)(\sqrt{3}+1) = \sqrt{3}^2 - 1^2 = 3 - 1 = 2.$$

Donc $\ln(\sqrt{3} - 1) + \ln(\sqrt{3} + 1) = \ln(2)$.

.....

3.7 c) On a

$$\ln\left(\left(\sqrt{2}-1\right)^{15}\right) + \ln\left(\left(\sqrt{2}+1\right)^{15}\right) = 15\ln(\sqrt{2}-1) + 15\ln(\sqrt{2}+1) = 15\ln\left(\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\right) = 15\ln(1) = 0.$$

.....

- 3.8 a) Le réel $\ln(1+x)$ est bien défini si, et seulement si, 1+x>0, autrement dit si, et seulement si, x>-1.
- **3.8** b) On doit résoudre $x^2 3x > 0$. On factorise $x^2 3x = x(x 3)$. Comme le signe de ce trinôme est x > 0 à l'extérieur des racines (qui sont 0 et 3), on a l'équivalence suivante :

$$x^2 - 3x > 0 \iff x < 0 \text{ ou } x > 3.$$

- **3.8** c) Déjà il faut que x > 0. Puis on doit résoudre $\ln(x) > 0$, ce qui revient à x > 1.
- **3.9** a) On a 2 > 1 donc $\ln(2) > 0$.
- **3.9** f) On a 3 > e donc $\ln(3) > 1$ donc $\ln(3) 1 > 0$.
-

- **3.10** b) On a $\ln(x) < 0$ donc $1 \ln(x) > 1$ et donc $\ln(1 \ln(x)) > 0$.
- **3.11** a) On a les équivalences suivantes :

$$\ln(5+2x) \geqslant 0 \iff 5+2x \geqslant 1 \iff 2x \geqslant -4 \iff x \geqslant -2.$$

3.11 b) On a les équivalences suivantes :

$$\ln(x-1) < 1 \iff 0 < x-1 < e \iff 1 < x < 1 + e$$
.

.....

3.11 c) On a les équivalences suivantes :

$$\ln(x^2) \ge 0 \iff x^2 \ge 1 \iff x \ge 1 \text{ ou } x \le -1.$$

3.11 d) On a les équivalences suivantes :

$$0 \leqslant \ln(2x+5) \leqslant 2 \iff 1 \leqslant 2x+5 \leqslant e^2 \iff -4 \leqslant 2x \leqslant e^2 - 5 \iff -2 \leqslant x \leqslant \frac{e^2 - 5}{2}.$$

3.12 a) Déjà, pour que les termes soient bien définis, il faut que x + 3 > 0 et 2x - 1 > 0, c'est-à-dire il faut que $x > \frac{1}{2}$. Puis, pour tout $x > \frac{1}{2}$, on a les équivalences suivantes :

$$\ln(x+3) > \ln(2x-1) \iff x+3 > 2x-1 \iff 4 > x.$$

3.12 b) Déjà, pour que les termes soient bien définis, il faut que x > 0 et x + 2 > 0, c'est-à-dire il faut que x > 0. Puis, pour tout x > 0, on a les équivalences suivantes :

$$\ln(x) + \ln(x+2) \leqslant \ln(3) \iff \ln\left(x(x-2)\right) \leqslant \ln(3) \iff x(x+2) \leqslant 3 \iff x^2 + 2x - 3 \leqslant 0.$$

Après calcul du discriminant, on trouve que les racines de ce trinôme sont -3 et 1. Donc, on a l'équivalence

$$x^2 + 2x - 3 \le 0 \iff -3 \le x \le 1.$$

Comme x > 0, on obtient donc comme ensemble de solutions : [0,1].

3.12 c) Déjà, pour que les termes soient bien définis, il faut que x > 0 et x - 1 > 0, c'est-à-dire il faut que x > 1.

Puis, pour tout x > 1, on a les équivalences suivantes :

$$\ln(x) + \ln(x-1) \leqslant \ln(2) \iff \ln\left(x(x-1)\right) \leqslant \ln(2) \iff x(x-1) \leqslant 2 \iff x^2 - x - 2 \leqslant 0.$$

Après calcul du discriminant, on trouve que les racines de ce trinôme sont -1 et 2. Donc, on a l'équivalence

$$x^2 - x - 2 \le 0 \iff -1 \le x \le 2.$$

Comme x > 1, on obtient donc comme ensemble de solutions : [1, 2].

3.12 d) Pour que $\ln(x^2)$ soit bien défini, il faut que $x^2 > 0$, autrement dit, il faut que $x \neq 0$. Puis, pour tout $x \neq 0$, on a les équivalences suivantes :

$$\ln(x^2) \leqslant 1 \iff x^2 \leqslant e \iff -\sqrt{e} \leqslant x \leqslant \sqrt{e}.$$

3.13 a) On a les équivalences suivantes :

$$\ln\left(\frac{x+1}{3x-5}\right) = 0 \iff \frac{x+1}{3x-5} = 1 \iff x+1 = 3x-5 \iff 6 = 2x \iff x = 3.$$

3.13 b) On pose $y = \ln(x)$ et on résout l'équation $y^2 - 3y + 2 = 0$; ses solutions (qu'on trouve en calculant le discriminant) sont $y_1 = \frac{3-1}{2} = 1$ et $y_2 = \frac{3+1}{2} = 2$. Donc, on a les équivalences suivantes :

$$\ln(x)^2 - 3\ln(x) + 2 = 0 \iff (\ln(x) = 1 \text{ ou } \ln(x) = 2) \iff (x = e \text{ ou } x = e^2).$$

3.14 a) On a les équivalences suivantes :

$$\ln(x)^2 \leqslant 1 \iff -1 \leqslant \ln(x) \leqslant 1 \iff e^{-1} \leqslant e^{\ln(x)} \leqslant e \iff \frac{1}{e} \leqslant x \leqslant e.$$

3.14 b) On a l'équivalence suivante :

$$\ln(x^2+3) \geqslant 1 \iff x^2+3 \geqslant e$$
.

Or, on a $x^2 + 3 \ge 3$ et e $\approx 2,7$ donc l'inégalité $x^2 + 3 \ge$ e est vérifiée pour tout réel x.

.....

3.15 On a les équivalences suivantes :

$$\ln \left(\frac{x^2+3x}{4}\right) \leqslant 0 \iff 0 < \frac{x^2+3x}{4} \leqslant 1 \iff 0 < x^2+3x \leqslant 4 \iff \left(x^2+3x>0 \text{ et } x^2+3x-4 \leqslant 0\right).$$

Or, on a les équivalences suivantes :

$$x^{2} + 3x > 0 \iff x(x+3) > 0 \iff x < -3 \text{ ou } x > 0.$$

De plus, après calcul des racines par le discriminant, on a également les équivalences suivantes :

$$x^{2} + 3x - 4 \le 0 \iff (x+4)(x-1) \le 0 \iff -4 \le x \le 1.$$

On obtient donc les équivalences suivantes :

$$\ln\left(\frac{x^2+3x}{4}\right)\leqslant 0\iff \left(x<-3\text{ ou }x>0\right)\quad\text{et}\quad -4\leqslant x\leqslant 1\iff x\in[-4,-3[\,\cup\,]0,1].$$

3.16 c) En utilisant la question précédente, on remarque que :

$$\ln\left(1 - \frac{1}{2}\right) + \ln\left(1 - \frac{1}{3}\right) = \ln(1) - \ln(2) + \ln(2) - \ln(3) = -\ln(3).$$

De même :

$$\underbrace{\ln\left(1-\frac{1}{2}\right) + \ln\left(1-\frac{1}{3}\right)}_{-\ln(3)} + \ln\left(1-\frac{1}{4}\right) = -\ln(3) + \ln(3) - \ln(4) = -\ln(4)$$

et ainsi de suite.

3.17 On a

$$e^{f(x)} = x + \sqrt{x^2 + 1}$$
 et $e^{-f(x)} = \frac{1}{e^{f(x)}} = \frac{1}{x + \sqrt{x^2 + 1}}$

donc on a

$$e^{f(x)} - e^{-f(x)} = x + \sqrt{x^2 + 1} - \frac{1}{x + \sqrt{x^2 + 1}}$$

$$= \frac{(x + \sqrt{x^2 + 1})^2 - 1}{x + \sqrt{x^2 + 1}} = \frac{x^2 + 2x\sqrt{x^2 + 1} + (x^2 + 1) - 1}{x + \sqrt{x^2 + 1}}$$

$$= \frac{2x^2 + 2x\sqrt{x^2 + 1}}{x + \sqrt{x^2 + 1}} = \frac{2x(x + \sqrt{x^2 + 1})}{x + \sqrt{x^2 + 1}} = 2x.$$

.....

Fiche nº 4. Propriétés algébriques du logarithme II

Réponses

4.1 a)	4.8 a) $ \frac{1}{\ln(2)} $
4.1 b)	4.8 b)
4.1 c) $5\sqrt{5}$	4.8 c)
4.2 a)	1
4.2 b)	
4.3 a)	4.8 e)
4.3 b) $-2\ln(2) - 2\ln(5)$	4.8 f)
4.3 c)	4.9
4.3 d)	4.10 a)
4.4 a)	4.10 b)
4.4 b)	4.11 a)
4.5 a) $-1,61 \le \ln(0,2) \le -1,60$	4.11 b) $\frac{\ln(e^7 - 3)}{2}$
4.5 b) $2,29 \le \ln(10) \le 2,31$	4.12 a)
4.6 a) $0.46 \le \ln\left(\frac{8}{5}\right) \le 0.50$	4.12 b) $\ln(x+1)$
	4.12 c)
4.6 b) $1,61 \le \ln(5,12) \le 1,70$	4.13
4.6 c) $-2,254 \le \ln(25)\ln(\frac{1}{2}) \le -2,208$	4.14 a)
4.6 d) $2.98 \le \ln(5 + \sqrt{5}) + \ln(5 - \sqrt{5}) \le 3.01$	4.14 c) $x = 2 + e^{\sqrt{2}}$ ou $x = 2 + e^{-\sqrt{2}}$
4.7 a)	4.15 a) $x > e^p - 1$
4.7 b)	4.15 b) $ \frac{-1}{n} < x \le 1 $
4.7 c)	4.16 a)
4.7 d) $\frac{5}{3}$	4.16 b)
4.7 e)	4.16 c)
4.7 f)	4.16 d)
	4.17 a)

 4.17 b)
 $\boxed{\ln(n+1)}$

 4.17 c)
 $\boxed{\frac{1}{2}}$ 4.19
 $\boxed{\frac{n(n+1)\ln(2)}{2}}$

 4.17 d)
 $\boxed{-3}$

Corrigés

4.1 a) On calcule
$$\sqrt{45} - \sqrt{20} = \sqrt{9 \times 5} - \sqrt{4 \times 5} = \sqrt{9} \times \sqrt{5} - \sqrt{4} \times \sqrt{5} = 3 \times \sqrt{5} - 2 \times \sqrt{5} = (3-2)\sqrt{5} = \sqrt{5}$$
.

4.1 b) En utilisant la quantité conjuguée :
$$\frac{2}{\sqrt{3}-1} = \frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{2(\sqrt{3}+1)}{\sqrt{3}^2-1^2} = \frac{2(\sqrt{3}+1)}{2} = \sqrt{3}+1.$$

4.1 c) On a
$$2\sqrt{5} + \sqrt{45} = 2\sqrt{5} + \sqrt{9 \times 5} = 2\sqrt{5} + \sqrt{9} \times \sqrt{5} = 2\sqrt{5} + 3 \times \sqrt{5} = 5\sqrt{5}$$
.

4.2 a) On a
$$\left| \frac{3}{2} \times \frac{8}{9} \right| + \left| \frac{7}{3} - 10 \right| = \left| \frac{3 \times 8}{2 \times 9} \right| + \left| \frac{7}{3} - \frac{30}{3} \right| = \left| \frac{1 \times 4}{1 \times 3} \right| + \left| \frac{7 - 30}{3} \right| = \left| \frac{4}{3} \right| + \left| \frac{-23}{3} \right| = \frac{4}{3} + \frac{23}{3} = \frac{27}{3} = 9.$$

4.2 b) On a
$$\left| \frac{1}{14} - \frac{4}{7} \right| - \left| \frac{6}{7} - \frac{5}{2} \right| = \left| \frac{1-8}{14} \right| - \left| \frac{12}{14} - \frac{35}{14} \right| = \left| \frac{-7}{14} \right| - \left| \frac{-23}{14} \right| = \frac{7}{14} - \frac{23}{14} = \frac{-16}{14} = \frac{-8}{7}$$
.

4.3 a) On a
$$ln(8) = ln(2^3) = 3 ln(2)$$
.

4.3 b) On a
$$0.01 = 10^{-2} = 2^{-2} \times 5^{-2}$$
. Donc, on a

$$\ln(0,01) = \ln\left(2^{-2} \times 5^{-2}\right) = \ln\left(2^{-2}\right) + \ln\left(5^{-2}\right) = -2\ln(2) - 2\ln(5).$$

4.3 c) On a
$$\ln(12) + \ln(9) - \ln(27) = \ln(3 \times 4) + \ln(3^2) - \ln(3^3) = \ln(3) + \ln(2^2) + 2\ln(3) - 3\ln(3) = 2\ln(2)$$
.

4.3 d) En utilisant le fait que
$$\ln(\sqrt{x}) = \frac{1}{2}\ln(x)$$
, on obtient

$$\ln\!\left(\sqrt{8}\right) - \ln(16) + \frac{3}{2}\ln(2) = \frac{1}{2}\ln\!\left(2^3\right) - \ln\!\left(2^4\right) + \frac{3}{2}\ln(2) = \frac{3}{2}\ln(2) - 4\ln(2) + \frac{3}{2}\ln(2) = -\ln(2).$$

4.4 a) On a
$$\ln(4 + \sqrt{13}) + \ln(\sqrt{4} - \sqrt{13}) = \ln((4 + \sqrt{13}) \times (4 - \sqrt{13})) = \ln(4^2 - \sqrt{13}^2) = \ln(3)$$
.

4.4 b) On a
$$\ln((\sqrt{10} - 1)^5) + \ln((\sqrt{10} + 1)^5) = 5\ln((\sqrt{10} - 1)(\sqrt{10} + 1)) = 5\ln(9) = 10\ln(3)$$
.

4.5 a) On a
$$\ln(0.2) = \ln\left(\frac{1}{5}\right) = -\ln(5)$$
 donc $-1.61 \le -\ln(5) \le -1.60$.

4.5 b) Comme
$$\ln(10) = \ln(2 \times 5) = \ln(2) + \ln(5)$$
, on a $0.69 + 1.60 \le \ln(2) + \ln(5) \le 0.70 + 1.61$ et donc

$$2,29 \leq \ln(10) \leq 2,31.$$

.....

4.6 a) On a
$$\ln\left(\frac{8}{5}\right) = \ln(8) - \ln(5)$$
. Or, $\ln(8) = \ln(2^3) = 3\ln(2)$ donc $2.07 \le \ln(8) \le 2.10$.

De plus, on a $-1.61 \le -\ln(5) \le -1.60$. Ainsi, on a $2.07 - 1.61 \le \ln(8) - \ln(5) \le 2.10 - 1.60$ et finalement

$$0.46 \leqslant \ln\left(\frac{8}{5}\right) \leqslant 0.50.$$

4.6 b) On a
$$\ln(5,12) = \ln\left(\frac{512}{100}\right) = \ln\left(\frac{2^9}{2^2 \times 5^2}\right) = \ln(2^7) - \ln(5^2) = 7\ln(2) - 2\ln(5)$$
.

Or, on a $4.83 \leqslant 7 \ln(2) \leqslant 4.90$ et $-3.22 \leqslant -2 \ln(5) \leqslant -3.20$. Finalement, on a ainsi

$$4,83 - 3,22 \le 7 \ln(2) - 2 \ln(5) \le 4,90 - 3,20$$
 donc $1,61 \le \ln(5,12) \le 1,70$.

4.6 c) Comme
$$\ln\left(\frac{1}{2}\right) = -\ln(2)$$
 et $\ln(25) = 2\ln(5)$, on utilise les encadrements

$$0.69 \le \ln(2) \le 0.70$$
 et $3.2 \le \ln(25) \le 3.22$.

Attention, les nombres doivent être positifs pour multiplier membre à membre. On obtient

$$0.69 \times 3.2 \le \ln(2) \ln(25) \le 0.7 \times 3.22$$

ce qui donne $-2,254 \le \ln(25) \ln(\frac{1}{2}) \le -2,208$.

4.6 d) On a

$$\ln(5+\sqrt{5}) + \ln(5-\sqrt{5}) = \ln((5+\sqrt{5})(5-\sqrt{5})) = \ln(5^2-5) = \ln(20)$$
$$= \ln(4\times5) = \ln(2^2) + \ln(5) = 2\ln(2) + \ln(5).$$

Comme $1.38 \le 2 \ln(2) \le 1.4$ et $1.6 \le \ln(5) \le 1.61$, on a ainsi $1.38 + 1.6 \le 2 \ln(2) + \ln(5) \le 1.4 + 1.61$ et donc

$$2.98 \le 2 \ln(2) + \ln(5) \le 3.01.$$

4.7 a) On a
$$\ln(e^5) - \ln(e^2) = 5\ln(e) - 2\ln(e) = 5 - 2 = 3$$
.

4.7 b) On a
$$\ln(\sqrt{e}) - \ln(\frac{1}{e}) = \frac{1}{2}\ln(e) - (-1)\ln(e) = \frac{1}{2} + 1 = \frac{3}{2}$$
.

4.7 c) On a
$$2 \ln(e\sqrt{e}) = 2(\ln(e) + \ln(\sqrt{e})) = 2(1 + \frac{1}{2}) = 3$$
.

4.7 d) On a
$$e^{\ln(5)-\ln(3)} = e^{\ln(\frac{5}{3})} = \frac{5}{3}$$

4.7 e) On a
$$e^{\frac{1}{2}\ln(4)} = e^{\ln(\sqrt{4})} = \sqrt{4} = 2$$
.

4.7 f) On a
$$\ln\left(\frac{e^2}{e+3}\right) + \ln\left(\frac{e+3}{e}\right) = \ln\left(\frac{e^2}{e+3} \times \frac{e+3}{e}\right) = \ln\left(\frac{e^2}{e}\right) = \ln(e) = 1.$$

4.8 a) On a
$$\exp(-\ln(\ln(2))) = \exp\left(\ln\left(\frac{1}{\ln(2)}\right)\right) = \frac{1}{\ln(2)}$$
.

4.8 b) On a
$$\ln(\sqrt{e^6}) = \frac{1}{2}\ln(e^6) = \frac{1}{2} \times 6 = 3$$
.

4.8 c) On a
$$\ln\left(\sqrt{\exp\left(\frac{1}{3}\ln e^{27}\right)}\right) = \frac{1}{2}\ln\left(\exp\left(\frac{1}{3}\times 27\right)\right) = \frac{1}{2}\ln(\exp(9)) = \frac{1}{2}\times 9 = 4,5.$$

4.8 d) On a
$$\ln\left(\sqrt{\sqrt{e}}\right) = \frac{1}{2}\ln\left(\sqrt{e}\right) = \frac{1}{2} \times \frac{1}{2}\ln(e) = \frac{1}{4} \times 1 = \frac{1}{4}$$
.

4.8 e) On a
$$\ln\left(\sqrt{\exp(-\ln(\sqrt{e}))}\right) = \frac{1}{2}\ln(\exp(-\ln(\sqrt{e}))) = -\frac{1}{2}\ln(\sqrt{e}) = -\frac{1}{4}\ln(e) = -\frac{1}{4}$$
.

4.8 f) On calcule

$$\begin{split} \exp\!\left(2\ln\!\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\right) &= \exp\!\left(\ln\!\left((\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}})^2\right)\right) \\ &= \left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)^2 \\ &= \left(\sqrt{3+\sqrt{5}}\right)^2 - 2\left(\sqrt{3+\sqrt{5}}\right)\left(\sqrt{3-\sqrt{5}}\right) + \left(\sqrt{3-\sqrt{5}}\right)^2 \\ &= 3+\sqrt{5} - 2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)} + 3 - \sqrt{5} \\ &= 6 - 2\sqrt{3^2-5} = 6 - 2\sqrt{4} = 6 - 4 = 2. \end{split}$$

.....

4.9 On factorise par
$$e^x$$
 en remarquant que $1 = e^0 = e^{x-x} = e^x e^{-x}$. Donc,
$$\ln(e^x + 1) = \ln(e^x \times 1 + e^x e^{-x}) = \ln(e^x (1 + e^{-x})) = \ln(e^x) + \ln(1 + e^{-x}) = x + \ln(e^{-x} + 1).$$

4.10 a) On doit avoir x = 2 > 0 (done x > 2) at x = 1 > 0 (done x > 1) Ainsi l'équation a un sens quand x > 2

4.10 a) On doit avoir x-2>0 (donc x>2) et x-1>0 (donc x>1). Ainsi, l'équation a un sens quand x>2.

4.10 b) Soit x > 2. On a les équivalences suivantes :

$$\ln(x-2) + \ln(x-1) = \ln(2) \iff \ln((x-2)(x-1)) = \ln(2) \iff (x-2)(x-1) = 2 \iff x^2 - 3x = 0$$

 $\iff x(x-3) = 0 \iff x = 0 \text{ ou } x = 3.$

Comme on a x > 2, la seule solution est 3.

4.11 a) Pour commencer, on remarque que l'équation n'est définie que si 2x - 1 > 0 et x + 3 > 0. Il faut donc que $x > \frac{1}{2}$. On a alors, pour $x > \frac{1}{2}$, les équivalences suivantes :

$$ln(2x-1) = ln(x+3) \iff 2x-1 = x+3 \iff x = 4.$$

4.11 b) On a les équivalences suivantes :

$$\ln(e^{2x} + 3) = 7 \iff e^{2x} + 3 = e^7 \iff e^{2x} = e^7 - 3 \iff x = \frac{\ln(e^7 - 3)}{2}.$$

4.12 a) Soit $x \in \mathbb{R}$. On a les équivalences suivantes

l'équation a un sens pour
$$x \iff \begin{cases} x-1>0 \\ x+1>0 \\ x^2-1>0 \end{cases} \iff \begin{cases} x>1 \\ x>-1 \\ x^2>1 \end{cases}$$

4.12 b) Soit x > 1. On a

$$\ln(x-1) + 2\ln(x+1) - \ln(x^2 - 1) = \ln(x-1) + \ln((x+1)^2) - \ln(x^2 - 1)$$
$$= \ln\left(\frac{(x-1)(x+1)^2}{x^2 - 1}\right) = \ln(x+1).$$

4.12 c) Soit x > 1. On a les équivalences suivantes :

$$\ln(x-1) + 2\ln(x+1) - \ln(x^2 - 1) = 1 \iff \ln(x+1) = 1 \iff \ln(x+1) = \ln(e)$$
$$\iff x+1 = e \iff x = e-1.$$

On a bien e - 1 > 1 car on sait que $e \approx 2.71$.

.....

4.13 On a les équivalences suivantes :

$$\ln(2^x) = \ln(4^{x+1}) \iff x \ln(2) = (x+1)\ln(2^2) \iff x = 2(x+1) \iff x = -2.$$

4.14 a) Pour x > 0, on a les équivalences suivantes :

$$(\ln(x))^2 = \ln(x^2) - 1 \iff (\ln(x))^2 - 2\ln(x) + 1 = 0 \iff (\ln(x) - 1)^2 = 0 \iff \ln(x) = 1 \iff x = e.$$

4.14 b) Pour x > 0, on a les équivalences suivantes :

$$(\ln(x))^2 + \ln\left(\frac{1}{x}\right) = 0 \iff (\ln(x))^2 - \ln(x) = 0$$

$$\iff \ln(x)(\ln(x) - 1) = 0 \iff \ln(x) = 0 \text{ ou } \ln(x) = 1 \iff x = 1 \text{ ou } x = e.$$

4.14 c) Pour x > 2, on a les équivalences suivantes :

$$(\ln(x-2))^2 = 2 \iff \ln(x-2) = \sqrt{2} \text{ ou } \ln(x-2) = -\sqrt{2}$$

$$\iff x-2 = e^{\sqrt{2}} \text{ ou } x-2 = e^{-\sqrt{2}}$$

$$\iff x = 2 + e^{\sqrt{2}} \text{ ou } x = 2 + e^{-\sqrt{2}}.$$

4.15 a) Pour x > -1, on a les équivalences suivantes :

$$\ln(x+1) > p \iff x+1 > e^p \iff x > e^p - 1.$$

4.15 b) Pour que cette équation ait un sens, il faut avoir px + 1 > 0 (donc $x > \frac{-1}{p}$) et x + p > 0 (donc x > -p).

Comme p > 1, ces deux conditions se réduisent à $x > \frac{-1}{p}$. Pour $x > \frac{-1}{p}$, on a les équivalences suivantes :

$$\ln(px+1) \leqslant \ln(x+p) \iff px+1 \leqslant x+p \iff px-x \leqslant p-1 \iff x(p-1) \leqslant p-1 \iff x \leqslant 1.$$

4.16 a) On simplifie
$$\log_{10}(100) = \frac{\ln(100)}{\ln(10)} = \frac{\ln(10^2)}{\ln(10)} = \frac{2\ln(10)}{\ln(10)} = 2.$$

4.16 b) On a
$$\log_{10}(4) + \log_{10}(250) = \frac{\ln(4)}{\ln(10)} + \frac{\ln(250)}{\ln(10)} = \frac{\ln(4) + \ln(250)}{\ln(10)} = \frac{\ln(4 \times 250)}{\ln(10)} = \frac{3\ln(10)}{\ln(10)} = 3.$$

$$\textbf{4.16 c)} \quad \text{On a } \log_{10}(120) - \log_{10}(12) = \frac{\ln(120)}{\ln(10)} - \frac{\ln(12)}{\ln(10)} = \frac{\ln(120) - \ln(12)}{\ln(10)} = \frac{\ln(120/12)}{\ln(10)} = \frac{\ln(100/12)}{\ln(10)} = \frac{\ln(100/12)}{\ln(10$$

4.16 d) On a

$$\begin{split} 5\log_{10}(2)-\log_{10}(3200) &= 5\frac{\ln(2)}{\ln(10)} - \frac{\ln(3200)}{\ln(10)} = \frac{\ln(2^5)}{\ln(10)} - \frac{\ln(3200)}{\ln(10)} = \frac{\ln(32) - \ln(3200)}{\ln(10)} \\ &= \frac{\ln(32/3200)}{\ln(10)} = \frac{\ln(1/100)}{\ln(10)} = \frac{\ln(10^{-2})}{\ln(10)} = -2\frac{\ln(10)}{\ln(10)} = -2. \end{split}$$

4.17 a) On calcule $\log_3(3^{17}) = \frac{\ln(3^{17})}{\ln(3)} = \frac{17\ln(3)}{\ln(3)} = 17.$

4.17 b) On a
$$\log_6(4) + \log_6(9) = \frac{\ln(4)}{\ln(6)} + \frac{\ln(9)}{\ln(6)} = \frac{\ln(4) + \ln(9)}{\ln(6)} = \frac{\ln(4 \times 9)}{\ln(6)} = \frac{\ln(6^2)}{\ln(6)} = 2\frac{\ln(6)}{\ln(6)} = 2.$$

4.17 c) On a
$$\log_5(\sqrt{e}) \times \ln(5) = \frac{\ln(\sqrt{e})}{\ln(5)} \times \ln(5) = \frac{1}{2}\ln(e) = \frac{1}{2}$$
.

4.17 d) On a

$$\begin{split} (1+\log_2(0,25))(\log_2(200)-\log_2(25)) &= \left(1+\frac{\ln(2^{-2})}{\ln(2)}\right) \left(\frac{\ln(200)}{\ln(2)} - \frac{\ln(25)}{\ln(2)}\right) = (1-2)\frac{\ln(200) - \ln(25)}{\ln(2)} \\ &= -\frac{\ln(200/25)}{\ln(2)} = -\frac{\ln(8)}{\ln(2)} = -\frac{\ln(2^3)}{\ln(2)} = -3. \end{split}$$

4.18 Pour tous a, b > 0, on a $\ln(ab) = \ln(a) + \ln(b)$. On en déduit la formule

$$\ln(a_1) + \ln(a_2) + \dots + \ln(a_n) = \ln(a_1 \times a_2 \times \dots \times a_n).$$

On a donc

$$\ln\left(\frac{2}{1}\right) + \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) + \dots + \ln\left(\frac{n+1}{n}\right) = \ln\left(\frac{2}{1} \times \frac{3}{2} \dots \times \frac{n+1}{n}\right) = \ln\left(\frac{2 \times 3 \times \dots \times n \times (n+1)}{1 \times 2 \times 3 \times \dots \times n}\right)$$

$$= \ln\left(\frac{n+1}{1}\right) = \ln(n+1).$$

4.19 On a
$$\sum_{k=1}^{n} \ln(2^k) = \sum_{k=1}^{n} k \ln(2) = \ln(2) \sum_{k=1}^{n} k = \ln(2) \times \frac{n \times (n+1)}{2} = \frac{n(n+1)\ln(2)}{2}$$
.

Fiche no 5. Dérivée du logarithme

Réponses

•	
5.1 a) e^{8x+3} 5.1 b) e^{10t-19}	5.7 a) $ \frac{2x-4}{x^2-4x+7} $
5.1 c) e^{-8x+3}	$5.7 \text{ b}) \dots \qquad \qquad \boxed{\frac{\mathrm{e}^x}{1 + \mathrm{e}^x}}$
5.1 d)	5.7 c) $\left[-\frac{3x^2}{1-x^3} \right]$
5.2 b)	5.7 d) $\boxed{\frac{1}{x \ln(x)}}$
5.2 c)	$16x^3 + 24x^2 + 52x - 3$
5.3 a)	5.8 b) $2x^2 + 3x + 7$ $6x + 6\sqrt{x} + 1$ $2(x + \sqrt{x})$
5.3 b) $\frac{4x^2 + 11x + 4}{x(x+1)^2}$	5.8 c) $ -\frac{2x(x+2)}{(1+x)(2x^2+x+1)} $
5.4 a) $\boxed{\frac{1 - \ln(x) - 6x^3}{x^2}}$	5.9 a) $-\frac{x^2 - 6x + 2}{(x-3)(x^2-2)}$
5.4 b) $\frac{(x \ln(x) + 1)e^x}{x}$	5.9 b) $\frac{3}{7}$
5.5 a $\ln(x)$ $1 - \ln(x)$	5.10 a) $\boxed{\frac{1}{\sqrt{x^2+1}}}$
5.5 b) $\frac{1 - \ln(x)}{x^2}$ 5.5 c) $\frac{(2x - 1)\ln(x) - x + 1}{x^2}$	5.10 b)
$(\ln(x))^2$	5.10 c) $ \frac{2xe^{x^2+1}}{1+e^{x^2+1}} $
$5.5 \text{ d}) \qquad \qquad \frac{\ln(x) + 2}{2\sqrt{x}}$ 5.6 e	5.10 d) $ \frac{1}{x \ln(x) \ln(\ln(x))} $
$5.6 \text{ a}) \qquad \qquad \boxed{\frac{3 \text{ II}(x)}{x}}$	5.11 a)
5.6 b) $-\frac{1}{x \ln(x)^2}$	$2xe^{x^2}$
5.6 c) $\frac{1}{2x\sqrt{\ln(x)}}$	5.11 b)
5.6 d) $-\frac{4}{x \ln(x)^5}$	

5.14 b)
$$\ln(5) \times 5^x$$

5.13 b)
$$\boxed{\frac{6x+1}{\ln(3x^2+x+2)}}$$

5.14 d)
$$(1 + \ln(x)) \times x^x$$

5.13 c)
$$\frac{e^x}{x}$$

5.14 e)
$$\frac{1}{2\sqrt{x}}(\ln(x) + 2)x^{\sqrt{x}}$$

5.14 a)
$$\ln(2) \times 2^x$$

5.14 f)
$$\left(\ln \left(1 + \frac{1}{x} \right) - \frac{1}{x+1} \right) \left(1 + \frac{1}{x} \right)^x$$

Corrigés

5.1 a) On a
$$e^{3x+1} \times e^{5x+2} = e^{3x+1+5x+2} = e^{8x+3}$$
.

5.1 b) On a
$$(e^{2t-4})^5 \times e = e^{5(2t-4)+1} = e^{10t-19}$$
.

5.1 c) On a
$$\frac{e^{2x+1} \times e^{5-8x}}{e^{2x+3}} = e^{2x+1+5-8x-2x-3} = e^{-8x+3}$$

5.1 d) On a
$$\frac{e^{2x+5t} \times e^{4x-3t}}{e^{2t+6x}} = e^{2x+5t+4x-3t-2t-6x} = e^0 = 1$$
.

5.2 a) On a
$$3 \ln(2) + \ln(4) = 3 \ln(2) + \ln(2^2) = 3 \ln(2) + 2 \ln(2) = 5 \ln(2)$$
.

5.2 b) On a
$$\ln(100) - \ln(28) + \ln(21) - \ln(3) = \ln(5^2 \times 2^2) - \ln(7 \times 2^2) + \ln(3 \times 7) - \ln(3)$$
.

Ainsi,
$$\ln(100) - \ln(28) + \ln(21) - \ln(15) = 2\ln(2) + 2\ln(5) - 2\ln(2) - \ln(7) + \ln(3) + \ln(7) - \ln(3) = 2\ln(5)$$
.

.....

5.2 c) On a
$$\ln(7 - 2\sqrt{6}) + \ln(7 + 2\sqrt{6}) = \ln((7 - 2\sqrt{6})(7 + 2\sqrt{6})) = \ln(7^2 - (2\sqrt{6})^2)$$
$$= \ln(49 - 24) = \ln(25) = \ln(5^2) = 2\ln(5).$$

5.2 d) On a

5.2 d) On a
$$4\ln(9) - 2\ln(27) + 6\ln(\sqrt{3}) = 4\ln(3^2) - 2\ln(3^3) + 6 \times \frac{1}{2}\ln(3)$$

$$= 8\ln(3) - 6\ln(3) + 3\ln(3) = 5\ln(3).$$

5.3 a) On a
$$f'(x) = 2 - \frac{1}{x} = \frac{2x - 1}{x}$$
.

5.3 b) On a
$$f'(x) = \frac{4}{x} + \frac{3}{(x+1)^2} = \frac{4+8x+4x^2+3x}{x(x+1)^2} = \frac{4x^2+11x+4}{x(x+1)^2}$$
.

5.4 a) On a
$$f'(x) = \frac{\frac{1}{x} \times x - \ln(x) \times 1}{x^2} - 6x = \frac{1 - \ln(x) - 6x^3}{x^2}$$
.

5.4 b) On a
$$f'(x) = e^x \times \frac{1}{x} + e^x \times \ln(x) = e^x \left(\frac{1}{x} + \ln(x)\right) = \frac{(x\ln(x) + 1)e^x}{x}$$
.

180

.....

5.5 a) On a
$$f'(x) = 1 \times \ln(x) + x \times \frac{1}{x} - 1 = \ln(x)$$
.

5.5 b) On a
$$f'(x) = \frac{\frac{1}{x} \times x - \ln(x) \times 1}{x^2} = \frac{1 - \ln(x)}{x^2}$$
.

5.5 c) On a
$$f'(x) = \frac{(2x-1)\ln(x) - (x^2 - x) \times \frac{1}{x}}{(\ln(x))^2} = \frac{(2x-1)\ln(x) - x + 1}{(\ln(x))^2}$$
.

5.5 d) On a
$$f'(x) = \sqrt{x} \times \frac{1}{x} + \frac{2}{\sqrt{x}} \ln(x) = \frac{1}{\sqrt{x}} + \frac{2}{\sqrt{x}} \ln(x) = \frac{\ln(x) + 2}{2\sqrt{x}}$$
.

5.6 a) On utilise la formule
$$(u^3)' = 3u'u^2$$
.

5.6 b) On utilise la formule
$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
.

5.6 c) On utilise la formule
$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$
.

5.6 d) On utilise la formule
$$\left(\frac{1}{u^4}\right)' = -\frac{4u'}{u^5}$$
.

5.7 a) On utilise la formule
$$(\ln(u))' = \frac{u'}{u}$$
.

5.8 a) On a
$$f'(x) = 8x - \frac{4x+3}{2x^2+3x+7} = \frac{16x^3+24x^2+56x-4x-3}{2x^2+3x+7} = \frac{16x^3+24x^2+52x-3}{2x^2+3x+7}$$
.

5.8 b) On a
$$f'(x) = 3 + \frac{\frac{1}{2\sqrt{x}}}{1 + \sqrt{x}} = 3 + \frac{1}{2(x + \sqrt{x})} = \frac{6x + 6\sqrt{x} + 1}{2(x + \sqrt{x})}$$
.

5.8 c) On a
$$f'(x) = \frac{1}{1+x} - \frac{4x+1}{2x^2+x+1} = \frac{2x^2+x+1-(4x+1)(1+x)}{(1+x)(2x^2+x+1)} = -\frac{2x(x+2)}{(1+x)(2x^2+x+1)}$$
.

5.9 a) Pour
$$x > 3$$
, on pose $u(x) = \frac{x-3}{x^2-2}$. On a $u'(x) = \frac{1 \times (x^2-2) - (x-3) \times 2x}{(x^2-2)^2} = \frac{-x^2 + 6x - 2}{(x^2-2)^2}$.

Ainsi, on a
$$f'(x) = \frac{u'(x)}{u(x)} = \frac{-x^2 + 6x - 2}{(x^2 - 2)^2} \times \frac{x^2 - 2}{x - 3} = -\frac{x^2 - 6x + 2}{(x - 3)(x^2 - 2)}$$
.

Il est aussi possible d'utiliser le fait que, pour tout réel x > 3, on a $\ln\left(\frac{x-3}{x^2-2}\right) = \ln(x-3) - \ln(x^2-2)$.

5.10 a) On a
$$f'(x) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}.$$

5.10 c) Pour tout réel
$$x$$
, on pose $u(x) = e^{x^2+1}$. On a $u'(x) = 2xe^{x^2+1}$. Ainsi, $f'(x) = \frac{u'(x)}{u(x)} = \frac{2xe^{x^2+1}}{1 + e^{x^2+1}}$.

5.11 a) Pour
$$x > -1$$
, on pose $u(x) = 1 + xe^{x-x^3}$. On a $u'(x) = e^{x-x^3} + x \times (1 - 3x^2)e^{x-x^3} = (1 + x - 3x^3)e^{x-x^3}$.

On a
$$f'(x) = \frac{u'(x)}{u(x)} = \frac{(1+x-3x^3)e^{x-x^3}}{1+xe^{x-x^3}}.$$

.....

5.11 b) Pour tout réel
$$x$$
, on pose $u(x) = 1 + \ln(1 + e^{x^2})$. On a $u'(x) = \frac{2xe^{x^2}}{1 + e^{x^2}}$. On a

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2xe^{x^2}}{(1 + e^{x^2})(1 + \ln(1 + e^{x^2}))}.$$

5.12 On a $g' = \frac{f'}{f}$. Or, pour tout réel x > 0, $f'(x) = f(x)(1 - \ln(f(x)))$ et donc $\frac{f'(x)}{f(x)} = 1 - \ln(f(x))$, c'est-à-dire g'(x) = 1 - g(x).

(12.1) On while Is formula (1)' u'

5.13 a) On utilise la formule
$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
.

5.13 b) On a
$$f'(x) = (6x+1) \operatorname{li}'(3x^2 + x + 2) = \frac{6x+1}{\ln(3x^2 + x + 2)}$$
.

5.13 c) On a
$$g'(x) = \frac{e^x}{\ln(e^x)} = \frac{e^x}{x}$$
.

5.14 a) On a
$$f(x) = e^{x \ln(2)}$$
 et donc $f'(x) = \ln(2)e^{x \ln(2)} = \ln(2) \times 2^x$.

5.14 b) On a
$$f(x) = e^{x \ln(5)}$$
 et donc $f'(x) = \ln(5)e^{x \ln(5)} = \ln(5) \times 5^x$.

5.14 c) On a
$$f(x) = e^{-x \ln(3)}$$
 et donc $f'(x) = -\ln(3)e^{-x \ln(3)} = -\ln(3) \times 3^{-x}$.

5.14 d) On a
$$f(x) = e^{x \ln(x)}$$
. Pour tout $x > 0$, on pose $u(x) = x \ln(x)$. On a $u'(x) = 1 \times \ln(x) + x \times \frac{1}{x} = \ln(x) + 1$.

Ainsi,
$$f'(x) = u'(x) \exp(u(x)) = (\ln(x) + 1)e^{x \ln(x)} = (\ln(x) + 1)x^x$$
.

5.14 e) On a $f(x) = \exp(\sqrt{x} \ln(x))$. Pour tout $x \in]0, +\infty[$, on pose $u(x) = \sqrt{x} \ln(x)$. On a

$$u'(x) = \frac{1}{2\sqrt{x}}\ln(x) + \sqrt{x} \times \frac{1}{x} = \frac{1}{2\sqrt{x}}(\ln(x) + 2).$$

Ainsi, $f'(x) = u'(x) \exp(u(x)) = \frac{1}{2\sqrt{x}} (\ln(x) + 2) x^{\sqrt{x}}$.

5.14 f) On a $f(x) = \exp\left(x\ln\left(1+\frac{1}{x}\right)\right)$. Pour tout réel x > 0, on pose $u(x) = x\ln\left(1+\frac{1}{x}\right)$. On a

$$u'(x) = \ln\left(1 + \frac{1}{x}\right) + x \times \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}.$$

Ainsi,
$$f'(x) = u'(x) \exp(u(x)) = \left(\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}\right) \exp\left(x\ln\left(1 + \frac{1}{x}\right)\right) = \left(\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}\right)\left(1 + \frac{1}{x}\right)^x$$
.

Fiche nº 6. Fonctions trigonométriques

Réponses

Reponses		
6.1 a)	6.7 b)	6.15 b)
6.1 b) $\left\{-\frac{9}{17}\right\}$	6.8	6.15 c)
6.2 a) $a+b-c$	6.9 a)	6.15 d)
6.2 b) $\left[\frac{a+b-c}{a+c-b} \right]$	6.9 b) $\sqrt{\frac{6+\sqrt{3}}{8}}$	6.16 a)
6.2 c)	6.10 a)	6.16 c) vrai
	6.10 b)	6.16 d)
6.3	6.11 a)	6.17 a)
6.4 a)		6.17 b)
6.4 b)	6.11 b) $\left[-\frac{3\pi}{4} \right]$	6.18 a)
6.5 a)	6.11 c) $-\frac{\pi}{2}$	6.18 b)
6.5 b)	6.12 a) $\left[-\frac{\sqrt{2}}{2} \right]$	6.19 a) $\left\{-\frac{\pi}{5}, \frac{\pi}{5}\right\}$
6.5 c)	6.12 b)	6.19 b) $\left[\left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} \right]$
6.5 d)	6.12 c) $\boxed{-\frac{1}{2}}$	6.19 c) $\left[\left\{ -\frac{\pi}{3}, \frac{\pi}{3} \right\} \right]$
6.6 a)	6.12 d)	6.20 a) $\left\{ \frac{4\pi}{3}, \frac{5\pi}{3} \right\}$
6.6 b) $-\sin(x)$	6.12 e)	6.20 b) $\left\{ \frac{3\pi}{4}, \frac{5\pi}{4} \right\}$
6.6 c) $-\cos(x)$	6.12 f)	$\left\{\frac{4}{4}, \frac{4}{4}\right\}$
6.6 d) $\sin(x)$	6.13a	$\left\{\frac{\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \right\}$
6.6 e) $-\cos(x)$	6.14 a)	6.20 c) $ \left\{ \frac{\frac{\pi}{18}, \frac{11\pi}{18}, \frac{16\pi}{18},}{\frac{23\pi}{18}, \frac{25\pi}{18}, \frac{35\pi}{18}} \right\} $
6.6 f) $-\sin(x)$	6.14 b)	10 10 10)
6.6 g) $\sin(x)$	6.14 b)	6.21 a) $\left \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\} \right $
6.6 h) $\cos(x)$		$(\pi 3\pi 5\pi 7\pi)$
6.7 a)	6.15 a)	6.21 b) $\left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$

6.21 c)
$$\left[\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right]$$
6.22 c) $\left[-\frac{3\pi}{4}, -\frac{\pi}{4}\right] \cup$
6.23 a) $\left[\frac{\sqrt{3}}{3}\right]$
6.22 d) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup$
6.23 d) $\left[\frac{\sqrt{3}}{3}\right]$
6.22 d) $\left[-\frac{3\pi}{4}, -\frac{\pi}{4}\right] \cup$
6.23 d) $\left[-\frac{\sqrt{3}}{3}\right]$
6.23 d) $\left[-\frac{\sqrt{3}}{3}\right]$

Corrigés

6.1 b) On a les équivalences suivantes :

$$\left(\frac{3}{2}x+1\right)(12-x) - \frac{5}{2}(x^2+2) = -2(1+2x^2) \iff (3x+2)(12-x) - 5(x^2+2) = -4(1+2x^2)$$
$$\iff -3x^2 + 34x + 24 - 5x^2 - 10 = -4 - 8x^2$$
$$\iff 34x = -18 \iff x = -\frac{9}{17}.$$

6.2 a) On a
$$\frac{(a+b)^2 - c^2}{a+b+c} = \frac{(a+b+c)(a+b-c)}{a+b+c} = a+b-c$$
.

6.2 b) On a
$$\frac{a^2 + b^2 - c^2 + 2ab}{a^2 - b^2 + c^2 + 2ac} = \frac{a^2 + 2ab + b^2 - c^2}{a^2 + 2ac + c^2 - b^2} = \frac{(a+b)^2 - c^2}{(a+c)^2 - b^2} = \frac{(a+b+c)(a+b-c)}{(a+c+b)(a+c-b)} = \frac{a+b-c}{a+c-b}.$$

6.2 c)

$$\left(\frac{6a+1}{a^2-6a} + \frac{6a-1}{a^2+6a}\right)\frac{a^2-36}{a^2+1} = \left(\frac{6a+1}{a(a-6)} + \frac{6a-1}{a(a+6)}\right)\frac{(a+6)(a-6)}{a^2+1}
= \left(\frac{(6a+1)(a+6)}{a(a-6)(a+6)} + \frac{(6a-1)(a-6)}{a(a-6)(a+6)}\right)\frac{(a+6)(a-6)}{a^2+1}
= \left(\frac{6a^2+37a+6+6a^2-37a+6}{a}\right)\frac{1}{a^2+1} = \left(\frac{12a^2+12}{a}\right)\frac{1}{a^2+1} = \frac{12}{a}.$$

.....

6.4 a) Un angle de π radians fait 180° .

Un angle de 1° fait $\frac{\pi}{180}$ rad.

6.9 b) On sait que
$$\cos^2(x) + \sin^2(x) = 1$$
 donc on a $\sin^2(x) = 1 - \cos^2(x) = 1 - \left(\frac{\sqrt{3} - 1}{4}\right)^2 = \frac{6 + \sqrt{3}}{8}$.

Or, on a $\sin(x) \ge 0$ et donc $\sin(x) = \sqrt{\frac{6 + \sqrt{3}}{2}}$.

6.10 a) On a les équivalences suivantes :

$$0 < \frac{45\pi}{4} + 2k\pi < 2\pi \iff -\frac{45\pi}{4} < 2k\pi < -\frac{37\pi}{4} \iff -\frac{45}{8} < k < -\frac{37}{8} \iff -5 - \frac{5}{8} < k < -5 + \frac{3}{8} \iff k = -5.$$

6.10 b) Soit $k \in \mathbb{Z}$. On a les équivalences suivantes :

$$-\pi < \frac{71\pi}{6} + 2k\pi \leqslant \pi \iff -\frac{77\pi}{6} < 2k\pi \leqslant -\frac{65\pi}{6} \iff -\frac{77}{12} < k \leqslant -\frac{65}{12} \iff -6 - \frac{5}{12} < k \leqslant -6 + \frac{7}{12} \iff k = -6.$$

....

6.11 a) On cherche l'entier relatif k tel que $-\pi < \frac{152\pi}{5} + 2k\pi \leqslant \pi$. Soit $k \in \mathbb{Z}$. On a les équivalences suivantes :

$$-\frac{157\pi}{5} < 2k\pi \leqslant -\frac{147\pi}{5} \iff -\frac{157}{10} < k \leqslant -\frac{147}{10} \iff k = -15.$$

La mesure principale de $\frac{152\pi}{5}$ est donc $\frac{152\pi}{5} - 15 \times 2\pi = \frac{152\pi}{5} - \frac{150\pi}{5} = \frac{2\pi}{5}$

6.11 b) De même, soit $k \in \mathbb{Z}$. On a les équivalences suivantes :

$$-\pi < 2k\pi - \frac{75\pi}{4} \leqslant \pi \iff \frac{71\pi}{4} < 2k\pi \leqslant \frac{79\pi}{4} \iff \frac{71}{8} < k \leqslant \frac{79}{8} \iff k = 9.$$

La mesure principale de $-\frac{75\pi}{4}$ est donc $-\frac{75\pi}{4} + 9 \times 2\pi = -\frac{75\pi}{4} + \frac{72\pi}{4} = -\frac{3\pi}{4}$.

6.11 c) De même, on a l'équivalence : $-\pi < \frac{153\pi}{6} + 2k\pi \leqslant \pi \iff k = -13.$

La mesure principale de $\frac{153\pi}{6}$ est donc $\frac{153\pi}{6} - 13 \times 2\pi = \frac{153\pi - 156\pi}{6} = -\frac{\pi}{2}$.

6.12 a) On reconnaît que
$$\frac{11\pi}{4} = \frac{8\pi + 3\pi}{4} = 2\pi + \frac{3\pi}{4}$$
. On a donc $\cos\left(\frac{11\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$.

6.12 b) De même, on a
$$\sin\left(\frac{11\pi}{4}\right) = \sin\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
.

6.12 c) On reconnaît que
$$\frac{10\pi}{3} = \frac{12\pi - 2\pi}{3} = 4\pi - \frac{2\pi}{3}$$
. On a donc $\cos\left(\frac{10\pi}{3}\right) = \cos\left(\frac{-2\pi}{3}\right) = -\frac{1}{2}$.

6.12 e) On reconnaît que
$$\frac{19\pi}{2} = \frac{20\pi - \pi}{2} = 10\pi - \frac{\pi}{2}$$
. On a donc $\cos\left(\frac{19\pi}{2}\right) = \cos\left(\frac{-\pi}{2}\right) = 0$.

6.13 La fonction cosinus est paire, donc sa courbe est symétrique par rapport à l'axe des ordonnées.

6.14 c) La fonction cos est croissante sur $[\pi, 2\pi]$, donc croissante sur $\left[\pi, \frac{5\pi}{4}\right]$. La fonction $x \mapsto \cos\left(x + \frac{\pi}{4}\right)$ est donc croissante sur $\left[\frac{3\pi}{4}, \pi\right]$.

6.15 b) Pour tout $x \in \mathbb{R}$, on a $f(-x) = 5 - 2\cos(-x) = 5 - 2\cos(x) = f(x)$.

6.15 c) Pour tout
$$x \in \mathbb{R}$$
, on a $f(-x) = 4\cos(-x)\sin(-x) = 4\cos(x)(-\sin(x)) = -4\cos(x)\sin(x) = -f(x)$.

.....

6.15 d) Pour tout
$$x \in \mathbb{R}$$
, on a $f(-x) = (-x)^2 \cos(-x) = x^2 \cos(x) = f(x)$.

6.16 a) Pour tout
$$x \in \mathbb{R}$$
, on a $\cos(x + 4\pi) = \cos(x + 2\pi + 2\pi) = \cos(x + 2\pi) = \cos(x)$.

6.16 b) On note $f: x \longmapsto \sin\left(\frac{x}{2}\right)$. On a

$$f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \qquad \text{et} \qquad f\left(\frac{\pi}{2} + 2\pi\right) = \sin\left(\frac{\pi}{4} + \pi\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}.$$

La fonction f n'est donc pas 2π -périodique.

6.16 c) Pour tout $x \in \mathbb{R}$, on a $f(x+1) = 3\sin(2\pi(x+1)) = 3\sin(2\pi x + 2\pi) = 3\sin(2\pi x) = f(x)$.

6.16 d) Pour tout
$$x \in \mathbb{R}$$
, on a $f\left(x + \frac{\pi}{2}\right) = 4\cos\left(4\left(x + \frac{\pi}{2}\right)\right) - 1 = 4\cos(4x + 2\pi) - 1 = 4\cos(4x) - 1 = f(x)$.

6.17 a) La fonction recherchée atteint la valeur 2 et s'annule en 0, il s'agit donc de
$$x \mapsto -2\sin\left(\frac{x}{2}\right)$$
.

6.17 b) La fonction recherchée s'annule en
$$\frac{\pi}{4}$$
, il s'agit donc de $x \mapsto \cos\left(x - \frac{3\pi}{4}\right)$.

6.18 a) La fonction recherchée s'annule en
$$\frac{\pi}{4}$$
, il s'agit donc de $x \mapsto -\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)$.

6.18 b) La fonction recherchée atteint les valeurs 0 et 2, il s'agit donc de
$$x \mapsto 1 + \cos(x)$$
.

6.19 a) Dans l'intervalle
$$]-\pi,\pi]$$
, les seuls nombres ayant le même cosinus que $\frac{\pi}{5}$ sont $-\frac{\pi}{5}$ et $\frac{\pi}{5}$. L'équation $\cos(x) = \cos\left(\frac{\pi}{5}\right)$ admet donc deux solutions dans cet intervalle : $\left\{-\frac{\pi}{5}, \frac{\pi}{5}\right\}$.

6.19 b) On a
$$\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
. Or, dans l'intervalle $]-\pi,\pi]$, les seuls nombres ayant le même sinus que $\frac{\pi}{4}$ sont $\frac{\pi}{4}$ et $\frac{3\pi}{4}$. Les solutions de l'équation dans $]-\pi,\pi]$ sont donc : $\left\{\frac{\pi}{4},\frac{3\pi}{4}\right\}$.

6.20 a) On procède comme précédemment en constatant que
$$\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$
.

6.20 b) On procède comme précédemment en constatant que
$$-\cos(x) = \frac{1}{\sqrt{2}} \iff \cos(x) = -\frac{\sqrt{2}}{2} = \cos\left(\frac{5\pi}{4}\right)$$
.

6.20 c) De même, dans l'intervalle
$$]0,6\pi]$$
, les solutions de l'équation $\cos(t) = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$ sont $\frac{\pi}{6}$, $\frac{11\pi}{6}$, $\frac{13\pi}{6}$, $\frac{23\pi}{6}$, $\frac{25\pi}{6}$ et $\frac{35\pi}{6}$. L'ensemble des solutions de l'équation $\cos(3x) = \frac{\sqrt{3}}{2}$ dans l'intervalle $]0,2\pi]$ est donc

$$\left\{\frac{\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \frac{23\pi}{18}, \frac{25\pi}{18}, \frac{35\pi}{18}\right\}.$$

6.21 a) De même, on a
$$\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2}$$
. Les solutions dans $[0, 2\pi[$ sont donc $\frac{\pi}{6}$ et $\frac{5\pi}{6}$.

6.21 b) Soit $x \in [0, 2\pi[$. On a les équivalences suivantes :

$$\sin^2(x) = \frac{1}{2} \iff \sin(x) = \frac{1}{\sqrt{2}} \text{ ou } \sin(x) = -\frac{1}{\sqrt{2}} \iff \sin(x) = \frac{\sqrt{2}}{2} \text{ ou } \sin(x) = -\frac{\sqrt{2}}{2}$$
$$\iff x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}.$$

6.21 c) Soit $x \in [0, 2\pi[$. On note $t = \cos(x)$. L'équation $2t^2 + t - 1 = 0$ est une équation du second degré, dont le discriminant vaut 9 et les solutions sont -1 et $\frac{1}{2}$. On a donc les équivalences suivantes :

$$2\cos^2(x) + \cos(x) - 1 = 0 \iff \cos(x) = -1 \text{ ou } \cos(x) = \frac{1}{2} \iff x \in \left\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right\}.$$

6.22 a) On a $\cos\left(\frac{\pi}{3}\right) = \cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}$. Par lecture sur le cercle trigonométrique, les réels de l'intervalle $]-\pi,\pi]$ dont le cosinus est supérieur à $\frac{1}{2}$ sont ceux compris entre $-\frac{\pi}{3}$ et $\frac{\pi}{3}$.

6.22 b) De même, on a $\sin\left(-\frac{2\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$ donc, par lecture sur le cercle trigonométrique, les réels de l'intervalle $]-\pi,\pi]$ dont le sinus est inférieur à $-\frac{\sqrt{3}}{2}$ sont ceux compris entre $-\frac{2\pi}{3}$ et $-\frac{\pi}{3}$.

6.22 c) Soit $x \in]-\pi,\pi]$. On a l'équivalence

$$|\cos(x)|\leqslant \frac{\sqrt{2}}{2}\iff -\frac{\sqrt{2}}{2}\leqslant \cos(x)\leqslant \frac{\sqrt{2}}{2}.$$

Or, on a $\cos\left(\frac{\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ et $\cos\left(\frac{3\pi}{4}\right) = \cos\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$. Un raisonnement similaire au précédent permet alors de conclure.

6.22 d) On utilise le fait que, dans l'intervalle $\left] -\frac{5\pi}{4}, \frac{3\pi}{4} \right]$, l'ensemble des solutions de l'inéquation $\sin(t) \ge 0$ est $\left[-\frac{5\pi}{4}, -\pi \right] \cup \left[0, \frac{3\pi}{4} \right]$.

6.23 a) On a $tan(0) = \frac{\sin(0)}{\cos(0)} = \frac{0}{1} = 0$. On procède de même dans les questions suivantes.

6.23 e) Pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $1 + \tan^2(x) = 1 + \frac{\sin^2(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}$.

Fiche nº 7. Dérivation des fonctions trigonométriques

Réponses

Corrigés

7.1 a) On a
$$(x+y)(x^2-xy+y^2)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3$$
.

7.1 b) On a
$$\left(x - \frac{1}{x}\right)\left(1 - \frac{1}{x+1}\right) = \frac{x^2 - 1}{x} \frac{x+1-1}{x+1} = \frac{(x-1)(x+1)}{x} \frac{x}{x+1} = x-1.$$

7.1 c) On a
$$(x-1)(x^2-1)(x^3-1) = (x^3-x^2-x+1)(x^3-1) = x^6-x^5-x^4+x^2+x-1$$
.

7.2 a) On a
$$7a^2b - 4ab^2 = ab \times 7a - ab \times 4b = ab(7a - 4b)$$
.

7.2 b) On a
$$a + 1 + b + ab = a + 1 + b(1 + a) = (a + 1)(1 + b)$$
.

7.3 a) On a les équivalences suivantes :
$$|x+2| = 7 \iff x+2 = 7 \text{ ou } x+2 = -7 \iff x=5 \text{ ou } x=-9.$$

7.3 b) On a les équivalences suivantes :

$$|x+2| = |x-7| \iff x+2 = x-7 \text{ ou } x+2 = -(x-7) \iff 2 = -7 \text{ ou } 2x = 7-2 \iff x = \frac{5}{2}.$$

En notant u(x) = x et $v(x) = \sin(x)$, on a $f(x) = u(x) \times v(x)$, u'(x) = 1 et $v'(x) = \cos(x)$. Donc, on a

$$f'(x) = u'(x)v(x) + u(x)v'(x) = \sin(x) + x\cos(x).$$

En notant $u(x) = x^2$ et $v(x) = \cos(x)$, on a $f(x) = u(x) \times v(x)$, u'(x) = 2x et $v'(x) = -\sin(x)$. Donc, on a $f'(x) = u'(x)v(x) + u(x)v'(x) = 2x\cos(x) - x^2\sin(x)$.

7.5 b) En notant
$$u(x) = \sin(x)$$
 et $v(x) = x$, on a $f(x) = \frac{u(x)}{v(x)}$, $u'(x) = \cos(x)$ et $v'(x) = 1$. Donc, on a

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{x\cos(x) - \sin(x)}{x^2}.$$

En notant $u(x) = \cos(x)$ et v(x) = -5x + 3, on a $f(x) = u \circ v(x)$, $u'(x) = -\sin(x)$ et v'(x) = -5. Donc,

7.6 b) En notant
$$u(x) = \cos(x)$$
 et $v(x) = -5x + 3$, on a $f(x) = u \circ v(x)$, $u'(x) = -\sin(x)$ et $v'(x) = -5$. Donc, on a $f'(x) = v'(x) \times u'(v(x)) = -5 \times (-\sin(-5x + 3)) = 5\sin(-5x + 3)$.

En notant $u(x) = \cos(x)$ et $v(x) = x^2$, on a $f(x) = u \circ v(x)$, $u'(x) = -\sin(x)$ et v'(x) = 2x. Donc, on a

En notant
$$u(x) = \cos(x)$$
 et $v(x) = x^2$, on a $f(x) = u \circ v(x)$, $u'(x) = -\sin(x)$ et $v'(x) = 2x$. Donc, on a $f'(x) = v'(x) \times u'(v(x)) = 2x \times (-\sin(x^2)) = -2x\sin(x^2)$.

Il faut utiliser la dérivée de la fonction composée $x \mapsto e^{u(x)}$, qui est $x \mapsto u'(x)e^{u(x)}$. **7.7** a)

7.7 b) Il faut utiliser la dérivée de la fonction composée
$$x \longmapsto \sqrt{u(x)}$$
, qui est $x \longmapsto \frac{u'(x)}{2\sqrt{u(x)}}$.

Il faut utiliser la dérivée de la fonction puissance $x \mapsto (u(x))^n$, qui est $x \mapsto nu'(x)(u(x))^{n-1}$. **7.7** c)

7.8 a) En notant
$$u(x) = \sin(x)$$
 et $v(x) = \sqrt{x^2 + 5}$, on a $f(x) = u \circ v(x)$, $u'(x) = \cos(x)$ et $v'(x) = \frac{x}{\sqrt{x^2 + 5}}$ On a donc $f'(x) = v'(x) \times u'(v(x)) = \frac{x}{\sqrt{x^2 + 5}} \cos(\sqrt{x^2 + 5})$.

7.8 b) En notant
$$u(x) = \sin(x)$$
 et $v(x) = \cos^2(3x)$, on a $f(x) = \frac{u(x)}{v(x)}$, $u'(x) = \cos(x)$ et

$$v'(x) = 2 \times (-3\sin(3x)) \times \cos(3x) = -6\sin(3x)\cos(3x),$$

en utilisant des dérivées de composées.

7.9 On a
$$f'(x) = -e^{-x}\sin(x) + e^{-x}\cos(x)$$
 et $f''(x) = -2e^{-x}\cos(x)$. Donc,

$$f''(x) + 2f'(x) + 2f(x) = -2e^{-x}\cos(x) - 2e^{-x}\sin(x) + 2e^{-x}\cos(x) + 2e^{-x}\sin(x) = 0.$$

.....

7.10 On a
$$f'(x) = \sin(x) + x\cos(x)$$
 et $f''(x) = 2\cos(x) - x\sin(x)$. Donc,
$$xf(x) - 2f'(x) + xf''(x) = x^2\sin(x) - 2(\sin(x) + x\cos(x)) + x(2\cos(x) - x\sin(x)) = -2\sin(x).$$

7.11 a) La fonction sin est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, on a $\sin'(x) = \cos(x)$. Par définition du nombre dérivé, on a donc $\lim_{x \to a} \frac{\sin(x) - \sin(a)}{x - a} = \sin'(a) = \cos(a)$.

7.11 b) On applique le résultat précédent avec a = 0.

7.11 c) Quand x tend vers $\frac{\pi}{3}$, $t = 2x - \frac{2\pi}{3}$ tend vers 0. Donc, d'après la question précédente, $\frac{\sin(t)}{t}$ tend vers 1. Ainsi, $\frac{\sin\left(2x - \frac{2\pi}{3}\right)}{x - \frac{\pi}{3}} = \frac{2\sin(t)}{t}$ admet une limite égale à 2.

7.12 a) Pour tout $x \in]-\pi, 0[$, on a

$$h'(x) = f'(x) \times g'(f(x)) = -\sin(x) \times \frac{1}{\sqrt{1 - \cos^2(x)}} = \frac{-\sin(x)}{\sqrt{\sin^2(x)}} = \frac{-\sin(x)}{|\sin(x)|}.$$

Or, sur $]-\pi, 0[$, on a $-\sin(x) = |\sin(x)|$, donc h'(x) = 1.

7.12 b) On a
$$h\left(-\frac{\pi}{2}\right) = g(0) = 0$$
.

7.12 c) Puisque h'(x) = 1, on en déduit qu'il existe un réel b tel que, pour tout $x \in]-\pi, 0[$, h(x) = x + b.

Or,
$$h\left(-\frac{\pi}{2}\right) = 0$$
, donc $-\frac{\pi}{2} + b = 0$ et $b = \frac{\pi}{2}$. Par conséquent, on a $h(x) = x + \frac{\pi}{2}$.

7.13 En notant $u(x) = \sin(x)$ et $v(x) = \cos(x)$, on a $u'(x) = \cos(x)$ et $v'(x) = -\sin(x)$ donc

$$\tan'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{\cos(x)\cos(x) + \sin(x)\sin(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}.$$

On remarque qu'on a aussi $tan'(x) = 1 + tan^2(x)$.

7.14 a) On a $f'(x) = 3\tan'(3x) + 2\tan'(x)$. On utilise alors le calcul précédent.

7.14 b) On a $f'(x) = 2 \times 2 \tan'(x) \tan(x)$.

7.14 c) La dérivée de $x \mapsto \sqrt{\tan(3x)}$ est $x \mapsto \frac{3\tan'(3x)}{2\sqrt{\tan(3x)}}$. La dérivée de $x \mapsto \frac{1}{\sin^2(\sqrt{x})} = \sin(\sqrt{x})^{-2}$ est

.....

$$x \longmapsto -2 \times \frac{1}{2\sqrt{x}}\cos(\sqrt{x}) \times \sin^{-3}(\sqrt{x}).$$

Fiche nº 8. Révisions sur la dérivation

Réponses

8.1 c)
$$\frac{1}{3}$$

8.2 a).....
$$x^3 - 5x^2 + 7x - 3$$

8.2 b)
$$x^3 + x^2 - 2x - 8$$

8.2 c)
$$-x^3 + 9x + 20$$

8.3 b)
$$x \mapsto 5$$

8.3 c)
$$x \mapsto \frac{1}{2\sqrt{x}}$$

8.3 d)
$$x \mapsto -3e^{-3x}$$

8.3 e)
$$x \mapsto 0$$

8.3 f)
$$x \mapsto -\frac{5}{x^6}$$

8.4 a).....
$$x \mapsto 4x^2(3+5x)$$

8.4 b)
$$x \mapsto \frac{e^x - e^{-x}}{2}$$

8.4 c)
$$x \mapsto \frac{e^x + e^{-x}}{2}$$

8.4 d)
$$x \mapsto 9e^{3x} - \frac{1}{x^2}$$

8.5 a)
$$x \mapsto e^{3x} - \frac{2}{x^2}$$

8.5 c)
$$x \mapsto \frac{3}{2} \left(\frac{e^{3x}}{2} + \frac{1}{5x} + \frac{1}{\sqrt{x}} \right)$$

8.6 a)
$$x \mapsto (2x+3)e^{2x}$$

8.6 b)
$$x \mapsto \ln(x) + \frac{x+1}{x}$$

8.6 c)
$$x \mapsto (3x^2 + 2x + 3)e^{3x}$$

8.7 a)
$$x \mapsto \frac{e^x}{(1+e^x)^2}$$

8.7 b)
$$x \mapsto \frac{4}{(e^x + e^{-x})^2}$$

8.7 c)
$$x \mapsto \frac{2e^x(x^3 - x^2 + x + 1)}{(1 + x^2)^2}$$

8.8 a)
$$x \mapsto 6(3x+2)$$

8.8 b).....
$$x \mapsto -\frac{5}{(5x+2)^2}$$

8.8 c)
$$x \mapsto \frac{4}{4x+1}$$

8.8 d)
$$x \mapsto \frac{8}{(5-2x)^5}$$

8.9 b)
$$x \mapsto 4(x+e)^3 + 27(3x+2)^2$$

8.10 a)
$$\ln(1+x) + \frac{x}{1+x}$$

8.10 b)
$$\frac{2+x}{(1+x)^2}$$

8.11 b)
$$-\frac{3-2\ln(x)}{x^3}$$

8.12 a)
$$\frac{e^x - 1 + x}{e^x}$$

Corrigés

- **8.3** e) Cette fonction est constante!
- **8.4** a) En notant f la fonction, on a $f'(x) = 4 \times 3x^2 + 5 \times 4x^3 = 4x^2(3+5x)$.
- 8.5 a En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = \frac{1}{3} \times 3e^{3x} + 2 \times \left(-\frac{1}{x^2}\right) = e^{3x} - \frac{2}{x^2}.$$

8.5 b) En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = 3 \times 2e^{2x} - 4^4 \times 4x^3 = 2(3e^{2x} - 2 \times 4^4x^3) = 2(3e^{2x} - 2 \times 2^8x^3) = 2(3e^{2x} - 2^9x^3).$$

8.5 c En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = \frac{3}{4}e^{3x} + \frac{3}{10} \times \frac{1}{x} + 3 \times \frac{1}{2\sqrt{x}} = \frac{3}{2} \left(\frac{e^{3x}}{2} + \frac{1}{5x} + \frac{1}{\sqrt{x}} \right).$$

8.5 d) En notant f la fonction et en utilisant les propriétés de la fonction exponentielle, on a

$$f(x) = e^{10x} + \frac{2}{x} - 3^4 x^4.$$

En utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = 10e^{10x} - \frac{2}{x^2} - 3^4 \times 4x^3 = 2\left(5e^{10x} - \frac{1}{x^2} - 2 \times 3^4x^3\right).$$

8.6 a) En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = 1 \times e^{2x} + (x+1) \times 2e^{2x} = (1+2(x+1))e^{2x} = (2x+3)e^{2x}.$$

8.6 b) En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = 1 \times \ln(x) + (x+1) \times \frac{1}{x} = \ln(x) + \frac{x+1}{x}.$$

8.6 c En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = 2xe^{3x} + (x^2 + 1) \times 3e^{3x} = (2x + 3(x^2 + 1))e^{3x} = (3x^2 + 2x + 3)e^{3x}.$$

8.7 a) En notant f la fonction et en utilisant les dérivées des fonctions élémentaires, on a

$$f'(x) = \frac{e^x(1+e^x) - e^x \times e^x}{(1+e^x)^2} = \frac{e^x(1+e^x - e^x)}{(1+e^x)^2} = \frac{e^x}{(1+e^x)^2}.$$

8.7 b) En notant f la fonction, f est un quotient et sa dérivée vaut

$$f'(x) = \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x + e^{-x})^2} = \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2} = \frac{4e^x e^{-x}}{(e^x + e^{-x})^2} = \frac{4}{(e^x + e^{-x})^2}.$$

8.7 c) En notant f la fonction et en utilisant les règles habituelles sur la dérivation, on a

$$f'(x) = \frac{(2x + 2(e^x + xe^x) + 0)(1 + x^2) - (x^2 + 2xe^x + 1)2x}{(1 + x^2)^2}$$

$$= \frac{(2x + 2(x + 1)e^x)(1 + x^2) - 2x(x^2 + 2xe^x + 1)}{(1 + x^2)^2}$$

$$= 2\frac{x + (x + 1)e^x + x^3 + x^2(x + 1)e^x - x^3 - 2x^2e^x - x}{(1 + x^2)^2}$$

$$= 2\frac{e^x(x + 1 + x^3 + x^2 - 2x^2)}{(1 + x^2)^2}$$

$$= 2e^x \frac{x^3 - x^2 + x + 1}{(1 + x^2)^2}.$$

8.8 a) La dérivée de $x \mapsto 3x + 2$ est $x \mapsto 3$ et la dérivée de $u \mapsto u^2$ est $u \mapsto 2u$. Ainsi, en notant f la fonction demandée, on a $f'(x) = 2 \times 3 \times (3x + 2) = 6(3x + 2)$.

- **8.8** b) En notant f la fonction demandée, on a $f'(x) = 5 \times \left(-\frac{1}{(5x+2)^2} \right) = -\frac{5}{(5x+2)^2}$.
- **8.8** c) En notant f la fonction demandée, on a $f'(x) = 12 \times \frac{1}{12x+3} = \frac{12}{3(4x+1)} = \frac{4}{4x+1}$.

8.9 a) Par composition, la dérivée de $x \mapsto (3x+2)^2$ est $x \mapsto 3 \times 2(3x+2)$. Par composition aussi, la dérivée de $x \mapsto e^{4x+5}$ est $x \mapsto 4e^{4x+5}$. En notant f la fonction, on a donc

$$f'(x) = 6(3x + 2)e^{4x+5} + (3x + 2)^{2} \times 4 \times e^{4x+5}$$
$$= 2(3x + 2)(3 + 2(3x + 2))e^{4x+5}$$
$$= 2(3x + 2)(6x + 7)e^{4x+5}.$$

8.9 b) Par composition, la dérivée de $x \mapsto (x + e)^4$ est $x \mapsto 4(x + e)^3$. Par composition aussi, la dérivée de $x \mapsto (3x + 2)^3$ est $x \mapsto 3 \times 3(3x + 2)^2$.

En notant f la fonction, on a donc $f'(x) = 4(x+e)^3 + 3 \times 9(3x+2)^2 = 4(x+e)^3 + 27(3x+2)^2$.

8.10 a) On pose u(x) = x et $v(x) = \ln(1+x)$ et on utilise la formule donnant la dérivée d'un produit.

8.10 b) La fonction $g: x \longmapsto \frac{x}{1+x}$ est un quotient dont la dérivée vaut :

$$g'(x) = \frac{1 \times (x+1) - x \times 1}{(1+x)^2} = \frac{1}{(1+x)^2}.$$

La fonction h, définie par l'expression $h(x) = \ln(1+x)$, est la composée entre la fonction logarithme et une fonction affine dont la dérivée vaut

$$h'(x) = \frac{1}{1+x}.$$

Ainsi, la dérivée de la fonction f' vaut $f''(x) = \frac{1}{1+x} + \frac{1}{(1+x)^2} = \frac{1+x+1}{(1+x)^2} = \frac{2+x}{(1+x)^2}$.

8.11 a) En notant f la fonction et en utilisant les règles habituelles sur la dérivation, on a

$$f'(x) = \frac{\frac{1}{x} \times x - \ln(x) \times 1}{x^2} = \frac{1 - \ln(x)}{x^2}.$$

8.11 b) La fonction f' est un quotient de fonctions. Ainsi, on a

$$f''(x) = \frac{-\frac{1}{x} \times x^2 - (1 - \ln(x)) \times 2x}{(x^2)^2} = \frac{-x - 2x(1 - \ln(x))}{x^4} = -x\frac{1 + 2 - 2\ln(x)}{x^4} = -\frac{3 - 2\ln(x)}{x^3}.$$

8.12 a) On a
$$f'(x) = 1 + 0 - \frac{1 \times e^x - x \times e^x}{(e^x)^2} = 1 - \frac{1 - x}{e^x} = \frac{e^x - 1 + x}{e^x}$$
.

8.12 b) La fonction f' est un quotient de fonctions dérivables, donc

$$f''(x) = \frac{(e^x - 0 + 1) \times e^x - (e^x - 1 + x) \times e^x}{(e^x)^2} = \frac{e^x + 1 - e^x + 1 - x}{e^x} = \frac{2 - x}{e^x}.$$

8.13 a) On dérive chacune des fonctions de la somme. On obtient ainsi $f'(x) = \sum_{k=0}^{n} kx^{k-1}$.

8.13 b) Le nombre f(x) est la somme des n+1 premiers termes d'une suite géométrique de raison $x \neq 1$. D'après le cours, on a donc

$$1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}.$$

8.13 c) En utilisant la formule précédente, on a, pour $x \neq 1$,

$$f'(x) = \frac{-(n+1)x^{n+1-1}(1-x) - (-1) \times (1-x^{n+1})}{(1-x)^2} = \frac{-(n+1)x^n(1-x) + (1-x^{n+1})}{(1-x)^2}$$
$$= \frac{-(n+1)x^n + (n+1)x^{n+1} + 1 - x^{n+1}}{(1-x)^2} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}.$$

8.14 f) On conjecture cette formule en généralisant les calculs précédents.

Plus formellement, cette propriété se démontrerait par récurrence sur n.

Fiche nº 9. Dérivée des fonctions composées

Réponses

9.1 b)
$$81x^2 - 126x + 49$$

9.1 c)
$$x^3 - x^2 - 5x - 3$$

9.1 d)
$$x^4 + 6x^3 + 13x^2 + 12x + 4$$

9.2 a)
$$\frac{2}{(3-x)(x-1)}$$

9.2 c)
$$\frac{2x^3 + 3x^2 + x - 4}{x^3(x-4)}$$

9.3 a)......
$$-6x^2e^{1-x^3}$$

9.3 b)
$$-\frac{2e^{2x}}{(1+e^{2x})^2}$$

9.3 c)
$$\frac{e^x}{2\sqrt{1+e^x}}$$

9.4 a)
$$4(2x + e)(x^2 + ex)^3$$

9.4 b)
$$(x-1)(x^2-2x+3)$$

9.4 c)
$$3(8x+3)(4x^2+3x+5)^2$$

9.4 d)
$$\frac{-2(6x-5)}{(3x^2-5x+7)^3}$$

9.5 a)
$$\frac{3-4x}{2\sqrt{-2x^2+3x+5}}$$

9.7 a)
$$y = f'(a)(x-a) + f(a)$$

9.8 b)
$$\frac{(2x+1)(2x^2+2x+1)e^{x^2+x+1}}{2(x^2+x+1)\sqrt{x^2+x+1}}$$

9.9 a).....
$$(6x^2 + 10x + 3)e^{x^2+3}$$

9.10 a).....
$$\frac{1}{2}x(\sqrt{x}+4)e^{\sqrt{x}}$$

9.10 b)
$$\frac{(x-1)\exp(\frac{1}{x})}{x}$$

9.11
$$(4x^2 - 20x + 27)e^{x^2 - 4x + 7}$$

9.12 a)
$$\frac{x(3x^3 + 3x + 1)e^{x^3}}{\sqrt{1+x^2}}$$

9.13 a)
$$\frac{(x^2 - 2x - 1)\sqrt{x - 1}}{2(x - 1)^2\sqrt{1 + x^2}}$$

9.13 b)...
$$\frac{(5x^2 + 6x + 3) \exp((x^2 + 2x + 3)\sqrt{x})}{2\sqrt{x}}$$

9.13 c)
$$-\frac{44(2x+5)}{(4x-1)^3}$$

9.14 a)
$$-\frac{x \exp(\sqrt{1-x^2})}{\sqrt{1-x^2}}$$

9.14 b)
$$4(1+3x^2\exp(x^3))(x+\exp(x^3))^3$$

9.15 a)
$$-2f + 2f^3$$

9.15 b)
$$-2 + 8f^2 - 6f^4$$

Corrigés

9.1 a) On a
$$(2x+3)(3x-7) = 2x \times 3x + 2x \times (-7) + 3 \times 3x + 3 \times (-7) = 6x^2 - 14x + 9x - 21 = 6x^2 - 5x - 21$$
.

9.1 b) On a
$$(9x-7)^2 = (9x)^2 - 2 \times 9x \times 7 + 7^2 = 81x^2 - 126x + 49$$
.

9.1 c) On a
$$(x+1)^2(x-3) = (x^2+2x+1)(x-3) = x^3-3x^2+2x^2-6x+x-3=x^3-x^2-5x-3$$
.

9.1 d) On a
$$(x^2 + 3x + 2)^2 = x^4 + 2x^2(3x + 2) + (3x + 2)^2 = x^4 + 6x^3 + 4x^2 + 9x^2 + 12x + 4$$
.

9.2 a) On a
$$\frac{1}{x-1} + \frac{1}{3-x} = \frac{3-x+x-1}{(x-1)(3-x)} = \frac{2}{(3-x)(x-1)}$$
.

9.2 b) On a
$$\frac{2x+3}{x-4} + \frac{3}{x-7} = \frac{(2x+3)(x-7)+3(x-4)}{(x-4)(x-7)} = \frac{2x^2-14x+3x-21+3x-12}{(x-4)(x-7)} = \frac{2x^2-8x-33}{(x-7)(x-4)}$$
.

9.2 c) On a
$$\frac{1}{x^3} + \frac{2x+3}{x(x-4)} = \frac{x-4+(2x+3)x^2}{x^3(x-4)} = \frac{2x^3+3x^2+x-4}{x^3(x-4)}$$

9.3 a) On utilise le fait que
$$(e^u)' = u' \times e^u$$
.

9.3 b) On utilise le fait que
$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
.

9.3 c) On utilise le fait que
$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$
.

9.3 d) On utilise aussi le fait que
$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$
.

9.4 a) On utilise le fait que
$$(u^4)' = 4u' \times u^3$$
.

9.4 b) On utilise le fait que
$$(u^2)' = 2uu'$$
.

9.4 c) On utilise le fait que
$$(u^3)' = 3u' \times u^2$$
.

9.4 d) On utilise le fait que
$$(u^{-2})' = -2u' \times u^{-3}$$
.

9.6 a) Pour tout réel
$$x \in \left[-3, -\frac{1}{2} \right]$$
, on a $f'(x) = \frac{3x^2 + 4x - 4}{2\sqrt{x^3 + 2x^2 - 4x - 1}}$. Ainsi, on a

$$f'(-1) = \frac{3 \times (-1)^2 + 4 \times (-1) - 4}{2\sqrt{(-1)^3 + 2 \times (-1)^2 - 4 \times (-1) - 1}} = \frac{3 - 4 - 4}{2 \times \sqrt{-1 + 2 + 4 - 1}} = -\frac{5}{4}.$$

9.6 b) Pour tout réel
$$x \in \left[-3, -\frac{1}{2}\right]$$
, on a $f'(x) = \frac{3x^2 + 4x - 4}{2\sqrt{x^3 + 2x^2 - 4x - 1}}$. Ainsi, on a

$$f'(-2) = \frac{3 \times (-2)^2 + 4 \times (-2) - 4}{2\sqrt{(-2)^3 + 2 \times (-2)^2 - 4 \times (-2) - 1}} = \frac{12 - 8 - 4}{2 \times \sqrt{-8 + 8 + 8 - 1}} = 0.$$

9.7 b) On a
$$g(1) = e^0 = 1$$
. De plus, pour tout $x \in]0, +\infty[$, $g'(x) = \left(1 - \frac{1}{2\sqrt{x}}\right)e^{x-\sqrt{x}}$ et donc $g'(1) = \frac{1}{2}$.

L'équation de la tangente cherchée est donc $y = \frac{1}{2}(x-1) + 1$ et donc $y = \frac{1}{2}x + \frac{1}{2}$ sous forme réduite.

9.8 a) On a
$$f'(x) = \frac{e^x \sqrt{x} - e^x \times \frac{1}{2\sqrt{x}}}{(\sqrt{x})^2} = \frac{\frac{e^x \sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} - \frac{e^x}{2\sqrt{x}}}{x} = \frac{(2x - 1)e^x}{2x\sqrt{x}}.$$

9.8 b) On remarque que, pour tout réel
$$x$$
, $q(x) = f(x^2 + x + 1)$ et donc $q'(x) = (2x + 1)f'(x^2 + x + 1)$.

On utilise alors l'expression de f' trouvée lors de la question précédente.

9.9 a) On a
$$f'(x) = 3e^{x^2+3} + (3x+5) \times 2xe^{x^2+3} = (6x^2+10x+3)e^{x^2+3}$$
.

9.9 b) On a
$$f'(x) = \sqrt{1+x^2} + (x-3) \times \frac{2x}{2\sqrt{1+x^2}} = \frac{1+x^2+x(x-3)}{\sqrt{1+x^2}} = \frac{2x^2-3x+1}{\sqrt{1+x^2}}$$
.

Par ailleurs, les racines de $2x^2 - 3x + 1$ sont 1 et $\frac{1}{2}$. Ainsi, on a $2x^2 - 3x + 1 = 2(x - 1)\left(x - \frac{1}{2}\right) = (x - 1)(2x - 1)$ et $f'(x) = \frac{(2x - 1)(x - 1)}{\sqrt{1 + x^2}}$.

9.10 a) On a
$$f'(x) = 2xe^{\sqrt{x}} + x^2 \times \frac{1}{2\sqrt{x}}e^{\sqrt{x}} = 2xe^{\sqrt{x}} + x \times \frac{x\sqrt{x}}{2}e^{\sqrt{x}} = \frac{1}{2}x(\sqrt{x} + 4)e^{\sqrt{x}}$$
.

9.10 b) On a
$$f'(x) = \exp\left(\frac{1}{x}\right) + x \times \left(-\frac{1}{x^2}\right) \exp\left(\frac{1}{x}\right) = \left(x - \frac{1}{x}\right) \exp\left(\frac{1}{x}\right) = \frac{(x-1)\exp\left(\frac{1}{x}\right)}{x}$$
.

9.11 Pour tout réel
$$x$$
, on a $f'(x) = (2x - 5)e^{x^2 - 5x + 7}$ et

$$f''(x) = 2e^{x^2 - 5x + 7} + (2x - 5)^2 e^{x^2 - 5x + 7} = (4x^2 - 20x + 27)e^{x^2 - 5x + 7}$$

9.12 a) On a
$$f'(x) = \frac{x}{\sqrt{1+x^2}}e^{x^3} + 3x^2\sqrt{1+x^2}e^{x^3} = \frac{xe^{x^3} + 3x^2(1+x^2)}{\sqrt{1+x^2}} = \frac{x(3x^3 + 3x + 1)e^{x^3}}{\sqrt{1+x^2}}.$$

9.12 b) On a

$$f'(x) = \frac{-3x^2e^{5-x^3} \times (x^2-2)^3 - e^{5-x^3} \times 6x(x^2-2)^2}{(x^2-2)^6} = -\frac{3((x^2-2)x^2+2x)e^{5-x^3}}{(x^2-2)^4} = -\frac{3x(x^3-2x+2)e^{5-x^3}}{(x^2-2)^4}.$$

9.13 a) Pour tout
$$x > 1$$
, on pose $u(x) = \frac{x^2 + 1}{x - 1}$. On a $u'(x) = \frac{2x(x - 1) - (x^2 + 1)}{(x - 1)^2} = \frac{x^2 - 2x - 1}{(x - 1)^2}$. Donc,

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{(x^2 - 2x - 1)\sqrt{x - 1}}{2(x - 1)^2\sqrt{x^2 + 1}}.$$

9.13 b) Pour tout
$$x > 0$$
, on pose $u(x) = (x^2 + 2x + 3)\sqrt{x}$. On a $u'(x) = (2x + 2)\sqrt{x} + \frac{x^2 + 2x + 3}{2\sqrt{x}} = \frac{5x^2 + 6x + 3}{2\sqrt{x}}$.

Donc,

$$f'(x) = u'(x)e^{u(x)} = \frac{(5x^2 + 6x + 3)\exp((x^2 + 2x + 3)\sqrt{x})}{2\sqrt{x}}.$$

9.13 c) Pour tout
$$x \neq \frac{1}{4}$$
, on pose $u(x) = \frac{2x+5}{4x-1}$. On a $u'(x) = \frac{2(4x-1)-4(2x+5)}{(4x-1)^2} = -\frac{22}{(4x-1)^2}$. Donc,

$$f'(x) = 2u'(x)u(x) = 2 \times \left(-\frac{22}{(4x-1)^2}\right) \times \frac{2x+5}{4x-1} = -\frac{44(2x+5)}{(4x-1)^3}.$$

9.14 a) Pour tout
$$x \in]-1,1[$$
, on pose $u(x) = \sqrt{1-x^2}$. On a $u'(x) = -\frac{x}{\sqrt{1-x^2}}$. Donc,

$$f'(x) = u'(x) \exp(u(x)) = -\frac{x \exp(\sqrt{1-x^2})}{\sqrt{1-x^2}}.$$

9.14 b) Pour tout $x \in \mathbb{R}$, on pose $u(x) = x + \exp(x^3)$. On a $u'(x) = 1 + 3x^2 \exp(x^3)$. Donc,

.....

$$f'(x) = 4u'(x)u(x)^3 = 4(1+3x^2\exp(x^3))(x+\exp(x^3))^3.$$

9.15 a) On a
$$f'' = (1 - f^2)' = -2ff' = -2f(1 - f^2) = -2f + 2f^3$$
.

9.15 b) On a
$$f''' = (-2f + 2f^3)' = -2f' + 6f'f^2 = -2(1 - f^2) + 6(1 - f^2)f^2 = -2 + 8f^2 - 6f^4$$
.

9.16 a) On a
$$g = \sqrt{f}$$
 et donc $f = g^2$. Ainsi, $f' = 2gg'$.

9.16 b) Puisque $f' = af - b\sqrt{f}$, alors $2gg' = ag^2 - bg$. f étant strictement positive, g l'est également, et on peut donc diviser cette égalité par g. On obtient alors $g' = \frac{a}{2}g - \frac{b}{2}$.

9.17 c) En posant $x = e^t$, on a, pour tout réel t.

$$e^{2t}f''(e^{2t}) - 3e^tf'(e^t) + 4f(e^t) = 0.$$

Comme, pour tout $t \in \mathbb{R}$, on a $g(t) = f(e^t)$, on en déduit, pour tout $t \in \mathbb{R}$, $g'(t) = e^t f'(e^t)$. Soit $t \in \mathbb{R}$. On a donc $f'(e^t) = e^{-t}g'(t)$. De même, on a $f''(t) = e^{-2t}g''(t) - e^{-t}f'(e^t) = e^{-2t}(g''(t) - g'(t))$. On a donc

$$e^{2t} \times e^{-2t}(g''(t) - g'(t)) - 3e^{t} \times e^{-t}g'(t) + 4g(t) = 0.$$

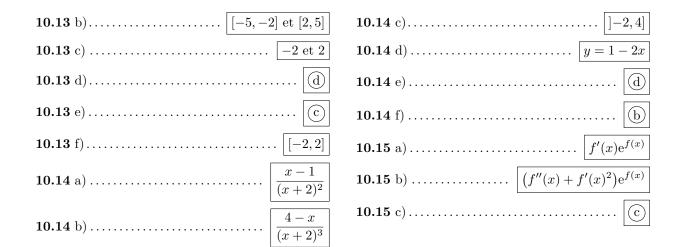
Autrement dit, on a g''(t) - g'(t) - 3g'(t) + 4g(t) = 0, et donc on a g'' - 4g' + 4g = 0.

.....

Fiche nº 10. Convexité

Réponses

теропьев	
10.1 a) $(3-2x)(9+2x)$	10.8 b)
10.1 b)	
10.1 c)	10.8 c)
10.1 d)	décroissante sur $[-3, +\infty[$
	10.8 d)
10.2 a) $(x,y) = (2,-7)$	10.9 a) $e^x + e^{-x}$
10.2 b) $(x,y) = (-3,1)$	10.9 b)
10.2 c) $(x,y) = \left(\frac{-7}{3}, \frac{1}{3}\right)$	10.9 c)
	10.9 d)
10.2 d) $(x,y) = \left(10, -\frac{3}{4}\right)$	10.10 a)
10.3	10.10 b)
10.4b	
10.5 a)	10.10 c)
$[\mathcal{C}_1]$ 10.5 b)	10.10 d) $\left[-\infty, \frac{-1}{\sqrt{3}} \right]$ et $\left[\frac{1}{\sqrt{3}}, +\infty \right]$
10.5 c)	/ \[\] \[\sqrt{3} \[\] \] \[\]
10.6 a)	10.11 a)
10.6 b)	10.11 b) $\left[\frac{1}{2}, +\infty\right[$
10.6 c)	
[1]	10.11 c) $\left \frac{2}{x^2} \right $
10.6 d)	10.11 d) $]-\infty,0[$ et $]0,+\infty[$
10.7 a) Croissante sur \mathbb{R}	10.12 a)
10.7 b)	10.12 b)
10.7 c)	10.12 c)
10.7 d)	
Décroissante sur $]-\infty, \frac{7}{2}]$	10.12 d)
10.8 a) croissante sur $\left[\frac{7}{2}, +\infty\right[$	10.12 e)
	10.13 a)



Corrigés

10.1 a) On a

$$36 - (2x+3)^2 = 6^2 - (2x+3)^2$$

$$= (6 - (2x+3))(6 + (2x+3))$$

$$= (6 - 2x - 3)(6 + 2x + 3) = (3 - 2x)(9 + 2x).$$

10.1 b) On a

$$(2x+1)(2x-5) + 4x^2 - 1 = (2x+1)(2x-5) + ((2x)^2 - 1)$$
$$= (2x+1)(2x-5) + (2x-1)(2x+1)$$
$$= (2x+1)(2x-5+2x-1) = (2x+1)(4x-6).$$

10.1 c) On a

$$(4x-2)(2-3x) + 1 - 4x^{2} = 2(2x-1)(2-3x) + 1 - (2x)^{2}$$

$$= 2(2x-1)(2-3x) + (1-2x)(1+2x)$$

$$= (2x-1)(4-6x-(1+2x))$$

$$= (2x-1)(4-6x-1-2x) = (2x-1)(3-8x).$$

10.1 d) On a

$$(3-x^{2}) - x^{2} - 2\sqrt{3}x - 3 = (\sqrt{3} - x)(\sqrt{3} + x) - (x + \sqrt{3})^{2}$$
$$= (x + \sqrt{3})(\sqrt{3} - x - (x + \sqrt{3}))$$
$$= (x + \sqrt{3})(-2x) = -2x(x + \sqrt{3})$$

10.5 c) On utilise les variations de f'. D'après la courbe de f', on sait que f' est décroissante sur $\left[-5, -\frac{3}{2}\right]$ et croissante sur $\left[-\frac{3}{2}, 2\right]$.

.....

10.6 c) On utilise le signe de f'' déterminé avec la courbe \mathscr{C}_1 : la fonction f'' est positive sur $\left[1, \frac{7}{2}\right]$.

.....

- **10.6** d) On utilise le signe de f'' déterminé avec la courbe \mathscr{C}_1 : la fonction f'' est négative sur $\left[\frac{1}{2},1\right]$.
- 10.7 a) On connaît les variations des fonctions de référence $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto x^3 \end{cases} \text{ et } \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto x \end{cases}, \text{ toutes les deux croissantes sur } \mathbb{R}.$

10.7 c) On connaît les variations des fonctions de référence $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto 2x \end{cases} \text{ et } \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto e^x \end{cases}, \text{ toutes les deux croissantes sur } \mathbb{R}.$

10.8 a) On factorise f'(x) = x(x-7), sous la forme $a(x-x_1)(x-x_2)$ avec a > 0. Alors, f' est décroissante sur $\left[-\infty, \frac{x_1+x_2}{2}\right] = \left]-\infty, \frac{7}{2}\right]$, puis croissante sur $\left[\frac{x_1+x_2}{2}, +\infty\right[= \left[\frac{7}{2}, +\infty\right[$.

10.8 c) On a $f'(x) = -4x^2 - 24x - 36$: on reconnaît une fonction polynomiale de degré 2, pour laquelle on a $(\frac{-b}{2a}) = -3$ et (a < 0). La fonction f' est donc croissante sur $[-\infty, -3]$ puis décroissante sur $[-3, +\infty[$.

- **10.9** a) On a $f'(x) = e^x e^{-x}$, puis $f''(x) = e^x + e^{-x}$.
- **10.9** b) Soit x un réel. On a $e^x > 0$ et $e^{-x} > 0$, donc f''(x) > 0.
- **10.9** c) On a $f'(x) = e^x + e^{-x}$, puis $f''(x) = e^x e^{-x}$.
- 10.9 d) On a les équivalences suivantes :

$$e^x - e^{-x} \ge 0 \iff e^x \ge e^{-x} \iff \frac{e^x}{e^{-x}} \ge 1 \iff e^{2x} \ge 1 \iff 2x \ge \ln(1) \iff 2x \ge 0.$$

Donc f'' est positive sur $[0, +\infty[$ et négative sur $]-\infty, 0]$.

10.10 a) On a
$$f'(x) = -e^{-3x^2+2}(-6x) = 6xe^{-3x^2+2}$$
 et $f''(x) = 6e^{-3x^2+2} + 6x(-6x)e^{-3x^2+2} = 6(1-6x^2)e^{-3x^2+2}$

10.10 b) On a les équivalences suivantes

$$f''(x) \ge 0 \iff 6(1 - 6x^2)e^{-3x^2 + 2} \ge 0 \iff 1 - 6x^2 \ge 0 \iff \frac{1}{6} \ge x^2 \iff \frac{1}{\sqrt{6}} \ge |x|.$$

Donc $f''(x) \geqslant 0$ si, et seulement si, $x \in \left[\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right]$.

10.10 c) On a $f'(x) = \frac{-2x}{(x^2+1)^2} - 2$, puis

$$f''(x) = \frac{-2(x^2+1)^2 + 2x(x^2+1) \times 2 \times 2x}{(x^2+1)^4} - 0 = \frac{-2(x^2+1) + 8x^2}{(x^2+1)^3} = \frac{6x^2 - 2}{(x^2+1)^3} = 2\frac{3x^2 - 1}{(x^2+1)^3}.$$

10.10 d) On a les équivalences suivantes

$$f''(x) \ge 0 \iff 2\frac{3x^2 - 1}{(x^2 + 1)^3} \ge 0 \iff 3x^2 - 1 \ge 0 \iff x^2 - \frac{1}{3} \ge 0 \iff \left(x - \frac{1}{\sqrt{3}}\right)\left(x + \frac{1}{\sqrt{3}}\right) \ge 0.$$

 $\text{Donc } f''(x)\geqslant 0 \text{ si, et seulement si, } x\in \left]-\infty, \frac{-1}{\sqrt{3}}\right] \text{ ou } x\in \left[\frac{1}{\sqrt{3}}, +\infty\right[.$

10.11 a) Soit
$$x \in \mathbb{R}_+^*$$
. On a $f'(x) = 2x - \ln(x) - \frac{x}{x} = 2x - \ln(x) - 1$, puis $f''(x) = 2 - \frac{1}{x} - 0 = 2 - \frac{1}{x}$.

10.11 b) Soit $x \in \mathbb{R}_+^*$. On a les équivalences suivantes

$$f''(x) \geqslant 0 \iff 2 - \frac{1}{x} \geqslant 0 \iff 2 \geqslant \frac{1}{x} \iff x \geqslant \frac{1}{2}.$$

10.11 c) Soit
$$x \in \mathbb{R}^*$$
. On a $f'(x) = 3 - \frac{2x}{x^2} + 0 = 3 - \frac{2}{x}$. Puis $f''(x) = 0 + \frac{2}{x^2} = \frac{2}{x^2}$.

10.11 d) Soit $x \in \mathbb{R}^*$, on a l'équivalence $f''(x) \ge 0 \iff \frac{2}{x^2} \ge 0$. Cette inégalité est vérifiée pour tout $x \in \mathbb{R}^*$, donc pour $x \in]-\infty, 0[$ et $x \in]0, +\infty[$.

10.12 a) La courbe $\mathscr{C}_{f'}$ indique que f' est croissante uniquement sur [-3,2]. Donc f est convexe sur [-3,2].

10.12 b) La courbe $\mathscr{C}_{f'}$ indique que f' est décroissante uniquement sur [-6, -3] et sur [2, -4]. Donc f est concave sur [-6, -3] et [2, 4].

.....

10.12 d) On a f convexe sur [-3, 2] donc \mathcal{C}_f est au-dessus des tangentes pour les points d'abscisses appartenant à [-3, 2]. On a bien $0 \in [-3, 2]$, d'où la conclusion.

10.12 e) On a $-1 \in [-3, 2]$, $1 \in [-3, 2]$ et f convexe sur [-3, 2]. Donc, la courbe \mathcal{C}_f est au-dessous des sécantes pour les points d'abscisses appartenant à [-1, 1].

.....

10.13 a) D'après le tableau de variations de f', la fonction f' est croissante uniquement sur [-2, 2], donc f est convexe sur [-2, 2].

10.13 b) D'après le tableau de variations de f', f' est décroissante uniquement sur [-5, -2] et sur [2, 5], donc f est concave sur [-5, -2] et [2, 5].

10.14 a) On a
$$f'(x) = \frac{1}{x+2} - \frac{3}{(x+2)^2} = \frac{x+2-3}{(x+2)^2} = \frac{x-1}{(x+2)^2}$$
.

10.14 b) On a
$$f''(x) = \frac{(x+2)^2 - (x-1) \times 2(x+2)}{(x+2)^4} = \frac{x+2-2(x-1)}{(x+2)^3} = \frac{x+2-2x+2}{(x+2)^3} = \frac{4-x}{(x+2)^3}$$
.

10.14 c) On a
$$f''(x) \ge 0 \iff \frac{4-x}{(x+2)^3} \ge 0$$
. On a $x \in]-2, +\infty[$, donc $x+2>0$ et $(x+2)^3>0$.

Finalement, on a les équivalences $\frac{4-x}{(x+2)^3} \ge 0 \iff 4-x \ge 0 \iff x \le 4$.

La fonction f est donc convexe sur]-2,4].

.....

10.14 d) On a
$$f'(-1) = \frac{-1-1}{(-1+2)^2} = -2$$
 et $f(-1) = \ln(-1+2) + \frac{3}{-1+2} = 3$. L'équation réduite de T est donc $y = -2(x-(-1)) + 3 = -2x - 2 + 3 = -2x + 1$.

.....

10.14 e) On a f convexe sur]-2,4] et $-1 \in]-2,4]$, donc \mathscr{C}_f est au-dessus de T sur]-2,4].

10.14 f) Soit $x \in]-2,2]$. On a $x \in]-2,4]$ et \mathscr{C}_f est au-dessus de T sur]-2,4]. On a les équivalences suivantes :

$$f(x) \ge -2x + 1 \iff \ln(x+2) + \frac{3}{x+2} \ge -2x + 1 \iff \ln(x+2) \ge \frac{(-2x+1)(x+2) - 3}{x+2}.$$

On a $x \in [-2, 2]$ donc x + 2 > 0. On a donc les équivalences suivantes :

$$\ln(x+2) \geqslant \frac{(-2x+1)(x+2)-3}{x+2} \iff (x+2)\ln(x+2) \geqslant (-2x+1)(x+2)-3$$
$$\iff (x+2)\ln(x+2) \geqslant -2x^2 + x - 4x + 2 - 3$$
$$\iff (x+2)\ln(x+2) \geqslant -1 - 3x - 2x^2.$$

10.15 b) On a
$$g''(x) = f''(x)e^{f(x)} + f'(x)e^{f(x)} \times f'(x) = (f''(x) + f'(x)^2)e^{f(x)}$$
.

10.15 c) Soit $x \in I$. On a $f''(x) \ge 0$ car f est convexe sur I.

Donc, on a $f''(x) + f'(x)^2 \ge 0$, et donc $(f''(x) + f'(x)^2)e^{f(x)} \ge 0$. Donc $g''(x) \ge 0$ et g est convexe sur I.

Fiche no 11. Primitives I

Réponses

11.1 a)
$$-\frac{3}{10}$$

11.1 b)
$$-\frac{25}{42}$$

11.1 c)
$$\frac{7}{9}$$

11.1 d)
$$-\frac{4}{3}$$

11.2 c).....
$$2-\sqrt{2}$$
 et $2+\sqrt{2}$

11.2 d)
$$\frac{1}{2}$$
 et $\frac{3}{4}$

11.3 a)
$$x^3 - x + C$$

11.3 b)
$$x^{-3} + x^{-4} + C$$

11.3 c) .
$$\frac{1}{8}x^4 - \frac{1}{2}x^6 + 2x + C$$

11.3 d)
$$\sqrt{\frac{7}{3}\left(x + \frac{x^2}{2} + \frac{x^3}{3}\right) + C}$$

11.4 a)
$$\left| \frac{-1}{2x^2} + C \right|$$

11.4 b)......
$$2\sqrt{x} + 2x^2 + C$$

11.4 c)
$$\boxed{\frac{2}{3x^3} + C}$$

11.4 d).....
$$5e^x - 6x + C$$

11.5 a)
$$\left| \frac{-2}{x-2} + C \right|$$

11.5 b)
$$\sqrt{\frac{-3}{2(2x-1)^2} + C}$$

11.5 c)......
$$\boxed{\frac{3}{4(4x+1)} + C}$$

11.6 a)
$$-\frac{7}{6}(x+3)^6 + C$$

11.6 b).
$$\frac{1}{2}(3x-1)^4 - \frac{2}{x-2} + C$$

11.7 a)
$$f(x)$$

11.7 b).....
$$-\frac{x}{(x^2-1)^2}+C$$

11.8 a)
$$\frac{1}{2}e^{x^2} + C$$

11.8 b)
$$\sqrt{2x+1}+C$$

11.8 c)
$$\frac{1}{3}(x-1)^3 + C$$

11.8 d)
$$\frac{1}{18}(3x-2)^6 + C$$

11.9 a)
$$e^{x^2+x-3}+C$$

11.9 b) ...
$$(x^3 - 2x + 1)^5 + C$$

11.9 c)....
$$\sqrt{x^2 + 4x - 5} + C$$

11.10 a) ..
$$\sqrt{\frac{1}{6}}e^{-3x^2+1} + x + C$$

11.10 b)
$$(e^x + 1)^5 + C$$

11.10 c)
$$\frac{-1}{e^x + 5} + C$$

11.10 d)
$$\sqrt{e^x + x^2} + C$$

11.10 e)
$$e^{\sqrt{x}} + C$$

11.10 f) ..
$$\frac{1}{3} (e^{2x} + e^{-x})^3 + C$$

11.11 a)
$$\sqrt{-8\sqrt{x+1}+C}$$

11.11 c)
$$-4\sqrt{2x+2}+C$$

11.12 a)
$$x \mapsto \frac{1}{6}e^{6x-10} + C$$

11.12 b)
$$x \mapsto \frac{-3}{10(10x+1)} + C$$

11.12 c).
$$x \mapsto \frac{-1}{24} (4x+5)^6 + C$$

11.12 d)..
$$x \mapsto \frac{1}{4(11-8x)} + C$$

11.13 b).....
$$f_{n-1}$$

11.13 c)
$$f_{n+1}$$

11.14 a)
$$g_{n-1}$$

11.14 b).....
$$g_{n+1}$$

Corrigés

11.1 a) On a
$$-\frac{1}{3} + \frac{1}{5} - \frac{1}{6} = -\frac{10}{30} + \frac{6}{30} - \frac{5}{30} = -\frac{9}{30} = -\frac{3}{10}$$
.

11.1 b) On a
$$\frac{\frac{1}{6}-1}{2-\frac{3}{5}} = \frac{\frac{\frac{1}{6}-\frac{6}{6}}{\frac{10}{5}-\frac{3}{5}}}{\frac{\frac{10}{5}-\frac{3}{5}}{\frac{7}{5}}} = \frac{\frac{-5}{6}}{\frac{7}{5}} = \frac{-5}{6} \times \frac{5}{7} = -\frac{25}{42}$$
.

.....

11.1 c) On a
$$\frac{\sqrt{2} - \frac{1}{4\sqrt{2}}}{\sqrt{2} + \frac{1}{4\sqrt{2}}} = \frac{\frac{8}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}}{\frac{8}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}} = \frac{\frac{7}{4\sqrt{2}}}{\frac{9}{4\sqrt{2}}} = \frac{7}{4\sqrt{2}} \times \frac{4\sqrt{2}}{9} = \frac{7}{9}.$$

11.1 d) On a
$$\left(1 - \frac{1}{3}\right)^2 - \left(1 + \frac{1}{3}\right)^2 = \left(1 - \frac{1}{3} - 1 - \frac{1}{3}\right)\left(1 - \frac{1}{3} + 1 + \frac{1}{3}\right) = -\frac{2}{3} \times 2 = -\frac{4}{3}$$
.

11.2 a) On calcule le discriminant de l'équation : il vaut $10^2 - 4 \times 5 \times (-15) = 400$. Les deux solutions de l'équation sont donc $\frac{-10 - \sqrt{400}}{2 \times 5} = \frac{-10 - 20}{10} = -3$ et $\frac{-10 + \sqrt{400}}{2 \times 5} = \frac{-10 + 20}{10} = 1$.

11.2 b) Cette équation est équivalente à $4x^2 - 12x + 9 = 0$. On reconnaît une identité remarquable ; en factorisant, on obtient $(2x - 3)^2 = 0$. On en déduit que 2x - 3 = 0 et enfin $x = \frac{3}{2}$.

- 11.2 c) On a les équivalences $(x-2)^2=2\iff x-2=\sqrt{2}$ ou $x-2=-\sqrt{2}\iff x=2-\sqrt{2}$ ou $x=2+\sqrt{2}$.
- **11.2** d) L'équation est équivalente à $(3x-2)^2 (1-x)^2 = 0$; en factorisant à l'aide de la troisième identité remarquable, on obtient l'équation équivalente (4x-3)(2x-1)=0, dont les solutions sont $\frac{1}{2}$ et $\frac{3}{4}$.

11.3 a) L'expression d'une primitive de x^n est $\frac{1}{n+1}x^{n+1}$. Donc, une primitive de $3x^2$ est $3 \times \frac{1}{3}x^3 = x^3$. L'expression d'une primitive de $3x^2 - 1$ est donc $x^3 - x + C$ où C désigne une constante réelle.

- **11.3** b) Comme précédemment l'expression d'une primitive de x^{-4} est $\frac{-1}{3}x^{-3}$ et on en déduit qu'une primitive de $-3x^{-4}$ est $-3 \times \frac{-1}{3}x^{-3} = x^{-3}$. L'expression d'une primitive de $-3x^{-4} 4x^{-5}$ est donc $x^{-3} + x^{-4} + C$.
- 11.4 a) Puisque $\frac{1}{x^3} = x^{-3}$, on procède comme dans l'exercice précédent.
- **11.4** b) L'expression d'une primitive de $\frac{1}{2\sqrt{x}}$ est \sqrt{x} donc une primitive de $\frac{1}{\sqrt{x}}$ est $2\sqrt{x}$.
- **11.4** c) On procède comme précédemment. L'expression d'une primitive de $\frac{-2}{x^4}$ est $\frac{2}{3x^3} + C$.
- **11.4** d) L'expression d'une primitive de e^x est e^x donc l'expression d'une primitive de $5e^x 6$ est $5e^x 6x + C$.
- 11.5 a) On reconnaît une expression de la forme $2\frac{u'}{u^2}$ où u(x) = x 2. Par conséquent, les primitives de $\frac{2}{(x-2)^2}$ sont les expressions $\frac{-2}{u(x)} + C$, c'est-à-dire $\frac{-2}{x-2} + C$.

11.5 b) On reconnaît une expression de la forme $\frac{u'}{u^n}$ où u(x) = 2x - 1.

11.6 a) On remarque que $\frac{7}{(-x-3)^{-5}} = 7(-x-3)^5$ et on reconnaît une expression de la forme $nu'u^n$ où u(x) = -x - 3 et n = 6. Ainsi, l'expression des primitives de $\frac{7}{(-x-3)^{-5}}$ est $-\frac{7}{6}(x+3)^6 + C$.

11.7 a) Soit $x \in \mathbb{R} \setminus \{-1, 1\}$. En mettant ces deux fractions au même dénominateur, on obtient :

$$\frac{1}{2(x-1)^3} - \frac{1}{2(x+1)^3} = \frac{(x+1)^3 - (x-1)^3}{2((x+1)(x-1))^3} = \frac{6x^2 + 2}{2(x^2 - 1)^3} \quad \text{en développant puis en réduisant au numérateur}$$
$$= \frac{3x^2 + 1}{(x^2 - 1)^3} = f(x).$$

11.7 b) Une primitive de $x \mapsto \frac{1}{2(x-1)^3}$ est $x \mapsto \frac{-1}{4(x-1)^2}$; une primitive de $x \mapsto \frac{1}{2(x+1)^3}$ est $x \mapsto \frac{-1}{4(x+1)^2}$. Donc, les expressions des primitives de f sur $\mathbb{R} \setminus \{-1,1\}$ sont $\frac{-1}{4(x-1)^2} - \frac{-1}{4(x+1)^2} + C = -\frac{x}{(x^2-1)^2} + C$.

11.8 a) À un facteur près, on reconnaît une expression de la forme $u'e^u$ où $u(x)=x^2$, dont une primitive est e^u .

11.8 b) On reconnaît une expression de la forme $\frac{u'}{2\sqrt{u}}$ où u(x) = 2x + 1, dont une primitive est \sqrt{u} .

11.8 c) On reconnaît une expression de la forme $u'u^{n-1}$ où u(x) = x - 1 et n = 3, dont une primitive est $\frac{u^{n+1}}{n+1}$.

11.8 d) À un facteur près, on reconnaît une expression de la forme $nu'u^{n-1}$ où u(x) = 3x - 2 et n = 6. Ainsi, les primitives cherchées sont de la forme $\frac{1}{18}(3x-2)^6 + C$.

11.9 a) On factorise l'expression $2xe^{x^2+x-3} + e^{x^2+x-3} = (2x+1)e^{x^2+x-3}$. On reconnaît des expressions de la forme $u'e^u$ où $u(x) = x^2 + x - 3$. Les primitives de $x \mapsto 2xe^{x^2+x-3} + e^{x^2+x-3}$ sont donc les $x \mapsto e^{x^2+x-3} + C$.

.....

11.9 b) On reconnaît une expression de la forme $nu'u^{n-1}$ où $u(x) = x^3 - 2x + 1$ et n = 5.

11.9 c) À un facteur près, on reconnaît une expression de la forme $\frac{u'}{2\sqrt{u}}$ où $u(x) = x^2 + 4x - 5$.

11.10 a) On reconnaît une expression de la forme $u'e^u$ où $u(x) = -3x^2 + 1$.

11.10 b) On reconnaît une expression de la forme $nu'u^{n-1}$ où $u(x) = e^x + 1$ et n = 5.

11.10 c) On reconnaît une expression de la forme $\frac{-u'}{u^2}$ où $u'(x) = e^x + 5$.

11.10 d) On reconnaît une expression de la forme $\frac{u'}{2\sqrt{u}}$ où $u(x) = e^x + x^2$.

11.10 e) On reconnaît une expression de la forme $u'e^u$ où $u(x) = \sqrt{x}$.

11.10 f) On reconnaît une expression de la forme $nu'u^{n-1}$ où $u(x) = e^{2x} + e^{-x}$ et n = 3.

11.11 a) On reconnaît une expression de la forme $\frac{u'}{2\sqrt{u}}$ où u(x) = x + 1.

11.11 b) L'expression de la fonction dérivée de $x \mapsto F(2x+1)$ est $F'(2x+1) \times 2 = 2F'(2x+1)$. Or F' = f. On a donc 2F'(2x+1) = 2f(2x+1).

11.11 c) D'après ce qui précède, les primitives de $x \mapsto f(2x+1)$ sont donc les fonctions

$$\frac{1}{2}F(2x+1) = -4\sqrt{2x+1+1} + C = -4\sqrt{2x+2} + C.$$

.....

.....

- **11.12** a) On reconnaît une expression de la forme e^u où u(x) = -2x.
- **11.12** b) On reconnaît une expression de la forme $u(x)^n$ où n=-2.
- **11.12** c) On reconnaît une expression de la forme $nu'u^{n-1}$ où u(x) = 4x + 7 et n = 6.
- **11.12** d) On reconnaît une expression de la forme $\frac{-u'}{u^2}$ où u(x) = 2x 1.
- **11.13** b) On a, pour tout $x \in \mathbb{R}$, $f'_n(x) = \frac{nx^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!} = f_{n-1}(x)$.
- **11.13** c) D'après la question précédente, une expression des primitives de f_n est $f_{n+1} + C$ où $C \in \mathbb{R}$.
- **11.14** a) Soit un entier $n \ge 1$. On a, pour tout $x \in \mathbb{R}$, $g'_n(x) = \frac{n(x-a)^{n-1}}{n!} = \frac{(x-a)^{n-1}}{(n-1)!} = g_{n-1}(x)$.
- 11.14 b) D'après la question précédente, une expression des primitives de g_n est $g_{n+1} + C$ où $C \in \mathbb{R}$.

Fiche nº 12. Primitives II

Réponses

12.1 b)
$$\left| \frac{3}{20}, +\infty \right|$$

12.2 a).....
$$\left[-\frac{1}{2}, \frac{1}{3}\right]$$

12.2 d)
$$\left[\frac{1-\sqrt{29}}{14}, \frac{1+\sqrt{29}}{14}\right]$$

12.3 a).....
$$\ln(x) + C$$

12.3 b).....
$$\ln(-x) + C$$

12.3 c)
$$\ln(|x|) + C$$

12.4 a)
$$\left| \frac{1}{2}x^4 + 2x^3 - \frac{1}{2}x^2 + x + C \right|$$

12.4 b)
$$-3e^x + \frac{1}{3}x^3 - x^2 + C$$

12.4 c)
$$\frac{2}{5}x^5 - 4e^x - \frac{1}{x} + C$$

12.5 a)
$$-\frac{1}{x}$$

12.5 b)
$$-x^3 + \ln(|x|) + 2\sqrt{x} + C$$

12.5 d)
$$\left| \frac{1}{x^2} - \frac{2}{3x^3} + \frac{1}{2x^4} + 2\ln(|x|) + C \right|$$

12.6 c)
$$3 \ln(|x|) - 3 \ln(2)$$

12.6 d)
$$\frac{1}{3}x^3 - e^x + 3x + \frac{3}{2}$$

12.7 a)
$$(\exp(x) + C)$$

12.7 b)
$$\frac{1}{2} \exp(2x+3) + C$$

12.7 c)
$$\frac{-1}{5} \exp(-5x+2) + C$$

12.7 e)
$$-3\exp\left(\frac{-1}{3}x+2\right)+C$$

12.8 a)
$$\sqrt{x} + C$$

12.8 b)
$$\left| \frac{1}{3} \sqrt{3x+5} + C \right|$$

12.8 c)
$$\frac{3}{2} \sqrt{\frac{2}{3}x - 4} + C$$

12.8 d).....
$$\left| \frac{5}{6} \sqrt{\frac{6}{5}x - 3} + C \right|$$

12.8 e)
$$3\sqrt{\frac{2}{3}x} + C$$

12.9 a)
$$\ln(|x|) + C$$

12.9 b)
$$\ln(|x-3|) + C$$

12.9 c)
$$\left| \frac{1}{2} \ln(|2x+1|) + C \right|$$

12.9 d)
$$\left| 7 \ln \left(\left| \frac{1}{7} x - 6 \right| \right) + C \right|$$

12.9 e)
$$\left[\frac{3}{2} \ln \left(\left| \frac{2}{3} x + 5 \right| \right) + C \right]$$

 12.10 a)
 $\exp(x^2) + C$ 12.12 c)
 $2\exp(\sqrt{x}) + C$

 12.10 b)
 $\sqrt{x^2 + 3x + 1} + C$ 12.13 a)
 $-\frac{1}{12} \frac{1}{(3x^2 + 3x - 9)^4} + C$

 12.11 a)
 $(4x^2 - 2x - 3)^6 + C$ 12.13 b)
 $2\sqrt{\ln(x)} + C$

 12.11 b)
 $\frac{1}{(-6x^2 + x)^2} + C$ 12.13 c)
 $\ln(|\ln(|\ln(3x)|) + C|$

 12.11 c)
 $\ln(|3x^2 + 5x - 1|) + C$ 12.14 a)
 $\exp(4x^2)$

 12.12 a)
 $\frac{1}{2}\ln(|x^2 + 2x|) + C$ 12.14 b)
 $2\exp(4x^2)$

 12.12 b)
 $\frac{2}{5}(\sqrt{x})^5 + C$

 12.14 d)
 $x \mapsto \frac{1}{3}\varphi(3x + 1)$

Corrigés

12.2 a) L'expression $6x^2 + x - 1$, qui est du second degré, est de discriminant $1^2 - 4 \times 6 \times (-1) = 25$; elle possède deux racines : $\frac{-1-5}{12} = -\frac{1}{2}$ et $\frac{-1+5}{12} = \frac{1}{3}$. Le coefficient devant « x^2 » est positif; ainsi, $6x^2 + x - 1$ est positif en dehors des racines et négatif à l'intérieur. Ainsi, l'ensemble des solutions est $\left[-\frac{1}{2}, \frac{1}{3}\right]$.

12.2 b) On a l'équivalence suivante : $2x^2 - 12x + 18 \le 0 \iff x^2 - 6x + 9 \le 0$. Or, on a $x^2 - 6x + 9 = (x - 3)^2$. Ainsi, l'inégalité $x^2 - 6x + 9 \le 0$ n'est vraie que pour x = 3.

- **12.3** c) On utilise le fait que |x| = x si x > 0 et |x| = -x si x < 0.
- **12.4** a) Pour tout $n \in \mathbb{N}$, une primitive de $x \mapsto x^n$ est $x \mapsto \frac{1}{n+1}x^{n+1}$. On utilise également le fait qu'une primitive d'une somme est la somme des primitives de chacun des termes de la somme.

- **12.4** c) Pour tout $n \ge 2$, une primitive de $x \mapsto \frac{1}{x^n}$ est $x \mapsto \frac{-1}{(n-1)x^{n-1}}$.
- **12.5** a) La dérivée de $x \mapsto \frac{1}{x}$ est $x \mapsto -\frac{1}{x^2}$

......

- **12.5** b) Une primitive de $x \mapsto \frac{1}{\sqrt{x}}$ est $x \mapsto 2\sqrt{x}$.
- **12.6** a) La fonction F est une primitive de f donc il existe $C \in \mathbb{R}$ tel que $F(x) = x^2 + x + C$ pour tout $x \in \mathbb{R}$.

De plus, on a les équivalences suivantes : $F(1) = 0 \iff 1^2 + 1 + C = 0 \iff C = -2$. Donc, on a $F(x) = x^2 + x - 2$.

12.6 b) On applique la même méthode que précédemment.

12.7 b) La fonction f_1 est de la forme $x \mapsto f(2x+3)$ donc ses primitives sont de la forme $x \mapsto \frac{1}{2}F(2x+3)+C$, où F est une primitive de f. On utilise une des primitives trouvées précédemment, par exemple $F(x) = \exp(x)$.

12.8 e) La fonction f_4 est de la forme $x \mapsto 2f\left(\frac{2}{3}x\right)$ donc ses primitives sont de la forme $x \mapsto 2 \times \frac{3}{2}F\left(\frac{2}{3}x\right) + C$, où F est une primitive de f.

- **12.10** a) La fonction f est de la forme $u' \exp(u)$ donc ses primitives sont de la forme $\exp(u) + C$.
- **12.10** b) La fonction f est de la forme $\frac{u'}{2\sqrt{u}}$ donc ses primitives sont de la forme $\sqrt{u} + C$.
- **12.11** a) La fonction f est de la forme $6u'u^5$ donc ses primitives sont de la forme $u^6 + C$.
- **12.11** b) La fonction f est de la forme $-2\frac{u'}{u^3}$ donc ses primitives sont de la forme $\frac{1}{u^2} + C$.
- **12.11** c) La fonction f est de la forme $\frac{u'}{u}$ donc ses primitives sont de la forme $\ln(|u|) + C$.
- **12.12** a) On procède comme dans l'exercice précédent. La fonction f est de la forme $\frac{1}{2} \frac{u'}{u}$.
- **12.12** b) La fonction f est de la forme $\frac{2}{5}5u'u^4$, où $u(x) = \sqrt{x}$.
- **12.12** c) La fonction f est de la forme $2u' \exp(u)$, où $u(x) = \sqrt{x}$.
- 12.13 a) On procède comme dans l'exercice précédent. La fonction f est de la forme $\frac{1}{3} \times \frac{-1}{4} \times (-4)u'u^{-5}$.
- **12.13** b) La fonction f est de la forme $2u'\frac{1}{2\sqrt{u}}$, où $u(x) = \ln(x)$.
- **12.13** c) La fonction f est de la forme $\frac{u'}{u}$, où $u(x) = \ln(3x)$; en effet, on a $u'(x) = \frac{3}{3x} = \frac{1}{x}$.
- **12.14** a) La fonction φ est une primitive de f donc $\varphi'(x) = f(x)$. Ainsi, $\varphi'(2x) = f(2x) = \exp((2x)^2) = \exp(4x^2)$.
- **12.14** b) On utilise le fait que la dérivée de la fonction φ est f.
- **12.14** c) Pour tout $x \in \mathbb{R}$, on a $\exp((x+1)^2) = f(x+1)$ et une primitive de $x \mapsto f(x+1)$ est $x \mapsto \varphi(x+1)$.
- **12.14** d) Pour tout $x \in \mathbb{R}$, on a $\exp((3x+1)^2) = f(3x+1) = \frac{1}{3} \times 3f(3x+1)$. Ainsi, une primitive de $x \mapsto 3f(3x+1)$ est la fonction $x \mapsto \varphi(3x+1)$.

Fiche nº 13. Primitives III

Réponses

13.1 a)
$$3(x-2)(x-4)$$

13.1 c)
$$5(x-\sqrt{3})(x+\sqrt{3})(x^2+1)$$

13.2 a)
$$\cos(x)$$

13.2 b).....
$$-\cos^2(x)$$

13.2 c).....
$$-\cos^2(x) + 2\cos(x) + 1$$

13.2 d)
$$\cos^4(x) - 3\cos^2(x) - 2\cos(x) + 2$$

13.3 a)
$$x \mapsto \frac{x^4}{4} + 2x$$

13.3 b)
$$\left| x \mapsto \frac{1}{3} \ln |x| \right|$$

13.3 d)
$$x \mapsto -\frac{1}{4x^4}$$

13.3 e)
$$x \mapsto \frac{3}{2}x^{2/3}$$

13.3 f).....
$$x \mapsto -\frac{e^{-12x}}{12}$$

13.4 a)
$$x \mapsto e^3 x$$

13.4 b)
$$x \mapsto \frac{3}{5}e^{5x} - \frac{x^3}{3}$$

13.4 c)
$$x \mapsto \frac{x^2}{2} + 5x + \frac{4}{x}$$

13.4 d)
$$x \mapsto -\cos(2x)$$

13.4 e)
$$x \mapsto \sin(3x+5)$$

13.4 f)
$$x \mapsto \frac{1}{5}\cos(2-5x)$$

13.5 a)
$$x \mapsto \frac{(x^2 + x)^6}{6}$$

13.5 b)
$$x \mapsto \frac{(x^2 + 3x + 12)^{11}}{11}$$

13.5 c)
$$x \mapsto \frac{(x^3 + 3x + 4)^2}{6}$$

13.5 d)
$$x \mapsto \frac{-4/3}{(x^3+2)^2}$$

13.6 a)......
$$x \mapsto -\frac{1}{2(1+e^x)^2}$$

13.6 b)
$$x \mapsto \frac{(e^x + x)^{23}}{23}$$

13.6 c).....
$$x \mapsto -\frac{1}{6}(1-2x^2)^{3/2}$$

13.6 d)
$$x \mapsto \frac{(\ln(x))^2}{2}$$

13.7 a)
$$x \mapsto -\frac{1}{2}\cos^2(x)$$

13.7 b)
$$x \mapsto \frac{1}{6}\sin^6(x)$$

13.7 c)
$$x \mapsto \frac{1}{18} (3\sin(x) + 2)^6$$

$$\mathbf{13.7} \text{ d)} \dots \qquad \qquad x \longmapsto \frac{1}{\cos(x) + 3}$$

13.8 b)
$$|x \mapsto \ln|x^4 + x^3|$$

13.8 c)
$$x \mapsto \ln|x^3 + 2x^2 + 1|$$

13.8 d)
$$x \mapsto \ln|x^5 + x^3 + x + 2|$$

13.8 e).....
$$|x \mapsto \ln|e^x + x|$$

13.8 f)
$$x \mapsto \ln(e^x + e^{-x})$$

13.9 a)
$$x \mapsto \ln |e^x - e^{-x}|$$

13.9 b)
$$x \mapsto \ln|\sin(x)|$$

13.9 c) $x \mapsto -\ln \cos(x) $	13.16 a) $x \mapsto \frac{3}{1+9x^2}$
13.9 d) $x \mapsto \frac{1}{3} \ln \left \sin^3(x) + 5 \right $	$13.16 \text{ b)} \dots \qquad \boxed{x \mapsto \frac{1}{2x^2 - 6x + 5}}$
$13.10 \text{ a)} \dots \qquad \boxed{x \longmapsto x e^{x^3}}$	
13.10 b)	$13.16 \text{ c}) \dots \qquad \qquad \boxed{x \longmapsto \frac{3x^2}{1+x^6}}$
13.10 c) $x \mapsto e^{-\cos(x)+3}$	13.16 d) $x \mapsto \frac{2\psi(x)}{1+x^2}$
$13.10 \ d) \dots \qquad \qquad \boxed{x \longmapsto \exp(e^x)}$	13.17 a) $x \mapsto \psi(\sqrt{3}x)$
13.11 a) $t \mapsto \ln 1+t $	13.17 b)
13.11 b) $ \frac{t}{1+t} $	13.18 a)
13.11 c) $t \mapsto t - \ln 1+t $	13.18 b) $x \mapsto \psi(x+5)$
13.12 a) $x \mapsto \frac{\ln(1+x^2)}{2}$	13.19 a) $ \frac{2x-7}{x^2+9} $
13.12 b)	13.19 b) $x \mapsto \ln(x^2 + 9) - \frac{7}{3}\psi(\frac{x}{3})$
13.12 c)	13.20 a) $x \mapsto \psi(3x-2)$
13.13 a) $ \frac{6}{9-x^2} $	13.20 b) $x \mapsto \frac{1}{2\sqrt{3}}\psi\left(\frac{x^2}{\sqrt{3}}\right)$
13.13 b) $x \mapsto \frac{1}{6} \ln \left \frac{3+x}{3-x} \right $	13.21 a) $x \mapsto \frac{3}{\sqrt{1 - 9x^2}}$
13.13 c) $ \frac{2a}{a^2 - x^2} $	13.21 b)
13.13 d) $x \mapsto \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $	13.21 c)
13.13 e) $x \mapsto \frac{1}{40} \ln \left \frac{5+4x}{5-4x} \right $	13.21 d) $x \mapsto \frac{6x^2\varphi(x^3)}{\sqrt{1-x^6}}$
13.14 a) $x \mapsto x + \ln x+1 $	13.22 a) $x \mapsto \varphi(5x)$
13.14 b)	13.22 b) $x \mapsto \frac{1}{4}\varphi(\frac{4x}{5})$
13.15 a)	13.22 c) $x \mapsto \varphi(x+4)$ 13.22 d) $x \mapsto \frac{1}{3}\varphi(x^3)$
13.15 b) $x \mapsto \frac{1}{4} \ln \frac{2 - \cos x}{2 + \cos x}$	s _j [ω · / 3Ψ(ω)]

Corrigés

13.4 a) La fonction est constante!

13.5 a) On reconnaît une forme $x \mapsto u'(x)u(x)^5$, où $u: x \mapsto x^2 + x$.

13.5 b) On reconnaît une forme $x \mapsto u'(x)u(x)^{10}$, où $u: x \mapsto x^2 + 3x + 12$.

13.5 c) On reconnaît une forme $x \mapsto \frac{1}{3}u'(x)u(x)$, où $u: x \mapsto x^3 + 3x + 4$.

8 () () 2

13.5 d) On reconnaît une forme $x \mapsto \frac{8}{3}u'(x)u(x)^{-3}$, où $u: x \mapsto x^3 + 2$.

13.6 a) On reconnaît une forme $x \mapsto u'(x)u(x)^{-3}$, où $u: x \mapsto e^x + 1$.

13.6 b) On reconnaît une forme $x \mapsto u'(x)u(x)^{22}$, où $u: x \mapsto e^x + x$.

13.6 c) On reconnaît une forme $x \mapsto \frac{-1}{4}u'(x)u(x)^{1/2}$, où $u: x \mapsto 1 - 2x^2$.

±

On reconnaît une forme $x \mapsto u'(x)u(x)$, où $u: x \mapsto \ln(x)$.

13.7 a) On reconnaît une forme $x \mapsto u'(x)u(x)$, où $u: x \mapsto \cos(x)$.

13.7 b) On reconnaît une forme $x \mapsto u'(x)u(x)^5$, où $u: x \mapsto \sin(x)$.

13.7 c) On reconnaît une forme $x \mapsto \frac{1}{3}u'(x)u(x)^5$, où $u: x \mapsto 3\sin(x) + 2$.

.....

13.7 d) On reconnaît une forme $x \mapsto u'(x)u(x)^{-2}$, où $u: x \mapsto \cos(x) + 3$.

13.8 b) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto x^4 + x^3$.

13.8 c) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto x^3 + 2x^2 + 1$.

u(x)

13.8 d) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto x^5 + x^3 + x + 12$.

13.8 e) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto e^x + x$.

13.8 f) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto e^x + e^{-x}$. Les valeurs absolues n'ont pas été utilisées ici car la somme de deux exponentielles est une quantité toujours positive.

.....

13.6 d)

- **13.9** a) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto e^x e^{-x}$.
- **13.9** b) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto \sin(x)$.
- **13.9** c) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto \cos(x)$.
- **13.9** d) On reconnaît une forme $x \mapsto \frac{1}{3} \frac{u'(x)}{u(x)}$, où $u: x \mapsto \sin^3(x) + 5$.
- **13.10** a) On reconnaît une forme $x \mapsto u'(x)e^{u(x)}$, où $u: x \mapsto x^3 + \ln(x)$. On remarque que $e^{x^3 + \ln(x)} = xe^{x^3}$.
- **13.10** b) On reconnaît une forme $x \mapsto \frac{1}{3}u'(x)e^{u(x)}$, où $u: x \mapsto x^3 + \frac{3}{2}x^2 + 15x 12$.
- **13.10** c) On reconnaît une forme $x \mapsto u'(x)e^{u(x)}$, où $u: x \mapsto -\cos(x) + 3$.
- **13.10** d) On reconnaît une forme $x \mapsto u'(x)e^{u(x)}$, où $u: x \mapsto e^x$
- **13.11** a) On reconnaît une forme $x \mapsto \frac{u'(x)}{u(x)}$, où $u: x \mapsto 1 + x$.
- **13.11** c) On décompose $\frac{t}{1+t} = 1 \frac{1}{1+t}$, puis on additionne des primitives de chacun de ces termes.
- **13.12** a) On reconnaît une forme $x \mapsto \frac{1}{2} \frac{u'(x)}{u(x)}$, où $u: x \mapsto 1 + x^2$. Les valeurs absolues n'ont pas été utilisées car $1 + x^2$ est une quantité toujours positive.
- **13.12** c) On décompose $\frac{x^3}{1+x^2} = x \frac{x}{1+x^2}$ puis on additionne des primitives de chacun de ces termes.
- **13.13** b) On décompose $\frac{1}{9-x^2} = \frac{1}{6} \left(\frac{1}{3-x} + \frac{1}{3+x} \right)$ puis on additionne des primitives de chacun de ces termes.
- **13.13** d) On décompose $\frac{1}{a-x^2} = \frac{1}{2a} \left(\frac{1}{a-x} + \frac{1}{a+x} \right)$ puis on additionne des primitives de chacun de ces termes.
- **13.13** e) On écrit $\frac{1}{25-16x^2} = \frac{1}{16} \times \frac{1}{(5/4)^2 x^2}$, puis on utilise la question précédente pour calculer une primitive de la fonction.
- **13.14** a) On décompose $\frac{x+2}{x+1} = \frac{x+1+1}{x+1} = 1 + \frac{1}{x+1}$ puis on primitive chacun des termes.
- **13.14** b) On décompose $\frac{x^2 + 2x}{(x+1)^2} = \frac{(x+1)^2 1}{(x+1)^2} = 1 \frac{1}{(x+1)^2}$ puis on primitive chacun des termes.

13.15 b) On décompose

$$\frac{\sin(x)}{3+\sin^2(x)} = \frac{\sin(x)}{4-\cos^2(x)} = \frac{1}{4} \left[\frac{\sin(x)}{2+\cos(x)} + \frac{\sin(x)}{2-\cos(x)} \right],$$

puis on additionne des primitives de chacun des termes.

Comme $\cos(x) \in [-1, 1]$, les quantités $2 + \cos(x)$ et $2 - \cos(x)$ sont positives donc on n'a pas utilisé les valeurs absolues.

13.16 a) On utilise la dérivée d'une fonction composée.

13.16 b) On utilise la dérivée d'une fonction composée pour obtenir

$$2\psi(2x-3) = 2\frac{1}{1+(2x-3)^2} = \frac{2}{4x^2-12x+10} = \frac{1}{2x^2-6x+5}.$$

13.16 c) On utilise la dérivée d'une fonction composée pour obtenir

$$3x^{2}\psi'(x^{3}) = 3x^{2}\frac{1}{1 + (x^{3})^{2}} = \frac{3x^{2}}{1 + x^{6}}.$$

13.16 d) On utilise la dérivée d'une puissance :

$$2\psi'(x)\psi(x) = 2 \times \frac{1}{1+x^2} \times \psi(x).$$

13.17 a) On reconnaît une expression de la forme $x \mapsto u'(x)\psi'(u(x))$ avec $u: x \mapsto \sqrt{3}x$.

13.17 b) On transforme l'expression pour reconnaître une fonction de la forme $x \mapsto u'(x)\psi'(u(x))$:

$$\frac{1}{9+x^2} = \frac{1/9}{1+\frac{x^2}{9}} = \frac{1}{3} \frac{1/3}{1+\left(\frac{x}{3}\right)^2}.$$

.....

13.18 a) On a $x^2 + 10x + 26 = (x+5)^2 - 25 + 26 = 1 + (x+5)^2$.

13.18 b) On reconnaît une fonction de la forme $x \mapsto u'(x)\psi'(u(x))$:

$$\frac{1}{x^2 + 10x + 26} = \frac{1}{1 + (x+5)^2}.$$

13.19 b) Comme la dérivée de $x \mapsto x^2 + 9$ est $x \mapsto 2x$, alors une primitive de $x \mapsto \frac{2x}{x^2 + 9}$ est $x \mapsto \ln(x^2 + 9)$.

$$\text{Comme } \frac{7}{x^2+9} = \frac{\frac{7}{9}}{1+\left(\frac{x}{2}\right)^2} = \frac{7}{3} \times \frac{\frac{1}{3}}{1+\left(\frac{x}{2}\right)^2}, \text{ une primitive de } x \longmapsto \frac{7}{x^2+9} \text{ est } x \longmapsto \frac{1}{3}\psi\left(\frac{x}{3}\right).$$

On conclut en remarquant que la primitive d'une somme est égale à la somme des primitives et en remarquant que

$$\frac{2x-7}{x^2+9} = \frac{2x}{x^2+9} - \frac{7}{x^2+9}.$$

.....

216

13.20 a) On commence par utiliser la technique de mise sous forme canonique des trinômes :

$$9x^2 - 12x + 5 = (3x - 2)^2 - 4 + 5 = 1 + (3x - 2)^2$$
.

On reconnaît alors une fonction de la forme $x \longmapsto u'(x)\psi'\bigl(u(x)\bigr)$:

$$\frac{3}{9x^2 - 12x + 5} = \frac{3}{1 + (3x - 2)^2}.$$

13.20 b) On transforme l'expression pour reconnaître une fonction de la forme $x \mapsto u'(x)\psi'(u(x))$:

$$\frac{x}{3+x^4} = \frac{x/3}{1+\frac{(x^2)^2}{3}} = \frac{x/3}{1+\left(\frac{x^2}{\sqrt{3}}\right)^2} = \frac{1}{2\sqrt{3}} \frac{\frac{2x}{\sqrt{3}}}{1+\left(\frac{x^2}{\sqrt{3}}\right)^2}.$$

13.21 b) On utilise la dérivée d'une fonction composée pour obtenir

$$2\varphi'(2x-3) = 2\frac{1}{\sqrt{1 - (2x-3)^2}} = \frac{2}{\sqrt{-4x^2 + 12x - 8}} = \frac{1}{\sqrt{-x^2 + 3x - 2}}.$$

13.21 c) On utilise la dérivée d'une fonction composée pour obtenir

$$\frac{1}{2\sqrt{x}}\varphi'(\sqrt{x}) = \frac{1}{2\sqrt{x}} \times \frac{1}{\sqrt{1 - (\sqrt{x})^2}} = \frac{1}{2\sqrt{x}\sqrt{1 - x}}.$$

13.21 d) On utilise la dérivée d'une fonction composée :

$$2(3x^{2})\varphi'(x^{3})\varphi(x^{3}) = 6x^{2} \times \frac{1}{\sqrt{1 - (x^{3})^{2}}}\varphi(x).$$

13.22 a) On reconnaît une expression de la forme $x \mapsto u'(x)\varphi'(u(x))$ où $u: x \mapsto 5x$.

13.22 b) On commence par transformer l'expression pour reconnaître la forme $x \mapsto u'(x)\varphi'(u(x))$. On écrit

$$\frac{1}{\sqrt{25 - 16x^2}} = \frac{1/5}{\sqrt{1 - \frac{16}{25}x^2}} = \frac{1}{4} \times \frac{4/5}{\sqrt{1 - \left(\frac{4}{5}x\right)^2}}.$$

13.22 c) On utilise la méthode de mise sous forme canonique des trinômes et on écrit

$$-x^{2} - 8x - 15 = -(x^{2} + 8x + 15) = -[(x+4)^{2} - 16 + 15] = 1 - (x+4)^{2}.$$

On reconnaît ainsi une expression de la forme $x \longmapsto u'(x)\varphi'(u(x))$, à savoir :

$$\frac{1}{\sqrt{-x^2 - 8x - 15}} = \frac{1}{\sqrt{1 - (x+4)^2}}.$$

13.22 d) On transforme l'expression pour reconnaître une fonction de la forme $x \mapsto u'(x)\varphi'(u(x))$. Dans ce cas, la fonction $u: x \mapsto x^3$ convient et on peut écrire :

$$\frac{x^2}{\sqrt{1-x^6}} = \frac{1}{3} \times \frac{3x^2}{\sqrt{1-(x^3)^2}}.$$

.....

Fiche nº 14. Équations différentielles I

Réponses

14.1 a)
$$e^{\frac{1}{3}}$$

14.1 b)
$$e^{-\frac{17}{20}}$$

14.1 c)
$$e^{\frac{\pi}{6}}$$

$$\mathbf{14.1} \ d) \dots \qquad \boxed{e^6}$$

14.2 a)
$$\left| \frac{2}{7} \right|$$

14.2 c)
$$-\frac{18}{13}$$

14.3 a).....
$$x \mapsto Ce^{2x}$$

14.3 b)
$$x \mapsto Ce^{-7x}$$

14.3 c)
$$x \mapsto Ce^{3x/2}$$

14.3 d)
$$x \mapsto Ce^{-5x/7}$$

$$14.4 \text{ a)} \dots x \longmapsto 5e^{-11x}$$

14.4 b).....
$$x \mapsto \pi e^{-5x}$$

14.5 a)
$$x \mapsto e^{\frac{1}{3} - \frac{4}{9}x}$$

14.6 a)
$$x \mapsto 3$$

14.6 b) $x \mapsto Ce^x$

14.6 c)
$$x \mapsto ke^x + 3$$

14.7 a)
$$x \mapsto \frac{1}{\sqrt{6}}$$

14.7 c) ...
$$x \longmapsto Ce^{\sqrt{3}x} + \frac{1}{\sqrt{6}}$$

14.9 ..
$$x \mapsto -\frac{122}{25} e^{\frac{7x-14}{3}} - \frac{3}{25}$$

14.10
$$x \mapsto \frac{4}{3(e^{4/3} - e^{-4/3})} e^{4x/3}$$

14.11
$$x \mapsto 2e^{-x}$$

Corrigés

14.1 a) On a
$$e^{\frac{3}{2}} \times e^{-\frac{7}{6}} = e^{\frac{3}{2} - \frac{7}{6}} = e^{\frac{9-7}{6}} = e^{\frac{2}{6}} = e^{\frac{1}{3}}$$
.

14.1 b) On a
$$\left(e^{-\frac{3}{4}}\right)^3 \times \left(e^{\frac{7}{25}}\right)^5 = e^{-\frac{9}{4}} \times e^{\frac{7}{5}} = e^{-\frac{9}{4} + \frac{7}{5}} = e^{\frac{-45 + 28}{20}} = e^{-\frac{17}{20}}$$
.

14.1 c) On a
$$e^{\frac{\pi}{2}} \times e^{-\frac{\pi}{3}} = e^{\frac{\pi}{2} - \frac{\pi}{3}} = e^{\frac{3\pi - 2\pi}{6}} = e^{\frac{\pi}{6}}$$
.

14.1 d) On a
$$\frac{e^{3x+7} \times e^{2x+1}}{(e^{x+2/5})^5} = \frac{e^{5x+8}}{e^{5x+2}} = e^{5x+8-5x-2} = e^6$$
.

14.2 b) Soit $x \in \mathbb{R}$ différent de 0 et de -1. On a les équivalences suivantes (en multipliant par x(x+1)):

$$\frac{1}{x+1} = \frac{2}{x} \iff x = 2(x+1) \iff x = -2.$$

.....

14.3 a) D'après le cours, les solutions de l'équation différentielle y' = ay sont les fonctions du type $x \mapsto Ce^{ax}$, où C parcourt \mathbb{R} . Ici, comme a vaut 2, on trouve que les solutions sont les fonctions $x \mapsto Ce^{2x}$.

14.4 a) D'après le cours, les solutions de l'équation y' = -11y sont les fonctions du type $x \mapsto Ce^{-11x}$, où C parcourt \mathbb{R} . La condition f(0) = 5 impose que $Ce^{-11 \times 0} = 5$ et donc que C = 5.

14.4 b) L'équation différentielle donnée est équivalente à l'équation y' = -5y dont les solutions sont les fonctions $x \mapsto Ce^{-5x}$, où $C \in \mathbb{R}$. La condition $f(0) = \pi$ impose que $Ce^{-5 \times 0} = \pi$ et donc que $C = \pi$.

.....

.....

14.5 a) L'équation différentielle donnée est équivalente à l'équation $y' = -\frac{4}{9}y$ dont les solutions sont les fonctions $x \mapsto Ce^{-\frac{4}{9}x}$, où C parcourt \mathbb{R} . Comme $f(3) = e^{-1}$, on a $Ce^{-\frac{4}{9}\times 3} = e^{-1}$ et donc $C = e^{-1} \times e^{\frac{4}{3}} = e^{\frac{1}{3}}$.

14.5 b) L'équation différentielle donnée est équivalente à l'équation $y' = -\sqrt{2}y$ dont les solutions sont les fonctions $x \mapsto Ce^{-\sqrt{2}x}$, où C parcourt \mathbb{R} . Comme $f(\sqrt{2}) = 1$, on a $Ce^{-\sqrt{2}\times\sqrt{2}} = 1$ et donc $C = e^2$.

.....

14.6 a) Si f est une solution constante de l'équation différentielle (E), alors f' est nulle. La fonction f vérifie donc, pour tout $x \in \mathbb{R}$, 0 = f(x) - 3 et donc f(x) = 3.

14.6 c) D'après le cours, les solutions de (E) s'obtiennent en ajoutant la solution constante avec la solution générale de l'équation homogène associée à (E).

.....

14.7 a)

Première solution.

Si f est une solution constante de l'équation différentielle (E), alors f' est nulle. La fonction f vérifie donc, pour tout $x \in \mathbb{R}$, $0 = \sqrt{6}f(x) - 1$ et donc $f(x) = \frac{1}{\sqrt{6}}$.

Deuxième solution.

En général, on peut remarquer qu'une solution constante de l'équation différentielle ay'=by+c est la fonction $x\longmapsto -\frac{c}{b}$. Ici, comme $a=\sqrt{2},\,b=\sqrt{6}$ et c=-1, on trouve qu'une solution constante de l'équation est $x\longmapsto \frac{1}{\sqrt{6}}$.

14.8 L'équation donnée est équivalente à $y' = 5y + \frac{35}{9}$. L'équation sans terme constant associée est y' = 5y dont les solutions sont les fonctions $x \longmapsto Ce^{5x}$, où C parcourt \mathbb{R} .

On leur ajoute la solution particulière constante $x \longmapsto -\frac{7}{9}$.

- Pour commencer, on trouve que les solutions de cette équation sont les fonctions $x \mapsto C e^{\frac{7}{3}x} \frac{3}{25}$, où C parcourt \mathbb{R} . Comme f(2) = -5, on a $C e^{\frac{14}{3}} = \frac{3}{25} 5 = -\frac{122}{25}$ donc $C = -\frac{122}{25}e^{-\frac{14}{3}}$.
- **14.10** Soit f une solution du problème posé. Fixons $C \in \mathbb{R}$ tel que $f(x) = Ce^{\frac{4}{3}x}$ pour tout $x \in \mathbb{R}$.

On a alors $\int_{-1}^{1} f(t) dt = C \left[\frac{3}{4} e^{\frac{4}{3}x} \right]_{-1}^{1} = \frac{3}{4} C \left(e^{\frac{4}{3}} - e^{-\frac{4}{3}} \right)$. Comme $\int_{-1}^{1} f(t) dt = 1$, on a $C \left(e^{\frac{4}{3}} - e^{-\frac{4}{3}} \right) = \frac{4}{3}$ et donc $C = \frac{4}{3(e^{4/3} - e^{-4/3})}$.

14.11 On pose $g(x) = \int_0^x f(t) dt$. La fonction g est la primitive de f qui s'annule en 0 et l'on a : g' = f.

Ainsi, g est solution de l'équation différentielle y'+y=2. Fixons donc $C \in \mathbb{R}$ tel que $g(x)=C\mathrm{e}^{-x}+2$ pour tout $x \in \mathbb{R}$. Comme g(0)=0, on a C=-2. Donc, pour tout $x \in \mathbb{R}$, on a $g(x)=-2\mathrm{e}^{-x}+2$ et $f(x)=g'(x)=2\mathrm{e}^{-x}$.

.....

Fiche nº 15. Équations différentielles II

Réponses

15.1 b)
$$6-5x-2x^2+x^3$$

15.1 c)
$$3 - x - 8x^2 - 4x^3$$

15.1 d)
$$-1 + x^4$$

15.2 c)
$$\frac{23}{22} - \frac{\sqrt{7}}{2} - \frac{\sqrt{3}}{11}$$

15.2 d).....
$$-\frac{\sqrt{3}}{3}$$

15.5 a)
$$x \mapsto Ce^{-\frac{2}{3}x}$$
, où $C \in \mathbb{R}$

15.5 c)
$$x \mapsto Ce^{-\frac{2}{3}x} + \frac{15}{2}$$
, où $C \in \mathbb{R}$

15.6 b).....
$$x \mapsto Ce^{\frac{1}{2}x}$$
, où $C \in \mathbb{R}$

15.6 c)
$$x \mapsto Ce^{\frac{1}{7}x}$$
, où $C \in \mathbb{R}$

$$15.6 \text{ d}) \dots \qquad \boxed{x \longmapsto -14}$$

15.6 e)
$$x \mapsto Ce^{\frac{1}{2}x} - 14$$
, où $C \in \mathbb{R}$

15.7 b)
$$x \mapsto \frac{5}{2}$$

15.7 c)
$$x \mapsto Ce^{-\frac{1}{10}x} + \frac{5}{2}$$
, où $C \in \mathbb{R}$

15.8 a)
$$x \mapsto Ce^{\frac{2}{3}x} - \frac{7}{2}$$
, où $C \in \mathbb{R}$

15.8 b)
$$x \mapsto Ce^{3x} + \frac{8}{3}$$
, où $C \in \mathbb{R}$

15.8 c).....
$$x \mapsto Ce^{\frac{9}{4}x} - \frac{2}{3}$$
, où $C \in \mathbb{R}$

15.8 d)......
$$x \mapsto Ce^{-\frac{3}{\pi}x} - \frac{\pi}{4}$$
, où $C \in \mathbb{R}$

15.9 a).....
$$x \mapsto \frac{1}{2} - \frac{9}{2}e^{2x}$$

15.9 b)
$$x \mapsto -7 + 7e^{-2}e^{2x}$$

15.10 a)
$$x \mapsto \frac{7}{5} + \frac{8}{5}e^{15}e^{5x}$$

15.11 a).....
$$x \mapsto \frac{b}{3} + Ce^{-\frac{3}{2}x}$$
, où $C \in \mathbb{R}$

15.11 b)
$$x \mapsto \frac{b}{3} + \frac{2b}{3} e^{-\frac{3}{2}x}$$

15.11 d)
$$x \mapsto \frac{b}{3} + \frac{2b}{3} e^{\frac{3}{2}c} e^{-\frac{3}{2}x}$$

15.13 a)
$$x \mapsto Ce^{5x}$$
, où $C \in \mathbb{R}$

15.13 b)
$$\left(\frac{-2}{5}, \frac{13}{25}\right)$$

15.13 c) ...
$$x \mapsto -\frac{2}{5}x + \frac{13}{25} + Ce^{5x}$$
, où $C \in \mathbb{R}$

15.14 b)...........
$$x \longmapsto (2x + C)e^{-x}$$
, où $C \in \mathbb{R}$

15.15 b)
$$x \longmapsto -\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) + Ce^{3x}, \text{ où } C \in \mathbb{R}$$

15.18 a) $-a(x)e^{-A(x)}$

15.15 c)
$$x \mapsto -\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) + (\sqrt{2} + \frac{2}{5})e^{3x}$$

15.18 c)
$$(k'(x) - k(x)a(x))e^{-A(x)}$$

15.15 c)
$$x \mapsto -\frac{2}{5}\cos(x) - \frac{5}{5}\sin(x) + (\sqrt{2} + \frac{2}{5})e^{3x}$$

15.16 b)
$$x \mapsto (\sin(x) + C)e^{-2x}$$
, où $C \in \mathbb{R}$

15.19 a).....
$$x \mapsto xe^{-x^2}$$

15.16 c).....
$$x \mapsto (\sin(x) + 1)e^{-2x}$$

15.19 b)
$$x \mapsto x$$

$$15.17 \quad \dots \qquad \boxed{x \longmapsto 20e^x - 12e^{-x}}$$

15.19 c)
$$x \mapsto x + Cxe^{-x^2}$$
 où $C \in \mathbb{R}$

Corrigés

15.3 On a
$$f'(x) = 4e^{4x}$$
. Donc $\frac{1}{4}f'(x) = e^{4x} = f(x) + \frac{1}{4}$. Finalement, on a $f'(x) = 4f(x) + 1$.

15.5 a) On a une équation différentielle du type y'=ay, avec $a=-\frac{2}{3}$. D'après le cours, les solutions sur $\mathbb R$ sont les fonctions $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto Ce^{ax} \end{cases}$, où C est une constante réelle. Ici, on a $a = -\frac{2}{3}$; les solutions de l'équation différentielle sont donc les fonctions $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto C e^{-\frac{2}{3}x} \end{cases}, \text{ quand } C \text{ parcourt } \mathbb{R}.$

15.5 b) Soit $K \in \mathbb{R}$. Notons $\varphi : \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto K \end{cases}$. On a, pour tout $x \in \mathbb{R}$, $\varphi'(x) = 0$; donc, on a les équivalences suivantes: φ solution de $(E) \iff 0 = -\frac{2}{3}K + 5 \iff K = -5 \times \frac{-3}{2} = \frac{15}{2}$

Pour commencer, remarquons qu'on a l'équivalence $3y' - 2y = 7 \iff y' = \frac{2}{3}y + \frac{7}{3}$. **15.8** a)

D'après le cours, les solutions de $y' = \frac{2}{3}y$ sont les fonctions $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto Ce^{\frac{2}{3}x} \end{cases}$, où $C \in \mathbb{R}$. Une solution particulière constante de $y' = \frac{2}{3}y + \frac{7}{3}$ est $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{-7}{2} \end{cases}$. Donc, les solutions sont les $x \longmapsto Ce^{\frac{2}{3}x} - \frac{7}{2}$, quand C parcourt \mathbb{R} .

Les solutions de l'équation différentielle y'=2y-1 sont les fonctions $\left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto C\mathrm{e}^{2x}+\frac{1}{2} \end{array} \right., \text{ où } C \in \mathbb{R}.$ De plus, on a les équivalences suivantes :

$$y(0) = -4 \iff Ce^0 + \frac{1}{2} = -4 \iff C = -4 - \frac{1}{2} = \frac{-9}{2}.$$

15.9 b) Pour commencer, remarquons qu'on a l'équivalence $\frac{1}{2}y'-y=7 \iff y'=2y+14$. Les solutions de l'équation différentielle y'=2y+14 sont donc les fonctions $\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto C\mathrm{e}^{2x}-7 \end{array}\right.$, où $C \in \mathbb{R}$. De plus, on a les équivalences suivantes :

$$y(1) = 0 \iff Ce^2 - 7 = 0 \iff C = 7e^{-2}.$$

15.11 a) Pour commencer, remarquons qu'on a l'équivalence $2y' + 3y = b \iff y' = -\frac{3}{2}y + \frac{b}{2}$.

Les solutions de $y' = -\frac{3}{2}y + \frac{b}{2}$ sont donc les fonctions $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{b}{3} + C e^{-\frac{3}{2}x} \end{cases}$, quand C parcourt \mathbb{R} .

15.11 b) Grâce à question a), écrivons $y: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{b}{3} + C \mathrm{e}^{-\frac{3}{2}x} \end{array} \right.$, avec $C \in \mathbb{R}$. On a alors l'équivalence

$$\frac{b}{3} + Ce^0 = b \iff C = b - \frac{b}{3} = \frac{2b}{3}.$$

15.11 c) Grâce à question a), écrivons $y: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{b}{3} + C \mathrm{e}^{-\frac{3}{2}x} \end{array} \right.$, avec $C \in \mathbb{R}$. On a alors l'équivalence

$$\frac{b}{3} + Ce^0 = c \iff C = c - \frac{b}{3}.$$

15.11 d) Grâce à question a), écrivons $y: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{b}{3} + C \mathrm{e}^{-\frac{3}{2}x} \end{array} \right.$, avec $C \in \mathbb{R}$. On a alors l'équivalence

$$\frac{b}{3} + C \mathrm{e}^{-\frac{3}{2}c} = b \iff C \mathrm{e}^{-\frac{3}{2}c} = b - \frac{b}{3} = \frac{2b}{3} \iff C = \frac{2b}{3} \mathrm{e}^{\frac{3}{2}c}.$$

15.13 b) On a $\varphi'(x) = a$, et φ est solution de (E). Donc, on a les équivalences suivantes :

$$\varphi'(x) = 5\varphi(x) + 2x - 3 \iff a = 5(ax + b) + 2x - 3 \iff (5a + 2)x + 5b - a - 3 = 0.$$

Pour que l'équation soit vérifiée, il faut et il suffit que (a,b) soit solution du système $\begin{cases} 5a & +2=0 \\ -a+5b-3=0 \end{cases}$. Or, on a les équivalences suivantes :

$$\begin{cases} 5a & +2=0 \\ -a+5b-3=0 \end{cases} \iff \begin{cases} a & =-\frac{2}{5} \\ 5b=3+a=3-\frac{2}{5}=\frac{13}{5} \end{cases} \iff \begin{cases} a & =\frac{-2}{5} \\ b=\frac{13}{25}. \end{cases}$$

15.14 a) On a $\varphi'(x) = a(e^{-x} - xe^{-x}) = a(1-x)e^{-x}$. Donc, on a les équivalences suivantes :

$$\varphi'(x) + \varphi(x) = 2e^{-x} \iff a(1-x)e^{-x} + axe^{-x} = 2e^{-x} \iff ae^{-x} = 2e^{-x} \iff a = 2.$$

.....

15.14 b) Pour commencer, remarquons qu'on a l'équivalence $y' + y = 2e^{-x} \iff y' = -y + 2e^{-x}$.

Les solutions de y'=-y sont les fonctions $\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto C\mathrm{e}^{-x} \end{array}\right.$, où $C \in \mathbb{R}$. De plus, une solution particulière de (E) est $\varphi: \left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto 2x\mathrm{e}^{-x} \end{array}\right.$. Donc, les solutions de (E) sont les fonctions $x \longmapsto (2x+C)\mathrm{e}^{-x}$, quand C parcourt \mathbb{R} .

15.15 b) Pour commencer, remarquons qu'on a l'équivalence $y' - 3y = 4\sin(x) \iff y' = 3y + 4\sin(x)$.

Les solutions de y'=3y sont donc les fonctions $\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x\longmapsto C\mathrm{e}^{3x} \end{array}\right.$, quand C parcourt \mathbb{R} . De plus, une solution particulière de (E) est $f:\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x\longmapsto \frac{-2}{5}\cos(x)-\frac{6}{5}\sin(x). \end{array}\right.$

Donc, les solutions de (E) sont les fonctions $x \longmapsto -\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) + Ce^{3x}$, quand C parcourt \mathbb{R} .

15.15 c) Fixons C tel que la solution cherchée s'écrive $y(x) = -\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) + Ce^{3x}$. On a les équivalences suivantes :

$$y(0) = \sqrt{2} \iff -\frac{2}{5} \times 1 - \frac{6}{5} \times 0 + C \times 1 = \sqrt{2} \iff -\frac{2}{5} + C = \sqrt{2} \iff C = \sqrt{2} + \frac{2}{5} \times C = \sqrt{2} +$$

La solution cherchée est $\left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x \longmapsto -\frac{2}{5}\cos(x) - \frac{6}{5}\sin(x) + \left(\sqrt{2} + \frac{2}{5}\right)\mathrm{e}^{3x}. \end{array} \right.$

15.16 b) Pour commencer, remarquons qu'on a l'équivalence $y' + 2y = e^{-2x} \cos(x) \iff y' = -2y + e^{-2x} \cos(x)$.

Les solutions de y'=-2y sont donc les fonctions $\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto C\mathrm{e}^{-2x} \end{array}\right.$, quand C parcourt \mathbb{R} . Comme une solution particulière de (E) est $\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mathrm{e}^{-2x}\sin(x) \end{array}\right.$, les solutions de (E) sont donc les fonctions $\left\{\begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto -(\sin(x)+C)\mathrm{e}^{-2x} \end{array}\right.$, quand C parcourt \mathbb{R} .

15.16 c) Fixons $C \in \mathbb{R}$ tel que la solution cherchée s'écrive $y(x) = (\sin(x) + C)e^{-2x}$. On a alors les équivalences suivantes $y(0) = 1 \iff (0 + C) \times 1 = 1 \iff C = 1$.

La solution cherchée est la fonction $\left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x \longmapsto (\sin(x)+1)\mathrm{e}^{-2x}. \end{array} \right.$

15.17 On a $\varphi'(x) = 2e^x - 3e^{-x}$. Ainsi, on a les équivalences suivantes :

$$\varphi$$
 solution de (E) \iff pour tout $x \in \mathbb{R}$, $7\varphi'(x) + 3\varphi(x) = f(x)$ \iff pour tout $x \in \mathbb{R}$, $7(2e^x - 3e^{-x}) + 3(2e^x + 3e^{-x}) = f(x)$ \iff pour tout $x \in \mathbb{R}$, $f(x) = 20e^x - 12e^{-x}$.

15.18 c) Comme pour tout $x \in I$, on a $\varphi(x) = k(x)f(x)$, en dérivant, on obtient

$$\varphi'(x) = k'(x)f(x) + k(x)f'(x) = k'(x)e^{-A(x)} + k(x)(-a(x)e^{-A(x)}) = (k'(x) - k(x)a(x))e^{-A(x)}.$$

.....

15.18 d) Soit $x \in I$. On a les équivalence suivantes :

$$\varphi'(x) + a(x)\varphi(x) = b(x) \iff \left(k'(x) - k(x)a(x)\right)e^{-A(x)} + k(x)a(x)e^{-A(x)} = b(x) \iff k'(x)e^{-A(x)} = b(x).$$

15.18 e) On applique les différentes étapes des questions précédentes.

Pour commencer, on identifie $a: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto 1 \end{array} \right.$ Une primitive simple de a est $A: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto x \end{array} \right.$ On pose ensuite, d'après la question a), la fonction $f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \exp\left(-A(x)\right) \end{array} \right.$ On a donc $f: x \longmapsto \mathrm{e}^{-x}$.

On pose $\varphi = kf$. On a alors l'équivalence

pour tout
$$x \in \mathbb{R}$$
, $k'(x)e^{-x} = b(x) = e^{-x}\cos(x) \iff \text{pour tout } x \in \mathbb{R}$, $k'(x) = \cos(x)$.

Donc $k = \sin + D$, où D est une constante réelle. Donc, on a, pour tout $x \in \mathbb{R}$, $\varphi(x) = k(x)f(x) = (\sin(x) + D)e^{-x}$. La solution (d) correspond au choix de la constante D = 0.

15.19 a) Pour commencer, on a l'équivalence
$$xy' - (1 - 2x^2)y = 0 \iff y' + \left(\frac{-1}{x} + 2x\right)y = 0.$$

On note
$$a: \left\{ \begin{array}{l} \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ x \longmapsto \frac{-1}{x} + 2x \end{array} \right.$$
 Une primitive de a sur \mathbb{R}_+^* est $A: \left\{ \begin{array}{l} \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ x \longmapsto -\ln(x) + x^2 \end{array} \right.$

Une solution de (H) est donc f définie par $f(x) = e^{-A(x)} = e^{\ln(x) - x^2} = xe^{-x^2}$.

15.19 b) Pour commencer, on écrit
$$(E)$$
 sous la forme $y'(x) + a(x)y = b(x)$: on a l'équivalence

$$xy' - (1 - 2x^2)y = 2x^3 \iff y' + (\frac{-1}{x} + 2x)y = 2x^2.$$

On considère donc $b: x \longmapsto 2x^2$ et la fonction φ définie par $\varphi(x) = k(x)f(x)$, pour x > 0, où k est une fonction dérivable sur \mathbb{R}_{+}^{*} .

D'après l'exercice précédent, φ est solution de (E) si, et seulement si, pour tout x>0, $k'(x)e^{-A(x)}=b(x)$.

Or, on a les équivalences suivantes : $k'(x)e^{-A(x)} = b(x) \iff k'(x)xe^{-x^2} = 2x^2 \iff k'(x) = 2xe^{x^2}$. On reconnaît une expression de la forme $u'(x)e^{u(x)}$; on en déduit qu'il existe $D \in \mathbb{R}$ tel que pour tout x > 0, $k(x) = e^{x^2} + D$.

Une solution particulière φ de (E) est donc définie (pour D=0) par $\varphi(x)=k(x)f(x)=\mathrm{e}^{x^2}\times x\mathrm{e}^{-x^2}=x$.

15.19 c) On sait que φ est une solution particulière de (E). On a donc, pour tout x>0,

$$x\varphi'(x) - (1 - 2x^2)\varphi(x) = 2x^3.$$

Soit maintenant g une solution de (E) sur \mathbb{R}_+^* et soit x > 0. On a les équivalences suivantes :

$$xg'(x) - (1 - 2x^{2})g(x) = 2x^{3} \iff xg'(x) - (1 - 2x^{2})g(x) = x\varphi'(x) - (1 - 2x^{2})\varphi(x)$$
$$\iff x(g'(x) - \varphi'(x)) - (1 - 2x^{2})(g(x) - \varphi(x)) = 0$$
$$\iff x(g - \varphi)'(x) - (1 - 2x^{2})(g - \varphi)(x) = 0.$$

Donc, $g - \varphi$ est solution de (H): elle est de la forme $g - \varphi = Cf$ avec $C \in \mathbb{R}$. Les solutions de (E) sont donc les fonctions $x \mapsto \varphi(x) + Cf(x) = x + Cxe^{-x^2}$, quand C parcourt \mathbb{R} .

Fiche nº 16. Intégration I

Réponses

16.1 a)
$$\frac{5}{6}$$

16.1 c)
$$-\frac{5}{6}$$

16.2 a)
$$2^25^{-2}$$

16.2 b)
$$2^{-2}5^2$$

16.3 a)
$$\frac{1}{2}$$

16.3 c)
$$\frac{1}{2}$$

16.5 a)
$$\frac{1 - (-1)^{n+1}}{n+1}$$

16.5 b)
$$\left| \frac{1}{(n+1)2^{n+1}} \right|$$

16.5 c)
$$\frac{1}{n+1}$$

16.5 d)
$$\frac{2^{n+1}-1}{4^{n+1}(n+1)}$$

16.6
$$\sqrt{\frac{\sqrt{2}}{2n+1}}$$

16.7 a).....
$$\frac{1}{n-1}(2^{n-1}-1)$$

16.7 b).....
$$\left[\frac{(-1)^n}{n-1}(2^{n-1}-1)\right]$$

16.7 c)
$$\frac{1}{n-1} \frac{a^{2n-2}-1}{a^{n-1}}$$

16.7 d)
$$\frac{1}{2n-1} \frac{2^n - \sqrt{2}}{\sqrt{2}}$$

16.8 a)
$$\sqrt{\frac{2^{2n+1}}{3n+1}}$$

16.8 b)
$$2^{2n^2-1}$$

16.9
$$4(2^n-1)$$

16.10
$$\left| \frac{(n-1)}{n^{n-2}(2^{n-1}-1)} \right|$$

Corrigés

16.2 c) On a
$$\frac{1}{5} - \frac{1}{10} = 2 \times \frac{1}{10} - \frac{1}{10} = \frac{1}{10} = \frac{1}{2 \times 5} = 2^{-1}5^{-1}$$
.

16.3 c) On a
$$\int_0^1 (-t+1) dt = 1 - \int_0^1 t dt = 1 - \frac{1}{2} = \frac{1}{2}$$
.

16.4 On a
$$\int_0^1 t^n dt = \left[\frac{t^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1} - \frac{0}{n+1} = \frac{1}{n+1}$$
.

16.5 c) On a
$$1 - \int_0^1 nt^n dt = 1 - n \int_0^1 t^n dt = 1 - n \times \frac{1}{n+1} = 1 - \frac{n}{n+1} = \frac{1}{n+1}$$
.

16.5 d) On a
$$\int_{\frac{1}{4}}^{\frac{1}{2}} t^n dt = \left[\frac{t^{n+1}}{n+1} \right]_{\frac{1}{4}}^{\frac{1}{2}} = \frac{1}{n+1} \left(\frac{1}{2^{n+1}} - \frac{1}{4^{n+1}} \right) = \frac{2^{n+1} - 1}{(n+1)4^{n+1}}.$$

16.6 On a
$$\int_0^{\sqrt{2}} \frac{t^{2n}}{2^n} dt = \frac{1}{2^n} \left[\frac{t^{2n+1}}{2n+1} \right]_0^{\sqrt{2}} = \frac{1}{2^n} \frac{\sqrt{2}^{2n+1}}{2n+1} = \frac{1}{2^n} \frac{\sqrt{2}^{2n}\sqrt{2}}{2n+1} = \frac{1}{2^n} \frac{2^n\sqrt{2}}{2n+1} = \frac{\sqrt{2}}{2n+1}.$$

16.7 a) On a
$$\int_{\frac{1}{2}}^{1} \frac{1}{t^n} dt = \int_{\frac{1}{2}}^{1} t^{-n} dt = \left[\frac{t^{-n+1}}{-n+1} \right]_{\frac{1}{2}}^{1} = \frac{1}{n-1} \left[\frac{1}{t^{n-1}} \right]_{1}^{\frac{1}{2}} = \frac{1}{n-1} (2^{n-1} - 1).$$

16.7 b) On a

$$\int_{-1}^{-\frac{1}{2}} \frac{1}{t^n} dt = \int_{-1}^{-\frac{1}{2}} t^{-n} dt = \left[\frac{t^{-n+1}}{-n+1} \right]_{-1}^{-\frac{1}{2}} = \frac{1}{n-1} \left[\frac{1}{t^{n-1}} \right]_{-\frac{1}{2}}^{-1}$$
$$= \frac{(-1)^{n-1}}{n-1} (1 - 2^{n-1}) = \frac{(-1)^n}{n-1} (2^{n-1} - 1).$$

16.7 c) On a $\int_{\frac{1}{a}}^{a} \frac{1}{t^n} dt = \frac{1}{n-1} \left[\frac{1}{t^{n-1}} \right]_{a}^{\frac{1}{a}} = \frac{1}{n-1} \left(a^{n-1} - \frac{1}{a^{n-1}} \right) = \frac{1}{n-1} \frac{a^{2n-2} - 1}{a^{n-1}}.$

16.7 d) On a
$$\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{t^{2n}} dt = \frac{1}{2n-1} \left[\frac{1}{t^{2n-1}} \right]_{1}^{\frac{1}{\sqrt{2}}} = \frac{1}{2n-1} \left(\sqrt{2}^{2^{2n-1}} - 1 \right) = \frac{1}{2n-1} \left(\frac{2^{n}}{\sqrt{2}} - 1 \right) = \frac{1}{2n-1} \frac{2^{n} - \sqrt{2}}{\sqrt{2}}.$$

16.9 Pour commencer, on peut écrire

$$\int_0^2 2t \, dt + \int_0^2 3t^2 \, dt + \int_0^2 4t^3 \, dt + \dots + \int_0^2 (n+1)t^n \, dt = \sum_{k=1}^n \int_0^2 (k+1)t^k \, dt$$
$$= \sum_{k=1}^n \left[t^{k+1} \right]_0^2$$
$$= \sum_{k=1}^n 2^{k+1} = 2 \sum_{k=1}^n 2^k.$$

Or, on a $\sum_{k=1}^{n} 2^k = 2 \times \frac{2^n - 1}{2 - 1} = 2^{n+1} - 2$. Donc, la somme cherchée vaut $2(2^{n+1} - 2) = 4(2^n - 1)$.

16.10 Pour commencer, remarquons que

$$\int_{\frac{1}{2n}}^{\frac{1}{n}} \frac{1}{t^n} dt = \left[\frac{t^{-n+1}}{-n+1} \right]_{\frac{1}{2n}}^{\frac{1}{n}} = \frac{1}{n-1} \left[\frac{1}{t^{n-1}} \right]_{\frac{1}{n}}^{\frac{1}{2n}} = \frac{1}{n-1} \left((2n)^{n-1} - n^{n-1} \right) = \frac{n^{n-1}}{n-1} \left(2^{n-1} - 1 \right).$$

Ainsi, on trouve

$$\frac{n}{\int_0^{\frac{1}{n}} \frac{1}{t^n} dt} = \frac{n(n-1)}{n^{n-1}(2^{n-1}-1)} = \frac{(n-1)}{n^{n-2}(2^{n-1}-1)}.$$

Fiche nº 17. Intégration II

Réponses

F		
17.1 a) $ \frac{2}{3} $	17.5 d) $1 - \frac{1}{e}$	17.9 a) $-\frac{1}{2}$
17.1 b)	17.6 a)	17.9 b) $ \frac{1}{2} (e-1) $
17.1 c) $\frac{50}{21}$	17.6 b)	17.9 c)
17.2 a)	17.6 c)	17.9 d)
17.2 b)	1	17.10 a) $\sqrt{2}-1$
17.3 a)	17.6 d) $\left[-\frac{1}{2} \right]$	17.10 b) $e^e - e^{\frac{1}{e}}$
17.3 b)	17.7 a)	17.10 c)
17.3 d) 2^{-15} 5^{12}	17.7 b)	17.10 d)
17.4 a)	17.7 c)	17.11 a) $(e^x + 1)^2$
17.4 b)	17.9 a	17.11 b) $\frac{3}{2} - \frac{1}{e+1}$
17.4 c)	17.8 a) $\left[\frac{1}{4}(e^4-1)\right]$	
17.5 a) 3π	17.8 b)	17.12 a) $(a,b,c) = (2,-1,4)$
	4 (e)	17.12 b)
17.5 b)	17.8 c) $ \frac{14}{3} $	17.13 $\frac{-21}{2}$
3	17.8 d) $9-3\sqrt{3}$	$17.14 \dots \boxed{6x^3 + 8x^2 + 3x - 86}$

Corrigés

17.5 b) On a
$$\int_{-1}^{3} u \, du = \left[\frac{u^2}{2} \right]_{-1}^{3} = \frac{3^2}{2} - \frac{(-1)^2}{2} = \frac{9}{2} - \frac{1}{2} = 4.$$

17.5 d) On a
$$\int_{-1}^{0} e^{x} dx = \left[e^{x} \right]_{-1}^{0} = e^{0} - e^{-1} = 1 - \frac{1}{e}$$
.

17.6 a) On a
$$\int_{-1}^{2} 3t^3 dt = 3 \left[\frac{t^4}{4} \right]_{-1}^{2} = 3 \times \left(\frac{2^4}{4} - \frac{(-1)^4}{4} \right) = \frac{45}{4}.$$

17.6 b) On a
$$\int_1^2 \frac{x^4}{2} dx = \frac{1}{2} \int_1^2 x^4 dx = \frac{1}{2} \left[\frac{x^5}{5} \right]_1^2 = \frac{31}{10}$$
.

17.6 c) On a
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{1}^{4} = 2\sqrt{4} - 2\sqrt{1} = 4 - 2 = 2.$$

17.6 d) On a
$$\int_2^3 \frac{-3}{t^2} dt = 3 \int_2^3 \frac{-1}{t^2} dt = 3 \left[\frac{1}{t} \right]_2^3 = 3 \left(\frac{1}{3} - \frac{1}{2} \right) = 3 \times \frac{-1}{6} = -\frac{1}{2}$$
.

17.7 a) On a

$$\int_{-2}^{1} (3x^2 - 5x + 1) \, dx = \left[x^3 - \frac{5x^2}{2} + x \right]_{-2}^{1} = \left(1^3 - \frac{5}{2} + 1 \right) - \left((-2)^3 - 5 \times \frac{(-2)^2}{2} + (-2) \right) = \frac{-1}{2} + 20 = \frac{39}{2}.$$

17.7 b) On a
$$\int_0^1 \left(\frac{x^4}{3} + \frac{1}{2} \right) dx = \left[\frac{x^5}{15} + \frac{x}{2} \right]_0^1 = \frac{1}{15} + \frac{1}{2} = \frac{17}{30}$$
.

17.7 c) On a
$$\int_{1}^{4} \left(\frac{2}{\sqrt{x}} + \frac{1}{x^{2}} + \frac{4}{x^{3}} \right) dx = \left[4\sqrt{x} - \frac{1}{x} - 2x^{-2} \right]_{1}^{4} = \left(4\sqrt{4} - \frac{1}{4} - 2 \times 4^{-2} \right) - (4 \times 1 - 1 - 2) = \frac{53}{8}.$$

17.8 a) On a
$$\int_0^1 e^{4x} dx = \frac{1}{4} \int_0^1 4e^{4x} dx = \frac{1}{4} \left[e^{4x} \right]_0^1 = \frac{1}{4} \left(e^4 - 1 \right).$$

17.8 b) On a
$$\int_0^1 e^{4x-1} dx = \frac{1}{4} \left[e^{4x-1} \right]_0^1 = \frac{1}{4} \left(e^3 - \frac{1}{e} \right)$$
.

17.8 c) On a
$$\int_{-1}^{1} (2x+1)^2 dx = \frac{1}{6} \left[(2x+1)^3 \right]_{-1}^{1} = \frac{1}{6} \left(3^3 - (-1)^3 \right) = \frac{14}{3}$$

17.8 d) On a
$$\int_{1}^{4} \frac{3}{\sqrt{2x+1}} dx = 3 \int_{1}^{4} \frac{2}{2\sqrt{2x+1}} dx = 3 \left[\sqrt{2x+1} \right]_{1}^{4} = 3(\sqrt{9} - \sqrt{3}) = 9 - 3\sqrt{3}.$$

17.9 a) On a
$$\int_0^1 2x(x^2-1) dx = \frac{1}{2} [(x^2-1)^2]_0^1 = -\frac{1}{2}$$
.

17.9 b) On a
$$\int_0^1 x e^{x^2} dx = \frac{1}{2} \int_0^1 2x e^{x^2} dx = \frac{1}{2} \left[e^{x^2} \right]_0^1 = \frac{1}{2} (e - 1).$$

17.9 c) On a
$$\int_{1}^{2} \frac{e^{\frac{1}{t}}}{t^{2}} dt = -\int_{1}^{2} \left(-\frac{1}{t^{2}}\right) e^{\frac{1}{t}} dt = -\left[e^{\frac{1}{t}}\right]_{1}^{2} = -(e^{\frac{1}{2}} - e^{1}) = e - \sqrt{e}.$$

17.9 d) On a

$$\int_{-1}^{1} (4x - 3)(4x^{2} - 6x + 3)^{3} dx = \frac{1}{8} \int_{-1}^{1} 4(8x - 6)(4x^{2} - 6x + 3)^{3} dx = \frac{1}{8} \left[(4x^{2} - 6x + 3)^{4} \right]_{-1}^{1}$$
$$= \frac{1}{8} (1^{4} - 13^{4}) = -3570.$$

17.10 a) On a
$$\int_0^1 \frac{x}{\sqrt{x^2 + 1}} dx = \int_0^1 \frac{2x}{2\sqrt{x^2 + 1}} dx = \left[\sqrt{x^2 + 1}\right]_0^1 = \sqrt{2} - 1.$$

17.10 b) On a
$$\int_{-1}^{1} e^{t+e^{t}} dt = \int_{-1}^{1} e^{t} \times e^{e^{t}} dt = \left[e^{e^{t}} \right]_{-1}^{1} = e^{e^{1}} - e^{e^{-1}} = e^{e} - e^{\frac{1}{e}}$$
.

17.10 c) On a
$$\int_3^4 \frac{x-1}{x^2(x-2)^2} dx = \frac{-1}{2} \int_3^4 \frac{-(2x-2)}{(x^2-2x)^2} dx = \frac{-1}{2} \left[\frac{1}{x^2-2x} \right]_3^4 = -\frac{1}{2} \left(\frac{1}{8} - \frac{1}{3} \right) = \frac{5}{48}$$
.

17.10 d) On a
$$\int_{-1}^{0} \frac{1-x^2}{(x^3-3x+1)^3} dx = \frac{1}{6} \int_{-1}^{0} (-2) \times (3x^2-3)(x^3-3x+1)^{-3} dx = \frac{1}{6} \left[(x^3-3x+1)^{-2} \right]_{-1}^{0} = \frac{4}{27}$$
.

17.11 a) On a
$$e^{2x} + 2e^x + 1 = (e^x)^2 + 2e^x + 1 = (e^x + 1)^2$$
.

.....

17.11 b) On a

$$\int_0^1 f(x) \, dx = \int_0^1 \frac{e^{2x} + 3e^x + 1}{(e^x + 1)^2} \, dx = \int_0^1 \frac{e^{2x} + 2e^x + 1 + e^x}{(e^x + 1)^2} \, dx = \int_0^1 \frac{(e^x + 1)^2 + e^x}{(e^x + 1)^2} \, dx$$

$$= \int_0^1 \frac{(e^x + 1)^2}{(e^x + 1)^2} \, dx + \int_0^1 \frac{e^x}{(e^x + 1)^2} \, dx = \int_0^1 dx - \int_0^1 \frac{-e^x}{(e^x + 1)^2} \, dx = \left[x\right]_0^1 - \left[\frac{1}{e^x + 1}\right]_0^1$$

$$= 1 - \frac{1}{e^1 + 1} + \frac{1}{e^0 + 1} = \frac{3}{2} - \frac{1}{e + 1}.$$

17.12 a) On a
$$f(x) = ax + b + \frac{c}{(x+1)^2} = \frac{(ax+b)(x+1)^2 + c}{(x+1)^2} = \frac{ax^3 + (2a+b)x^2 + (a+2b)x + b + c}{(x+1)^2}$$
.

Par identification avec l'expression de f(x), on obtient le système d'équations $\begin{cases} a = 2\\ 2a + b = 3\\ a + 2b = 0\\ b + c = 3 \end{cases}$

On résout alors ce système et on obtient : $a=2,\,b=-1$ et c=4

17.12 b) On a
$$\int_0^1 f(x) dx = \int_0^1 \left(2x - 1 + \frac{4}{(x+1)^2}\right) dx = \left[x^2 - x - \frac{4}{x+1}\right]_0^1 = 2.$$

17.13 À l'aide d'un tableau, on détermine l'expression de (|x-1|-|4x+2|) sur chacun des intervalles $\left[-1,\frac{1}{2}\right],\left[\frac{1}{2},1\right]$ et [1,2]:

x	-1 -	1/2	1 2
x-1	1-x	1-x	0 x-1
4x + 2	-4x - 2	0 4x + 2	4x+2
x-1 - 4x+2	3x + 3	-5x - 1	-3x - 3

On décompose alors l'intégrale demandée en utilisant la relation de Chasles :

$$\int_{-1}^{2} (|x-1| - |4x+2|) dx = \int_{-1}^{\frac{-1}{2}} (|x-1| - |4x+2|) dx + \int_{\frac{-1}{2}}^{1} (|x-1| - |4x+2|) dx + \int_{1}^{2} (|x-1| - |4x+2|) dx + \int_{1}^{2} (|x-1| - |4x+2|) dx$$

$$= \int_{-1}^{\frac{-1}{2}} (3x+3) dx + \int_{\frac{-1}{2}}^{1} (-5x-1) dx + \int_{1}^{2} (-3x-3) dx$$

$$= 3 \left[\frac{x^{2}}{2} + x \right]_{-1}^{\frac{-1}{2}} - \left[\frac{5x^{2}}{2} + x \right]_{-1}^{1} - 3 \left[\frac{x^{2}}{2} + x \right]_{1}^{2} = \frac{-21}{2}.$$

17.14 Soit G une primitive de f sur [-1, x]. On a $\int_{-1}^{x} f(t) dt = G(x) - G(-1) = -6x^3 - 8x^2 - 3x - 1$. Donc, on a $G(x) - G(-1) = -6x^3 - 8x^2 - 3x - 1$.

En dérivant par rapport à x, on obtient $G'(x) = -18x^2 - 16x - 3$, c'est-à-dire $f(x) = -18x^2 - 16x - 3$.

Donc,
$$F(x) = \int_{x}^{2} f(t) dt = \int_{x}^{2} (-18t^{2} - 16t - 3) dt = -\left[6t^{3} + 8t^{2} + 3t\right]_{x}^{2} = 6x^{3} + 8x^{2} + 3x - 86.$$

Fiche nº 18. Intégration III

Réponses

18.1 a)
$$\frac{13}{8}$$

18.2 a)
$$\frac{1-5m}{4m}$$

18.2 b)
$$\frac{m+2}{m-1}$$

18.2 d)
$$\frac{1-3m}{1+3m}$$

18.3 a)
$$3 + e^2$$

18.3 c)
$$\frac{3}{2}$$

18.3 d)
$$\frac{3}{32} + 4 \ln(2)$$

18.4 a)
$$2(e^{10} - 1)$$

18.4 b)
$$\left| \frac{2}{5} \ln(6) \right|$$

18.4 c)
$$\left| -\frac{3}{5} \right|$$

18.5 b)
$$\left| \frac{1}{6} \left(e^{\frac{13}{4}} - 1 \right) \right|$$

18.5 d)
$$\frac{13}{486}$$

18.6 a)
$$\frac{9}{20}$$

18.7
$$\frac{1}{8} \ln(22)^4$$

18.8 b)
$$\frac{1}{n-1} (e-1)$$

18.8 c)..
$$\frac{2}{3n} \left((3^n + 3)^{\frac{3}{2}} - (2^n + 3)^{\frac{3}{2}} \right)$$

18.9 a)
$$a = 1$$
 et $b = -1$

18.9 b)
$$a = \frac{1}{2}$$
 et $b = -\frac{1}{2}$

18.9 c)
$$\ln\left(\frac{4}{3}\right)$$

18.9 d).....
$$\frac{1}{2} \ln \left(\frac{6}{5} \right)$$

18.10 a).....
$$a = 2$$
 et $b = -1$

18.10 b).....
$$a = -2$$
 et $b = 3$

18.10 c)
$$\ln\left(\frac{8}{9}\right)$$

18.10 d)
$$\ln\left(\frac{32}{9}\right)$$

18.11 c)
$$\frac{1}{2} + \frac{1}{4} \ln \left(\frac{3}{5} \right)$$

18.11 e)
$$1 + \ln\left(\frac{2}{5}\right)$$

Corrigés

- **18.1** a) On a, pour $x \neq \frac{3}{2}$, les équivalences suivantes : $\frac{1}{2x-3} = 4 \iff 1 = 4(2x-3) \iff 1 = 8x-12$.
- **18.1** b) Pour $x \neq -1$, on a l'équivalence suivante : $\frac{2x+3}{x+1} = 1 \iff 2x+3 = x+1$.

18.2 a) Si
$$x \neq -\frac{5}{4}$$
, comme $m \neq 0$, on a les équivalences suivantes :
$$\frac{1}{4x+5} = m \iff 1 = 4mx + 5m \iff 1 - 5m = 4mx \iff x = \frac{1-5m}{4m}.$$

18.2 b) Si $x \neq 1$, comme $m \neq 1$ et donc $m - 1 \neq 0$, on a les équivalences suivantes :

$$\frac{x+2}{x-1} = m \iff x+2 = mx-m \iff 2+m = mx-x \iff 2+m = x(m-1) \iff x = \frac{2+m}{m-1}.$$

18.3 a) Une primitive de $t \mapsto t^3 + \exp(t)$ est $t \mapsto \frac{1}{4}t^4 + \exp(t)$ donc

$$\int_0^2 \left(t^3 + \exp(t)\right) \mathrm{d}t = \left[\frac{1}{4}t^4 + \exp(t)\right]_0^2 = \left(\frac{1}{4}2^4 + \exp(2)\right) - \left(\frac{1}{4}0^4 + \exp(0)\right) = 3 + \exp(2).$$

- **18.3** b) On procède comme précédemment, sachant qu'une primitive de $t \mapsto \frac{3}{t}$ sur \mathbb{R}_+^* est $t \mapsto 3 \ln(t)$.
- **18.3** c) Une primitive de $t \mapsto \frac{2}{t^2}$ est $t \mapsto \frac{-2}{t}$.
- **18.3** d) Une primitive de $t \mapsto \frac{4}{t} + \frac{1}{t^3}$ est $t \mapsto 4\ln(t) \frac{1}{2t^2}$.
- **18.4** a) Une primitive de $t \mapsto \exp(2t+2)$ est $t \mapsto \frac{1}{2} \exp(2t+2)$. On trouve alors $2 \left[\exp(2t+2) \right]_{-1}^{4}$.
- **18.4** b) On procède comme précédemment. On trouve $\frac{2}{5} \left[\ln(|5t+3|) \right]_0^3$.
- **18.4** c) On trouve $\left[\frac{2}{t+4}\right]_{-2}^{1}$.
- **18.4** d) On trouve $\frac{1}{4} \Big[\ln(|2t 3|) \Big]_{-2}^{1}$.
- **18.5** a) L'intégrande est de la forme $\frac{u'}{u}$ avec $u(t) = t^2 + t + 1$. Une primitive est donc $\ln(|u|)$.
- **18.5** b) L'intégrande est de la forme $\frac{1}{6}u'\exp(u)$ avec $u(t)=2t^3+6t$. Une primitive est donc $\frac{1}{6}\exp(u)$.
- **18.5** c) L'intégrande est de la forme $\frac{\frac{1}{4}u'}{\sqrt{u}}$, c'est-à-dire $\frac{1}{2}\frac{u'}{2\sqrt{u}}$, avec $u(t) = 2t^2 + 2t + 1$. Une primitive est $\frac{1}{2}\sqrt{u}$.
- **18.5** d) L'intégrande est de la forme $\frac{1}{12} \frac{u'}{u^4}$ avec $u(t) = t^3 + t^2 + 1$. Une primitive est donc $\frac{-1}{36} \frac{1}{u^3}$.
- **18.6** a) On procède comme à l'exercice précédent. L'intégrande est de la forme $3u'u^{-2}$.
- **18.6** b) L'intégrande est de la forme $\frac{1}{6} \frac{u'}{u}$. Une primitive est donc $\frac{1}{6} \ln(|u|)$.
- **18.6** c) L'intégrande est de la forme $\frac{u'}{u}$. Une primitive est donc $\ln(|u|)$.

On pose $u(t) = \ln(t^2 + 2t - 2)$ pour tout $t \in [1, 4]$ (on peut vérifier que sur cet intervalle $t^2 + 2t - 2 > 0$). La fonction u est de la forme $\ln(v)$ donc $u' = \frac{v'}{v}$. Ainsi $u'(t) = \frac{2t+2}{t^2+2t-2}$.

L'intégrande est donc de la forme $\frac{1}{2}u'u^3$. Une primitive est donc $\frac{1}{2}\frac{u^4}{4}$.

- **18.8** a) L'intégrande est de la forme $\frac{\frac{1}{n}u'}{u}$. On trouve $\frac{1}{n}\Big[\ln(t^n+2)\Big]_0^1$.
- **18.8** b) L'intégrande est de la forme $\frac{1}{n-1}u'\exp(u)$. On trouve donc $\frac{1}{n-1}\left[\exp(t^{n-1})\right]_0^1$.
- **18.8** c) L'intégrande est de la forme $\frac{1}{n}u'\sqrt{u}$. On trouve $\frac{2}{3n}\left[(t^n+3)^{\frac{3}{2}}\right]_2^3$.

18.9 a) On a $\frac{a}{t} + \frac{b}{t+1} = \frac{at+a+tb}{t(t+1)}$. Il suffit donc de trouver a et b tels que at+a+tb=1 pour tout $t \in \mathbb{R}$. En prenant t=0, on trouve a=1. En prenant t=-1, on trouve b=-1. On vérifie que ces valeurs conviennent.

.....

18.9 c) D'après ce qui précède, on a

$$\int_{1}^{2} \frac{1}{t(t+1)} dt = \int_{1}^{2} \left(\frac{1}{t} - \frac{1}{t+1}\right) dt = \left[\ln(t) - \ln(t+1)\right]_{1}^{2} = \ln(2) - \ln(3) - (\ln(1) - \ln(2)).$$

18.10 a) On a $\frac{a}{t+1} + \frac{b}{t+2} = \frac{at+2a+bt+b}{(t+1)(t+2)}$. Il suffit donc de trouver a et b tels que at+2a+bt+b=t+3 pour tout $t \in \mathbb{R}$. En prenant t=-1, on trouve a=2. En prenant t=-2, on trouve b=-1.

18.10 c) D'après ce qui précède,

$$\int_{-4}^{-3} \frac{t+3}{(t+1)(t+2)} \, \mathrm{d}t = \int_{-4}^{-3} \left(\frac{2}{t+1} + \frac{-1}{t+2} \right) \mathrm{d}t = \left[2 \ln(|t+1|) - \ln(|t+2|) \right]_{-4}^{-3} = (2 \ln(2) - \ln(1)) - (2 \ln(3) - \ln(2)).$$

18.11 a) On a

$$\int_{1}^{2} \frac{t}{t+1} \, \mathrm{d}t = \int_{1}^{2} \frac{t+1-1}{t+1} \, \mathrm{d}t = \int_{1}^{2} \frac{t+1}{t+1} - \frac{1}{t+1} \, \mathrm{d}t = \int_{1}^{2} 1 - \frac{1}{t+1} \, \mathrm{d}t = \left[t - \ln(t+1)\right]_{1}^{2} = 2 - \ln(3) - 1 + \ln(2).$$

18.11 b) On a
$$\int_{1}^{2} \frac{t}{t+5} dt = \int_{1}^{2} \frac{t+5}{t+5} - \frac{5}{t+5} dt = \int_{1}^{2} 1 - \frac{5}{t+5} dt$$
.

18.11 c) On a
$$\frac{t}{2t+1} = \frac{1}{2} \frac{2t}{2t+1} = \frac{1}{2} \left(\frac{2t+1}{2t+1} - \frac{1}{2t+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2t+1} \right)$$
.

18.11 d) On a
$$\frac{t^2 - t}{t^2 + t + 1} = \frac{t^2 - t + (2t + 1) - (2t + 1)}{t^2 + t + 1} = \frac{t^2 + t + 1}{t^2 + t + 1} - \frac{2t + 1}{t^2 + t + 1} = 1 - \frac{2t + 1}{t^2 + t + 1}$$
.

18.11 e) On a
$$\frac{2t^2 - t - 2}{2t^2 + 3t + 1} = \frac{2t^2 - t - 2 + (4t + 3) - (4t + 3)}{2t^2 + 3t + 1} = \frac{2t^2 + 3t + 1}{2t^2 + 3t + 1} - \frac{4t + 3}{2t^2 + 3t + 1} = 1 - \frac{4t + 3}{2t^2 + 3t + 1}$$

Fiche nº 19. Intégration par parties I

Réponses

19.1 a).....
$$(x+1)e^x$$

19.1 b)
$$\ln(x) + 1$$

19.1 c)
$$\frac{e^x(x-1)}{x^2}$$

19.1 d)
$$\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$$

19.1 e)
$$\sqrt{\frac{4x}{\sqrt{4x^2+3}}}$$

19.1 f)
$$-\frac{6x^5}{(x^6+3)^2}$$

19.2 a) ...
$$(3x+5)(13-10x)$$

19.2 b).....
$$e^x(x-3)$$

19.2 c)
$$\ln(x)$$

19.2 d).....
$$(e^x + 2)^2$$

19.3 b)
$$\frac{e^2 + 1}{4}$$

19.4 a)
$$\frac{e-2}{e}$$

19.4 b)
$$\frac{2e^3 + 1}{9}$$

19.4 c)
$$3 - 23e^{-10}$$

19.4 d)
$$\frac{5e}{3} - 2$$

19.5 a).....
$$5 \ln(5) - 4$$

19.5 b)
$$x \ln(x) - x$$

19.5 c)..
$$5 \ln(5)^2 - 10 \ln(5) + 8$$

19.5 d) ..
$$5 \ln(5)^3 - 15 \ln(5)^2 + 30 \ln(5) - 24$$

19.6 a)
$$e-2$$

19.6 b)
$$\frac{5}{27}e^3 - \frac{2}{27}$$

19.7 b).
$$\frac{1}{98} \left(-(\ln 7)^2 - \ln 7 + 24 \right)$$

19.8 a)
$$\ln(2)$$

19.8 b)
$$a = 1$$
 et $b = -1$

19.8 c)
$$1 - \ln(2)$$

19.8 d)
$$\frac{1}{n+1}$$

19.8 e).....
$$\frac{5}{6} - \ln(2)$$

19.9
$$2\pi^2$$

19.10 b)....
$$J(n+1)$$
 = $(n+1)J(n)$

Corrigés

19.3 a) On choisit $u'(t) = e^t$ et v(t) = t. On a

$$\int_0^1 t e^t dt = \left[t e^t \right]_0^1 - \int_0^1 e^t dt = e - \left[e^t \right]_0^1 = e - (e - 1) = 1.$$

19.3 b) On a

$$\int_{1}^{e} t \ln(t) dt = \left[\frac{t^{2}}{2} \ln(t) \right]_{1}^{e} - \int_{1}^{e} \frac{t^{2}}{2} \times \frac{1}{t} dt = \frac{e^{2}}{2} - \int_{1}^{e} \frac{t}{2} dt$$
$$= \frac{e^{2}}{2} - \left[\frac{t^{2}}{4} \right]_{1}^{e} = \frac{2e^{4}}{4} - \left(\frac{e^{2}}{4} - \frac{1}{4} \right) = \frac{e^{2} + 1}{4}.$$

19.4 a) On a

$$\begin{split} \int_{1}^{\mathbf{e}} \frac{\ln(t)}{t^{2}} \, \mathrm{d}t &= \left[\ln(t) \times \frac{-1}{t} \right]_{1}^{\mathbf{e}} - \int_{1}^{\mathbf{e}} -\frac{1}{t^{2}} \, \mathrm{d}t = \frac{-1}{\mathbf{e}} - \left[\frac{1}{t} \right]_{1}^{\mathbf{e}} \\ &= -\frac{2}{\mathbf{e}} + 1 = \frac{\mathbf{e} - 2}{\mathbf{e}}. \end{split}$$

.....

19.4 b) On a

$$\int_{1}^{e} t^{2} \ln(t) dt = \left[\frac{t^{3}}{3} \ln(t) \right]_{1}^{e} - \int_{1}^{e} \frac{t^{3}}{3} \times \frac{1}{t} dt$$

$$= \frac{e^{3}}{3} - \int_{1}^{e} \frac{t^{2}}{3} dt = \frac{e^{3}}{3} - \left[\frac{t^{3}}{9} \right]_{1}^{e} = \frac{e^{3}}{3} - \left(\frac{e^{3}}{9} - \frac{1}{9} \right) = \frac{2e^{3} + 1}{9}.$$

19.4 c) On a

$$\int_0^{10} (2t+1)e^{-t} dt = \left[-(2t+1) \times e^{-t} \right]_0^{10} - \int_0^{10} -2e^{-t} dt = -21e^{-10} + 1 - \left[2e^{-t} \right]_0^{10}$$
$$= -21e^{-10} + 1 - 2e^{-10} + 2 = 3 - 23e^{-10}.$$

19.4 d) On a

$$\begin{split} \int_{\frac{-1}{3}}^{0} (4-3t) \mathrm{e}^{3t+1} \, \mathrm{d}t &= \left[(4-3t) \times \frac{1}{3} \mathrm{e}^{3t+1} \right]_{\frac{-1}{3}}^{0} - \int_{\frac{-1}{3}}^{0} -3 \times \frac{1}{3} \mathrm{e}^{3t+1} \, \mathrm{d}t = \left(\frac{4}{3} \mathrm{e} - \frac{5}{3} \right) - \int_{\frac{-1}{3}}^{0} -\mathrm{e}^{3t+1} \, \mathrm{d}t \\ &= \left(\frac{4}{3} \mathrm{e} - \frac{5}{3} \right) + \left[\frac{1}{3} \mathrm{e}^{3t+1} \right]_{\frac{-1}{3}}^{0} = \left(\frac{4}{3} \mathrm{e} - \frac{5}{3} \right) + \left(\frac{1}{3} \mathrm{e} - \frac{1}{3} \right) = \frac{5}{3} \mathrm{e} - 2. \end{split}$$

19.5 a) On a

$$\int_{1}^{5} 1 \times \ln(t) dt = \left[t \ln(t) \right]_{1}^{5} - \int_{1}^{5} t \times \frac{1}{t} dt = 5 \ln(5) - \int_{1}^{5} 1 dt = 5 \ln(5) - (5 - 1) = 5 \ln(5) - 4.$$

19.5 b) On a

$$\int_{e}^{x} 1 \times \ln(t) dt = \left[t \ln(t) \right]_{e}^{x} - \int_{e}^{x} t \times \frac{1}{t} dt = x \ln(x) - e - \int_{e}^{x} 1 dt = x \ln(x) - e - (x - e) = x \ln(x) - x.$$

19.5 c) On a

$$\int_{1}^{5} \ln(t) \ln(t) dt = \left[(t \ln(t) - t) \times \ln(t) \right]_{1}^{5} - \int_{1}^{5} (t \ln(t) - t) \times \frac{1}{t} dt = (5 \ln(5) - 5) \ln(5) - \int_{1}^{5} \ln(t) - 1 dt$$

$$= 5 \ln(5)^{2} - 5 \ln(5) - \underbrace{\int_{1}^{5} \ln(t) dt}_{\text{précédemment}} + \int_{1}^{5} 1 dt$$

$$= 5 \ln(5)^{2} - 5 \ln(5) - (5 \ln(5) - 4) + 4 = 5 \ln(5)^{2} - 10 \ln(5) + 8.$$

19.5 d) On a

$$\begin{split} \int_{1}^{5} \ln(t) \times \ln(t)^{2} \, \mathrm{d}t &= \left[(t \ln(t) - t) \times \ln(t)^{2} \right]_{1}^{5} - \int_{1}^{5} (t \ln(t) - t) \times \frac{2}{t} \ln(t) \, \mathrm{d}t \\ &= (5 \ln(5) - 5) \ln(5)^{2} - \int_{1}^{5} 2 \ln(t)^{2} - 2 \ln(t) \, \mathrm{d}t \\ &= 5 \ln(5)^{3} - 5 \ln(5)^{2} - 2 \underbrace{\int_{1}^{5} \ln(t)^{2} \, \mathrm{d}t}_{\text{calculé}} + 2 \underbrace{\int_{1}^{5} \ln(t) \, \mathrm{d}t}_{\text{calculé}} = 5 \ln(5)^{3} - 15 \ln(5)^{2} + 30 \ln(5) - 24. \end{split}$$

19.6 a) On a

$$\int_0^1 t^2 e^t dt = \left[t^2 e^t \right]_0^1 - \int_0^1 2t e^t dt = e - \left(\left[2t e^t \right]_0^1 - \int_0^1 2e^t dt \right)$$
$$= e - \left[2t e^t \right]_0^1 + \left[2e^t \right]_0^1 = e - 2e + 2e - 2 = e - 2.$$

19.6 b) On a

$$\begin{split} \int_{1}^{e} t^{2} (\ln(t))^{2} \, \mathrm{d}t &= \left[\frac{t^{3}}{3} \times (\ln t)^{2} \right]_{1}^{e} - \int_{1}^{e} \frac{t^{3}}{3} \times 2\frac{1}{t} \ln(t) \, \mathrm{d}t = \frac{\mathrm{e}^{3}}{3} - \int_{1}^{e} \frac{2t^{2}}{3} \ln(t) \, \mathrm{d}t \\ &= \frac{\mathrm{e}^{3}}{3} - \left(\left[\frac{2t^{3}}{9} \times \ln t \right]_{1}^{e} - \int_{1}^{e} \frac{2t^{3}}{9} \times \frac{1}{t} \, \mathrm{d}t \right) = \frac{\mathrm{e}^{3}}{3} - \left(\frac{2\mathrm{e}^{3}}{9} - \frac{2}{9} \int_{1}^{e} t^{2} \, \mathrm{d}t \right) \\ &= \frac{\mathrm{e}^{3}}{3} - \frac{2\mathrm{e}^{3}}{9} + \frac{2}{9} \left[\frac{t^{3}}{3} \right]_{1}^{e} = \frac{\mathrm{e}^{3}}{9} + \frac{2}{9} \left(\frac{\mathrm{e}^{3}}{3} - \frac{1}{3} \right) = \frac{3\mathrm{e}^{3}}{27} + \frac{2\mathrm{e}^{3}}{27} - \frac{2}{27} = \frac{5}{27} \mathrm{e}^{3} - \frac{2}{27}. \end{split}$$

19.7 a) On a

$$\begin{split} \int_0^1 t^2 \mathrm{e}^{2t+1} \, \mathrm{d}t &= \left[t^2 \frac{1}{2} \mathrm{e}^{2t+1} \right]_0^1 - \int_0^1 2t \times \frac{1}{2} \mathrm{e}^{2t+1} \, \mathrm{d}t = \frac{1}{2} \mathrm{e}^3 - \int_0^1 t \times \mathrm{e}^{2t+1} \, \mathrm{d}t \\ &= \frac{1}{2} \mathrm{e}^3 - \left(\left[\frac{1}{2} t \mathrm{e}^{2t+1} \right]_0^1 - \int_0^1 \frac{1}{2} \mathrm{e}^{2t+1} \, \mathrm{d}t \right) = \frac{1}{2} \mathrm{e}^3 - \left[\frac{1}{2} t \mathrm{e}^{2t+1} \right]_0^1 + \left[\frac{1}{4} \mathrm{e}^{2t+1} \right]_0^1 \\ &= \frac{1}{2} \mathrm{e}^3 - \frac{1}{2} \mathrm{e}^3 + \frac{1}{4} \mathrm{e}^3 - \frac{1}{4} \mathrm{e} = \frac{1}{4} \mathrm{e}^3 - \frac{1}{4} \mathrm{e}. \end{split}$$

19.7 b) On a

$$\begin{split} \int_{1}^{7} \ln(t)^{2} \times \frac{1}{t^{3}} \, \mathrm{d}t &= \int_{1}^{7} \ln(t)^{2} \times t^{-3} \, \mathrm{d}t = \left[(\ln t)^{2} \times \frac{t^{-2}}{-2} \right]_{1}^{7} - \int_{1}^{7} \frac{2}{t} \ln(t) \times \frac{t^{-2}}{-2} \, \mathrm{d}t \\ &= \left[(\ln t)^{2} \times \frac{-1}{2t^{2}} \right]_{1}^{7} + \int_{1}^{7} \frac{1}{2} \frac{2}{t^{3}} \ln(t) \, \mathrm{d}t = (\ln 7)^{2} \times \frac{-1}{98} + \int_{1}^{7} \frac{1}{t^{3}} \ln(t) \, \mathrm{d}t \\ &= (\ln 7)^{2} \times \frac{-1}{98} + \left[\frac{-1}{2t^{2}} \times \ln t \right]_{1}^{7} - \int_{1}^{7} \frac{-1}{2t^{2}} \times \frac{1}{t} \, \mathrm{d}t = (\ln 7)^{2} \times \frac{-1}{98} - \frac{1}{98} \times \ln 7 + \int_{1}^{7} \frac{1}{2t^{3}} \, \mathrm{d}t \\ &= \frac{-1}{98} (\ln 7)^{2} - \frac{1}{98} \times \ln 7 + \left[-\frac{1}{4t^{2}} \right]_{1}^{7} = \frac{-1}{98} (\ln 7)^{2} - \frac{1}{98} \ln 7 + \left(-\frac{1}{196} + \frac{1 \times 49}{4 \times 49} \right) \\ &= \frac{-1}{98} (\ln 7)^{2} - \frac{1}{98} \ln 7 + \frac{24}{98} = \frac{1}{98} \left(-(\ln 7)^{2} - \ln 7 + 24 \right). \end{split}$$

19.8 a) On a
$$I_0 = \int_0^1 \frac{1}{1+t} dt = \left[\ln(1+t) \right]_0^1 = \ln(2).$$

19.8 c) On a
$$I_1 = \int_0^1 \frac{t}{1+t} dt = \int_0^1 \left(1 - \frac{1}{1+t}\right) dt = 1 - \left[\ln(1+t)\right]_0^1 = 1 - \ln(2).$$

19.8 d) Soit $n \in \mathbb{N}$, on a

$$I_{n+1} + I_n = \int_0^1 \frac{t^{n+1}}{1+t} dt + \int_0^1 \frac{t^n}{1+t} dt = \int_0^1 \frac{t^{n+1} + t^n}{1+t} dt$$
$$= \int_0^1 \frac{t^n (1+t)}{1+t} dt = \int_0^1 t^n dt = \left[\frac{t^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}.$$

19.8 e) Comme $I_{n+1} + I_n = \frac{1}{n+1}$, on a $I_{n+1} = \frac{1}{n+1} - I_n$. On en déduit $I_3 = \frac{1}{3} - I_2 = \frac{1}{3} - \left(\frac{1}{2} - I_1\right) = -\frac{1}{6} + I_1 = -\frac{1}{6} + \left(1 - \ln(2)\right) = \frac{5}{6} - \ln(2).$

19.9 Soit x > 0. Pour commencer, on calcule

$$\int_{0}^{x} t^{3} e^{-\frac{t^{2}}{2\pi}} dt = \int_{0}^{x} t^{2} \times t e^{-\frac{t^{2}}{2\pi}} dt = \int_{0}^{x} t^{2} \times \pi \frac{2t}{2\pi} e^{-\frac{t^{2}}{2\pi}} dt$$

$$= \left[t^{2} \times \left(-\pi e^{-\frac{t^{2}}{2\pi}} \right) \right]_{0}^{x} - \int_{0}^{x} 2t \times \left(-\pi e^{-\frac{t^{2}}{2\pi}} \right) dt = -\pi x^{2} e^{-\frac{x^{2}}{2\pi}} + \int_{0}^{x} 2\pi t e^{-\frac{t^{2}}{2\pi}} dt$$

$$= -\pi x^{2} e^{-\frac{x^{2}}{2\pi}} + \left[-2\pi^{2} e^{-\frac{t^{2}}{2\pi}} \right]_{0}^{x} = -\pi x^{2} e^{-\frac{x^{2}}{2\pi}} - 2\pi^{2} e^{-\frac{x^{2}}{2\pi}} + 2\pi^{2} = -\pi e^{-\frac{x^{2}}{2\pi}} (x^{2} + 2\pi) + 2\pi^{2}.$$

Or, par croissance comparée, on a $\lim_{x\to +\infty} -\pi \mathrm{e}^{-\frac{x^2}{2\pi}} \left(x^2+2\pi\right) = 0$. Ainsi $\lim_{x\to +\infty} \int_0^x t^3 \mathrm{e}^{-\frac{t^2}{2\pi}} = 2\pi^2$.

19.10 a) Soit $A \in \mathbb{R}$. On a $I(0,A) = \int_0^A e^{-t} dt = \left[-e^{-t} \right]_0^A = 1 - e^{-A}$. Or, on a $\lim_{A \to +\infty} 1 - e^{-A} = 1$.

Ainsi $\lim_{A\to +\infty} \int_0^A t^0 e^{-t} dt = 1$. D'ou J(0) = 1.

.....

19.10 b) Soit $n \in \mathbb{N}$, on a

$$\begin{split} J(n+1) &= \lim_{A \to +\infty} \int_0^A t^{n+1} \mathrm{e}^{-t} \, \mathrm{d}t \\ &= \lim_{A \to +\infty} \left(\left[t^{n+1} \times (-\mathrm{e}^{-t}) \right]_0^A - \int_0^A (n+1) t^n \times (-\mathrm{e}^{-t}) \, \mathrm{d}t \right) \\ &= \lim_{A \to +\infty} \left(\left[-A^{n+1} \mathrm{e}^{-A} \right] + \int_0^A (n+1) t^n \mathrm{e}^{-t} \, \mathrm{d}t \right) \\ &= \lim_{A \to +\infty} \left[-A^{n+1} \mathrm{e}^{-A} \right] + (n+1) \lim_{A \to +\infty} \int_0^A t^n \mathrm{e}^{-t} \, \mathrm{d}t \\ &= (n+1) J(n) \end{split}$$

car $\lim_{A \to +\infty} A^{n+1} e^{-A} = 0$, par croissance comparée.

19.10 c) Comme J(0) = 1 et que pout tout $n \in \mathbb{N}$, J(n+1) = (n+1)J(n), on en déduit que J(1) = 1, puis J(2) = 2, J(3) = 6, puis J(4) = 24. On conjecture que, pour tout $n \in \mathbb{N}$, J(n) = n!

Ceci se démontre par récurrence.

Fiche nº 20. Intégration par parties II

Réponses

Ttoponses	
20.1 a)	20.6 b) $2(\ln(b) - 2)\sqrt{b} - 2(\ln(a) - 2)\sqrt{a}$
20.1 b)	20.7 a) $(x-a)\ln(x-a) - (x-a-1)$
20.1 c)	20.7 b). $(3-a)\ln(3-a) - (2-a)\ln(2-a) - 1$
20.1 d)	
20.2 a)	20.7 c)
20.2 b) $ \frac{-2x}{(1+x^2)^2} $	20.8 a)
20.2 c)	20.8 b)
$(1-x)^2$	20.9 a) $24e - 168e^{-1}$
20.2 d) $\left \frac{-1}{2\sqrt{1-x}} \right $	20.9 b)
20.3 a) $2 \ln(2) - 1$	20.10 a) $J_{n+1} = I_n - I_{n+1}$
20.3 b) $2 - \frac{3}{e}$	20.10 b) $I_n = \frac{1}{2^n} + 2nJ_{n+1}$
20.4 $ \frac{1}{(a+1)^2} - \frac{4^{a+1}}{(a+1)^2} + \frac{4^{a+1}}{a+1} \ln(4) $	20.10 c) $I_{n+1} = \frac{1}{n2^{n+1}} + \frac{2n-1}{2n}I_n$
	20.10 d)
20.5 a) $\frac{2x-4}{3}\sqrt{1+x}+\frac{4}{3}$	
20.5 b) $ \frac{4}{3} - \frac{2}{3}\sqrt{2} $	20.10 e)
	20.11 $(x-1)\ln(1+\sqrt{x})-\frac{1}{2}(x-2\sqrt{x}+1)$
20.5 c)	20.12 a) $\frac{1}{n+1}$
20.5 d) $\frac{x}{\sqrt{1+x}}$	20.12 b) $I_{n,p} = -\frac{p}{n+1}I_{n,p-1}$
20.5 e)	
20.6 a) $2(\ln(x) - 2)\sqrt{x} + 4$	20.12 c) $\left (-1)^p \frac{p!}{(n+1)^{p+1}} \right $

Corrigés

20.3 a) On a, en posant u(x) = x et $v(x) = \ln(x)$, $\int_{1}^{2} \ln(x) dx = \int_{1}^{2} u'(x)v(x) dx = u(2)v(2) - u(1)v(1) - \int_{1}^{2} u(x)v'(x) dx = 2\ln(2) - \int_{1}^{2} dx = 2\ln(2) - 1.$

.....

20.3 b) On a, en posant
$$u(x) = x + 1$$
 et $v(x) = -e^{-x}$,

$$\int_0^1 (x+1)e^{-x} dx = \int_0^1 u(x)v'(x) dx = u(1)v(1) - u(0)v(0) - \int_0^1 u'(x)v(x) dx = -2e^{-1} + 1 + \int_0^1 e^{-x} dx = 2 - \frac{3}{e}.$$

20.4 On a, en posant
$$u(x) = \frac{x^{a+1}}{a+1}$$
 et $v(x) = \ln(x)$,

$$\int_{1}^{4} x^{a} \ln(x) dx = \int_{1}^{4} u'(x)v(x) dx = u(4)v(4) - u(1)v(1) - \int_{1}^{4} u(x)v'(x) dx = \frac{4^{a+1}}{a+1}\ln(4) - \int_{1}^{4} \frac{x^{a}}{a+1} dx$$
$$= \frac{1}{(a+1)^{2}} - \frac{4^{a+1}}{(a+1)^{2}} + \frac{4^{a+1}}{a+1}\ln(4).$$

20.5 a) On a, en posant
$$u(t) = t$$
 et $v(t) = 2\sqrt{1+t}$,

$$g(x) = \int_0^x u(t)v'(t) dt = u(x)v(x) - u(0)v(0) - \int_0^x u'(t)v(t) dt$$
$$= 2x\sqrt{1+x} - 2\int_0^x \sqrt{1+t} dt = 2x\sqrt{1+x} - \frac{4}{3}(1+x)\sqrt{1+x} + \frac{4}{3} = \frac{2x-4}{3}\sqrt{1+x} + \frac{4}{3}.$$

20.5 b) On a
$$\int_0^1 f(x) dx = g(1) = \frac{4}{3} - \frac{2}{3}\sqrt{2}$$

20.5 c) On a
$$\int_{-\frac{1}{3}}^{\frac{1}{2}} f(x) dx = \int_{-\frac{1}{3}}^{0} f(x) dx + \int_{0}^{\frac{1}{2}} f(x) dx = g\left(\frac{1}{2}\right) - g\left(-\frac{1}{2}\right) = \frac{5\sqrt{2} - 3\sqrt{6}}{6}$$
.

20.5 d) Pour
$$x > -1$$
, on a $g'(x) = \frac{2}{3}\sqrt{1+x} + \frac{2x-4}{6\sqrt{1+x}} = \frac{x}{\sqrt{1+x}}$.

20.5 e) Oui, car
$$g(0) = 0$$
 et, pour tout $x > -1$, on a $g'(x) = f(x)$.

Ceci n'est bien entendu pas un hasard puisque, pour toute fonction continue f définie sur un intervalle I et pour tout élément a de I, l'application g définie sur I par $g(x) = \int_{a}^{x} f(t) dt$ est l'unique primitive de f qui s'annule en a.

20.6 a) Par intégration par parties, on a

$$F(x) = \int_{1}^{x} f(t) dt = 2\ln(x)\sqrt{x} - \int_{1}^{x} \frac{2\sqrt{t}}{t} dt = 2(\ln(x) - 2)\sqrt{x} + 4.$$

20.6 b) On a
$$\int_a^b \frac{\ln(x)}{\sqrt{x}} dx = F(b) - F(a) = 2(\ln(b) - 2)\sqrt{b} - 2(\ln(a) - 2)\sqrt{a}$$
.

20.7 a) Les applications $x \mapsto x - a$ et $x \mapsto \ln(x - a)$ sont dérivables et de dérivées continues respectivement égales à $x \mapsto 1$ et $x \mapsto \frac{1}{x - a}$ sur $]a, +\infty[$. Ainsi, une intégration par parties donne, pour x > a:

$$F_a(x) = \int_{a+1}^x f_a(t) dt = (x-a) \ln(x-a) - \int_{a+1}^x dt = (x-a) \ln(x-a) - (x-a-1).$$

20.7 b) On a
$$\int_{2}^{3} f_a(x) dx = F_a(3) - F_a(2) = (3-a)\ln(3-a) - (2-a)\ln(2-a) - 1$$
.

20.7 c) Pour
$$x$$
 dans $[2,3]$, on a $x^2 - 1 = (x-1)(x+1)$ et $\ln(x^2 - 1) = (x+1) + (x-1)$. On a donc $\int_2^3 \ln(x^2 - 1) dx = \int_2^3 \ln(x+1) dx + \int_2^3 \ln(x-1) dx = I_{-1} + I_1 = 10 \ln(2) - 3 \ln(3) - 2$.

238

20.8 a) On a, en posant $u(x) = x^2 + 1$ et $v(x) = e^x$,

$$\int_{2}^{0} (x^{2} + 1) e^{x} dx = \int_{2}^{0} u(x)v''(x) dx = \left[u(x)v'(x) \right]_{2}^{0} - \int_{2}^{0} u'(x)v'(x) dx$$

$$= \left[u(x)v'(x) \right]_{2}^{0} - \left(\left[u'(x)v(x) \right]_{2}^{0} - \int_{2}^{0} u''(x)v(x) dx \right)$$

$$= \left[u(x)v'(x) - u'(x)v(x) \right]_{2}^{0} + \int_{2}^{0} u''(x)v(x) dx$$

$$= \left[(x^{2} + 1)e^{x} - 2xe^{x} \right]_{2}^{0} + \int_{2}^{0} 2e^{x} dx = 1 - e^{2} + 2(1 - e^{2}) = 3 - 3e^{2}.$$

20.8 b) On a, en posant $u(x) = (x-1)^2$ et $v(x) = \frac{1}{4}e^{2x}$,

$$\int_{1}^{2} (x^{2} - 2x + 1) e^{2x} dx = \int_{1}^{2} u(x)v''(x) dx = \left[u(x)v'(x) - u'(x)v(x) \right]_{1}^{2} + \int_{1}^{2} u''(x)v(x) dx$$
$$= \left[\frac{(x - 1)^{2}e^{2x}}{2} - \frac{(x - 1)e^{2x}}{2} \right]_{1}^{2} + \int_{1}^{2} \frac{e^{2x}}{2} dx = \frac{e^{4} - e^{2}}{4}.$$

20.9 a) On a, en posant $u(x) = (x+1)^4$ et $v(x) = e^{-x}$.

$$\int_{-1}^{1} (x^{2} + 2x + 1)^{2} e^{-x} dx = \int_{-1}^{1} u(x)v^{(4)}(x) dx = \left[u(x)v^{(3)}(x) \right]_{-1}^{1} - \int_{-1}^{1} u'(x)v^{(3)}(x) dx$$

$$= \left[u(x)v^{(3)}(x) - u'(x)v''(x) \right]_{-1}^{1} + \int_{-1}^{1} u''(x)v''(x) dx$$

$$= \left[u(x)v^{(3)}(x) - u'(x)v''(x) + u''(x)v'(x) \right]_{-1}^{1} - \int_{-1}^{1} u^{(3)}(x)v'(x) dx$$

$$= \left[u(x)v^{(3)}(x) - u'(x)v''(x) + u''(x)v'(x) - u^{(3)}(x)v(x) \right]_{-1}^{1} + \int_{-1}^{1} u^{(4)}(x)v(x) dx$$

$$= \left[-(x+1)^{4}e^{-x} - 4(x+1)^{3}e^{-x} - 12(x+1)^{2}e^{-x} - 24(x+1)e^{-x} \right]_{-1}^{1} + \int_{-1}^{1} 24e^{-x} dx$$

$$= 24e - 168e^{-1}.$$

20.9 b) On a, en posant $u(x) = x^3 - 2x + 1$ et $v(x) = 8e^{\frac{x}{2}}$,

$$\int_{-1}^{0} (x^{2} + 2x + 1)^{2} e^{-x} dx = \int_{-1}^{0} u(x)v^{(3)}(x) dx = \left[u(x)v''(x) \right]_{-1}^{0} - \int_{-1}^{0} u'(x)v''(x) dx$$

$$= \left[u(x)v''(x) - u'(x)v'(x) \right]_{-1}^{0} + \int_{-1}^{0} u''(x)v'(x) dx$$

$$= \left[u(x)v''(x) - u'(x)v'(x) + u''(x)v(x) \right]_{-1}^{0} - \int_{-1}^{0} u^{(3)}(x)v(x) dx$$

$$= \left[2(x^{3} - 2x + 1)e^{\frac{x}{2}} - 4(3x^{2} - 2)e^{\frac{x}{2}} + 48xe^{\frac{x}{2}} \right]_{-1}^{0} - \int_{-1}^{0} 48e^{\frac{x}{2}} dx = 144e^{-\frac{1}{2}} - 86.$$

20.10 a) On a

$$J_{n+1} = \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} \, \mathrm{d}x = \int_0^1 \frac{x^2+1-1}{(1+x^2)^{n+1}} \, \mathrm{d}x = \int_0^1 \frac{1}{(1+x^2)^n} \, \mathrm{d}x - \int_0^1 \frac{1}{(1+x^2)^{n+1}} \, \mathrm{d}x = I_n - I_{n+1}.$$

.....

20.10 b) Les applications $x \mapsto x$ et $x \mapsto \frac{1}{(1+x^2)^n}$ sont dérivables et de dérivées continues respectivement égales à $x \mapsto 1$ et $x \mapsto -\frac{2nx}{(1+x^2)^{n+1}}$ sur [0,1]. Ainsi, une intégration par parties donne

$$I_n = \int_0^1 \frac{1}{(1+x^2)^n} \, \mathrm{d}x = \left[\frac{x}{(1+x^2)^n} \right]_0^1 + \int_0^1 \frac{2nx^2}{(1+x^2)^{n+1}} \, \mathrm{d}x = \frac{1}{2^n} + 2nJ_{n+1}.$$

20.10 c) Sachant que $J_{n+1} = I_n - I_{n+1}$, on obtient $I_n = \frac{1}{2^n} + 2nJ_{n+1} = \frac{1}{2^n} + 2n(I_n - I_{n+1})$. Ce qui donne $I_{n+1} = \frac{1}{n2^{n+1}} + \frac{2n-1}{2n}I_n$.

20.10 d) Comme
$$I_1 = \frac{\pi}{4}$$
, on trouve $I_2 = \frac{1}{2^2} + \frac{1}{2}I_1 = \frac{\pi+2}{8}$. Puis $I_3 = \frac{1}{2 \times 2^3} + \frac{3}{4}I_2 = \frac{3\pi+8}{32}$.

20.10 e) Comme
$$I_3 = \frac{3\pi + 8}{32}$$
, on trouve $I_4 = \frac{1}{3 \times 2^4} + \frac{5}{6}I_3 = \frac{15\pi + 44}{192}$.

20.11 Les applications $x \mapsto x - 1$ et $x \mapsto \ln(1 + \sqrt{x})$ sont dérivables et de dérivées continues respectivement égales à $x \mapsto 1$ et $x \mapsto \frac{1}{2\sqrt{x}(1+\sqrt{x})}$ sur $]0, +\infty[$. Ainsi, pour x dans $]0, +\infty[$, une intégration par parties donne

$$\begin{split} F(x) &= \int_{1}^{x} f(t) \, \mathrm{d}t = \int_{1}^{x} \ln \left(1 + \sqrt{t} \right) \, \mathrm{d}t = \left[(t-1) \ln \left(1 + \sqrt{t} \right) \right]_{1}^{x} - \int_{1}^{x} \frac{t-1}{2\sqrt{t} \left(1 + \sqrt{t} \right)} \, \mathrm{d}t \\ &= (x-1) \ln \left(1 + \sqrt{x} \right) - \int_{1}^{x} \frac{\left(\sqrt{t} - 1 \right) \left(\sqrt{t} + 1 \right)}{2\sqrt{t} \left(1 + \sqrt{t} \right)} \, \mathrm{d}t \\ &= (x-1) \ln \left(1 + \sqrt{x} \right) - \frac{1}{2} \int_{1}^{x} \left(1 - \frac{1}{\sqrt{t}} \right) \mathrm{d}t = (x-1) \ln \left(1 + \sqrt{x} \right) - \frac{1}{2} (x-2\sqrt{x} + 1). \end{split}$$

20.12 a) Pour x dans]0,1], on a $f_{n,0}(x) = \int_x^1 t^n dt = \left[\frac{t^{n+1}}{n+1}\right]_x^1 = \frac{1}{n+1} - \frac{x^{n+1}}{n+1}$. D'où,

$$I_{n,0} = \lim_{x \to 0} f_{n,p}(x) = \lim_{x \to 0} \left(\frac{1}{n+1} - \frac{x^{n+1}}{n+1} \right) = \frac{1}{n+1}.$$

20.12 b) Pour x dans]0,1], on calcule $f_{n,p}(x)$ à l'aide d'une intégration par parties dans laquelle on dérive la partie logarithmique et on intègre la partie polynomiale. On a donc

$$f_{n,p}(x) = \int_x^1 t^n (\ln(t))^p dt = \left[\frac{t^{n+1}}{n+1} (\ln(t))^p \right]_x^1 - \int_x^1 \frac{t^{n+1}}{n+1} \frac{p(\ln(t))^{p-1}}{t} dt = -\frac{x^{n+1}}{n+1} (\ln(x))^p - \frac{p}{n+1} f_{n,p-1}(x).$$

D'où, par passage à la limite lorsque x tend vers $0: I_{n,p} = -\frac{p}{n+1}I_{n,p-1}$.

20.12 c) Par une récurrence sur l'entier naturel p, on a $I_{n,p} = (-1)^p \frac{p!}{(n+1)^{p+1}}$. Montrons-le.

- En effet, cette expression est vraie pour p=0, puisque $I_{n,0}=\frac{1}{n+1}=(-1)^0\frac{0!}{(n+1)^{0+1}}$.
- De plus, si $I_{n,p-1} = (-1)^{p-1} \frac{(p-1)!}{(n+1)^p}$, alors $I_{n,p} = -\frac{p}{n+1} I_{n,p-1} = (-1)^p \frac{p!}{(n+1)^{p+1}}$, car $p! = p \times (p-1)!$.

Fiche nº 21. Intégration des fonctions trigonométriques

Réponses

Réponses		
21.1 a) $(2x+1)(2x-3)$	21.5 c) $-\frac{1}{3\pi}$	21.10 a) $\boxed{\frac{e^{\frac{\pi}{2}} - 1}{2}}$
21.1 b) $2(x-1)(-x+7)$ 21.1 c) $(x-3)^2$	21.5 d) $\frac{3}{2\pi} + \frac{7\pi}{12}$	21 10 b) $e^{\frac{\pi}{2}+1}$
21.1 d) $3xe^{x}(e^{x^{2}} - 2x)$	21.6 a) $\frac{\sqrt{2}}{2}$	$\begin{array}{c c} & 2 \\ \hline 1 + 2e^{\pi} \end{array}$
21.2 a)		$\begin{array}{c c} 0 & \\ 2 & 2e^{-\frac{\pi}{2}} \end{array}$
21.2 b)	21.6 b) $\frac{1}{4}$	13
$21.2 \text{ c}) \dots \left[5 \sin \left(-x + \frac{\pi}{7} \right) \right]$	21.6 c)	21.11 a)
21.2 d)	21.6 d) $\frac{1}{3}$	21.11 b)
21.3 b)	21.6 e)	21.11 d) $\frac{1}{2} \times \frac{\pi}{2}$
21.3 d)	21.6 f) $\frac{1}{2}$	
21.4 a)	21.7 a) $\cos(1) - \cos(e)$ 21.7 b) $e-1$	21.11 e) $\left[\frac{2}{3} \times 1\right]$
21.4 b)	21.7 c) $\left[\frac{e - e^{-2}}{6} \right]$	$21.11 \text{ f)} \dots \qquad \left[\frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} \right]$
21.4 d) $\sqrt{2}$	21.7 d) $ \frac{\sin(e) - \sin(1)}{2} $	$21.11 \text{ g}) \dots \qquad \boxed{\frac{4}{5} \times \frac{2}{3} \times 1}$
$\sqrt{2}+1$	21.8 e	21.11 h) $\left[\prod_{k=1}^{n} \frac{2k}{2k+1} \right]$
2	21.9 a) $\frac{\pi - 2}{2}$	21.11 ;) $4^n(n!)^2$
21.4 f) $\frac{\sqrt{2} - \sqrt{3}}{2}$	21.9 b)	(2n+1)!
21.5 a) $2-\pi$	21.9 c) $ \frac{\pi^2}{4} - 2 $	21.11 j) $\left[\frac{\pi}{2} \prod_{k=1}^{n} \frac{2k-1}{2k}\right]$
21.5 b) $\left[-\frac{2}{3} \right]$	21.9 d)	21.11 k) $\boxed{\frac{\pi}{2} \frac{(2n)!}{4^n (n!)^2}}$

Corrigés

21.1 b) On a

$$(x-1)^2 + (3-3x)(x-5) = (x-1)^2 - 3(x-1)(x-5) = (x-1)(x-1-3(x-5))$$
$$= (x-1)(-2x+14) = 2(x-1)(-x+7).$$

21.1 d) On a $3xe^{x+x^2} - 6x^2e^x = 3xe^xe^{x^2} - 3 \times 2x \times xe^x = 3xe^x(e^{x^2} - 2x)$.

21.2 b) Pour tout $x \in \mathbb{R}$, $f(x) = -u(x)^2$ où u(x) = (1-x). Les fonctions u et f sont dérivables en tant que

Pour tout $x \in \mathbb{R}$, $f(x) = -u(x)^2$ où u(x) = (1-x). Les fonctions u et f sont dérivables en tant que fonctions polynomiales et on a u'(x) = -1, donc f'(x) = -2u(x)u'(x) = 2(1-x).

21.3 c) On a
$$\int_0^{\pi} (\cos(t) - \sin(t)) dt = \left[\sin(t) + \cos(t) \right]_0^{\pi} = 0 - 1 - (0 + 1) = -2.$$

21.4 d) On a

$$\begin{split} \int_{\frac{\pi}{6}}^{2\pi + \frac{\pi}{3}} \sin(t) \, \mathrm{d}t &= \left[-\cos(t) \right]_{\frac{\pi}{6}}^{2\pi + \frac{\pi}{3}} = -\cos\left(2\pi + \frac{\pi}{3}\right) - \left(-\cos\left(\frac{\pi}{6}\right) \right) \\ &= -\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{6}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3} - 1}{2}. \end{split}$$

21.4 f) On a

$$\int_{-\frac{9\pi}{4}}^{\frac{25\pi}{6}} \sin(t) \, \mathrm{d}t = \left[-\cos(t) \right]_{-\frac{9\pi}{4}}^{\frac{25\pi}{6}} = -\cos\left(4\pi + \frac{\pi}{6}\right) + \cos\left(-2\pi - \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2} - \sqrt{3}}{2}.$$

21.5 c) On a

$$\int_{-\frac{1}{6}}^{1} \cos\left(3\pi t + \frac{\pi}{2}\right) dt = \left[\frac{\sin\left(3\pi t + \frac{\pi}{2}\right)}{3\pi}\right]_{-\frac{1}{6}}^{1} = \frac{1}{3\pi} \left(\sin\left(3\pi + \frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2} + \frac{\pi}{2}\right)\right) = \frac{1}{3\pi} (-1 - 0) = -\frac{1}{3\pi}.$$

21.5 d) On a

$$\int_{-\frac{1}{6}}^{1} \left(3\cos(\pi t) + \frac{\pi}{2} \right) dt = 3 \int_{-\frac{1}{6}}^{1} \cos(\pi t) dt + \frac{\pi}{2} \int_{-\frac{1}{6}}^{1} dt = 3 \left[\frac{\sin(\pi t)}{\pi} \right]_{-\frac{1}{6}}^{1} + \frac{\pi}{2} \left(1 - \left(-\frac{1}{6} \right) \right)$$
$$= 3 \frac{\sin(\pi) - \sin(-\frac{\pi}{6})}{\pi} + \frac{\pi}{2} \frac{7}{6} = \frac{3}{2\pi} + \frac{7\pi}{12}.$$

21.6 a) On pose, pour tout $t \in \mathbb{R}$, $u(t) = t^2$, alors u'(t) = 2t. On a donc

$$\int_0^{\frac{\sqrt{\pi}}{2}} 2t \cos(t^2) dt = \int_0^{\frac{\sqrt{\pi}}{2}} u'(t) \cos(u(t)) dt = \left[\sin(u(t)) \right]_0^{\frac{\sqrt{\pi}}{2}} = \sin\left(\left(\frac{\sqrt{\pi}}{2}\right)^2\right) - \sin(0^2) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.$$

21.6 c) On pose, pour tout $t \in \mathbb{R}$, $u(t) = \sin(3t)$, alors $u'(t) = 3\cos(3t)$. On a done

$$\int_0^{\frac{\pi}{6}} \sin(3t)\cos(3t) dt = \frac{1}{3} \int_0^{\frac{\pi}{6}} u(t)u'(t) dt = \frac{1}{3} \left[\frac{(u(t))^2}{2} \right]_0^{\frac{\pi}{6}} = \frac{\sin^2(\frac{\pi}{2}) - \sin^2(0)}{6} = \frac{1}{6}.$$

21.6 f) On pose, pour tout $t \in \mathbb{R}$, $u(t) = \cos(t)$, alors $u'(t) = -\sin(t)$. On a donc

$$\int_0^{\frac{\pi}{4}} \frac{\sin(t)}{\cos^3(t)} dt = -\int_0^{\frac{\pi}{4}} u'(t)(u(t))^{-3} dt = -\left[\frac{(u(t))^{-2}}{-2}\right]_0^{\frac{\pi}{4}} = \frac{1}{2} \left(\frac{1}{\cos^2(\frac{\pi}{4})} - \frac{1}{\cos^2(0)}\right) = \frac{1}{2}(2-1) = \frac{1}{2}.$$

21.7 c) On pose, pour tout $t \in \mathbb{R}$, $u(t) = -3\sin(2t) + 1$, alors $u'(t) = -6\cos(2t)$. On a donc

$$\int_0^{\frac{\pi}{4}} e^{-3\sin(2t)+1}\cos(2t) dt = -\frac{1}{6} \left[e^{u(t)} \right]_0^{\frac{\pi}{4}} = -\frac{1}{6} \left(e^{-3\sin(\frac{\pi}{2})+1} - e^{-3\sin(0)+1} \right) = \frac{e - e^{-2}}{6}.$$

21.7 d) On pose, pour tout $t \in \mathbb{R}$, $u(t) = e^{t^2}$, alors $u'(t) = e^{t^2} \times 2t$. On a donc

$$\int_0^1 t e^{t^2} \cos(e^{t^2}) dt = \frac{1}{2} \int_0^1 \cos(u(t)) u'(t) dt = \frac{1}{2} \left[\sin(u(t)) \right]_0^1 = \frac{1}{2} (\sin(e^{t^2}) - \sin(e^{t^2})) = \frac{\sin(e) - \sin(t)}{2}.$$

21.8 On pose, pour tout $t \in \mathbb{R}$, $u(t) = \sin(t)$, alors $u'(t) = \cos(t)$. On a donc

$$\int_0^{\frac{\pi}{2}} \cos(t) \sin^n(t) dt = \int_0^{\frac{\pi}{2}} (u(t))^n u'(t) dt = \left[\frac{(u(t))^{n+1}}{n+1} \right]_0^{\frac{\pi}{2}} = \frac{\sin^{n+1}(\frac{\pi}{2}) - \sin^{n+1}(0)}{n+1} = \frac{1}{n+1}.$$

21.9 b) On pose, pour tout $t \in \mathbb{R}$, u(t) = t et $v'(t) = \sin(t)$, alors u'(t) = 1 et $v(t) = -\cos(t)$. En intégrant par parties, on obtient

$$\int_0^{\frac{\pi}{2}} t \sin(t) dt = \left[t(-\cos(t)) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 1 \times (-\cos(t)) dt = 0 - 0 + \left[\sin(t) \right]_0^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1.$$

21.9 c) On pose, pour tout $t \in \mathbb{R}$, $u(t) = t^2$ et $v'(t) = \cos(t)$, alors u'(t) = 2t et $v(t) = \sin(t)$. En intégrant par parties, on obtient

$$\int_0^{\frac{\pi}{2}} t^2 \cos(t) dt = \left[t^2 \sin(t) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2t \sin(t) dt = \left(\frac{\pi}{2} \right)^2 - 0 - 2 \int_0^{\frac{\pi}{2}} t \sin(t) dt.$$

D'après la question précédente, $\int_0^{\frac{\pi}{2}} t \sin(t) dt = 1$, donc $\int_0^{\frac{\pi}{2}} t^2 \cos(t) dt = \frac{\pi^2}{4} - 2$. Si la question précédente n'avait pas été là, nous aurions enchaîné deux intégrations par parties.

21.10 d) Notons l'intégrale à calculer $I = \int_0^{\frac{\pi}{6}} e^{-2t} \sin(3t) dt$.

On pose, pour tout $t \in \mathbb{R}$, $u(t) = e^{-2t}$ et $v'(t) = \sin(3t)$, alors $u'(t) = -2e^{-2t}$ et $v(t) = -\frac{\cos(3t)}{3}$.

En intégrant par parties, on obtient

$$I = \left[e^{-2t} \left(-\frac{\cos(3t)}{3} \right) \right]_0^{\frac{\pi}{6}} - \int_0^{\frac{\pi}{6}} -2e^{-2t} \left(-\frac{\cos(3t)}{3} \right) dt = -\frac{1}{3} (0-1) - \frac{2}{3} \int_0^{\frac{\pi}{6}} e^{-2t} \cos(3t) dt$$
$$= \frac{1}{3} - \frac{2}{3} \int_0^{\frac{\pi}{6}} e^{-2t} \cos(3t) dt.$$

Une autre intégration par parties avec $a(t) = e^{-2t}$, $b'(t) = \cos(3t)$, $a'(t) = -2e^{-2t}$, $b(t) = \frac{\sin(3t)}{3}$ donne

$$\int_0^{\frac{\pi}{6}} e^{-2t} \cos(3t) dt = \left[e^{-2t} \frac{\sin(3t)}{3} \right]_0^{\frac{\pi}{6}} - \int_0^{\frac{\pi}{6}} -2e^{-2t} \frac{\sin(3t)}{3} dt$$
$$= \frac{1}{3} (e^{-\frac{\pi}{3}} - 0) + \frac{2}{3} \int_0^{\frac{\pi}{6}} e^{-2t} \sin(3t) dt = \frac{e^{-\frac{\pi}{3}}}{3} + \frac{2}{3} I.$$

 $\text{En regroupant les deux calculs, on obtient } I = \frac{1}{3} - \frac{2}{3} \left(\frac{\mathrm{e}^{-\frac{\pi}{3}}}{3} + \frac{2}{3} I \right) = \frac{1}{3} - \frac{2\mathrm{e}^{-\frac{\pi}{3}}}{9} - \frac{4}{9} I, \text{ donc } I + \frac{4}{9} I = \frac{1}{3} - \frac{2\mathrm{e}^{-\frac{\pi}{3}}}{9}, \\ \mathrm{donc } \ \frac{13}{9} I = \frac{1}{3} - \frac{2\mathrm{e}^{-\frac{\pi}{3}}}{9}, \text{ d'où } I = \frac{9}{13} \left(\frac{1}{3} - \frac{2\mathrm{e}^{-\frac{\pi}{3}}}{9} \right) = \frac{1}{13} (3 - 2\mathrm{e}^{-\frac{\pi}{3}}) = \frac{3 - 2\mathrm{e}^{-\frac{\pi}{3}}}{13}.$

21.11 c) On pose, pour tout $t \in \mathbb{R}$, $u(t) = \cos^{n+1}(t)$ et $v'(t) = \cos(t)$, alors $u'(t) = (n+1)\cos^{n}(t)(-\sin(t))$ et $v(t) = \sin(t)$. En intégrant par parties, on obtient

$$I_{n+2} = \int_0^{\frac{\pi}{2}} \cos^{n+1}(t) \cos(t) dt = \left[\cos^{n+1}(t) \sin(t) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (n+1) \cos^n(t) (-\sin(t)) \sin(t) dt$$
$$= (n+1) \int_0^{\frac{\pi}{2}} \cos^n(t) \sin^2(t) dt.$$

Or, pour tout $t \in \mathbb{R}$, $\cos^2(t) + \sin^2(t) = 1$, donc

$$I_{n+2} = (n+1) \int_0^{\frac{\pi}{2}} \cos^n(t) (1 - \cos^2(t)) dt = (n+1) \left(\int_0^{\frac{\pi}{2}} \cos^n(t) dt - \int_0^{\frac{\pi}{2}} \cos^{n+2}(t) dt \right)$$
$$= (n+1)(I_n - I_{n+2}).$$

Donc $I_{n+2} + (n+1)I_{n+2} = (n+1)I_{n+1}$, d'où $(n+2)I_{n+2} = (n+1)I_n$, donc $I_{n+2} = \frac{n+1}{n+2}I_n$.

21.11 f) D'après le résultat de la question c), on a $I_4 = \frac{3}{4}I_2 = \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2}$.

21.11 g) D'après le résultat de la question c), on a $I_5 = \frac{4}{5}I_3 = \frac{4}{5} \times \frac{2}{3} \times 1$.

21.11 h) À l'aide des résultats des questions e) et g), on conjecture que

$$I_{2n+1} = \frac{2n}{2n+1} \times \frac{2n-2}{2n-1} \times \frac{2n-4}{2n-3} \times \dots \times \frac{4}{5} \times \frac{2}{3} \times 1 = \prod_{k=1}^{n} \frac{2k}{2k+1}.$$

Le résultat se prouve alors par récurrence.

21.11 i) L'idée est de compléter le dénominateur avec le produit des nombres pairs de 2 à 2n afin d'obtenir $1 \times 2 \times \cdots \times 2n \times (2n+1) = (2n+1)!$, ce qui donne

$$I_{2n+1} = \prod_{k=1}^{n} \frac{2k}{2k+1} = \prod_{k=1}^{n} \left(\frac{2k}{2k+1} \times \frac{2k}{2k} \right) = \prod_{k=1}^{n} \frac{4k^2}{2k(2k+1)} = \frac{4^n}{(2n+1)!} \prod_{k=1}^{n} k^2 = \frac{4^n (n!)^2}{(2n+1)!}$$

21.11 j) À l'aide des résultats des questions d) et f), on conjecture que

$$I_{2n} = \frac{2n-1}{2n} \times \frac{2n-3}{2n-2} \times \frac{2n-5}{2n-4} \times \dots \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{2} \prod_{k=1}^{n} \frac{2k-1}{2k}.$$

Le résultat se prouve alors par récurrence.

21.11 k) L'idée est de compléter le numérateur avec le produit des nombres pairs de 2 à 2n afin d'obtenir $1 \times 2 \times \cdots \times (2n-1) \times 2n = (2n)!$, ce qui donne

$$I_{2n} = \frac{\pi}{2} \prod_{k=1}^{n} \frac{2k-1}{2k} = \frac{\pi}{2} \prod_{k=1}^{n} \left(\frac{2k-1}{2k} \times \frac{2k}{2k} \right) = \frac{\pi}{2} \prod_{k=1}^{n} \frac{(2k-1)2k}{4k^2} = \frac{\pi}{2} \frac{(2n)!}{4^n (n!)^2}.$$

Fiche nº 22. Cardinaux et coefficients binomiaux

Réponses

Réponses		
22.1 a) $-\frac{15}{2}$	22.7 a) $ -\frac{1}{30} $	22.12 $\binom{5}{3} = 10$
22.1 b)	22.7 b)	22.13 a) $\binom{52}{5}$
22.1 c) $ \frac{5}{2} $	22.7 c) $ \frac{17}{120} $	22.13 b)
22.2 a)	22.8 a) $n(n+1)(n+2)$	
22.2 b) $3\sqrt{5}$	22.8 b) $2(n+1)(2n+1)$	22.13 c) $\binom{12}{5}$
22.2 c)	22.8 c) $ \frac{n-1}{n+2} $	22.13 d) $ \boxed{ \begin{pmatrix} 13 \\ 2 \end{pmatrix} \begin{pmatrix} 13 \\ 1 \end{pmatrix} \begin{pmatrix} 13 \\ 2 \end{pmatrix} } $
22.2 d) $12\sqrt{3}$		
22.3 a)	22.9 a) $\left\lfloor \frac{n}{(n+1)!} \right\rfloor$	22.13 e) $\binom{13}{1}\binom{39}{4}$
22.3 b)	22.9 b)	22.13 f)
22.4 a)	22.9 c) $ \frac{-1}{n(n+1)(n+1)!} $	
22.4 b)	n(n+1)(n+1)!	$\left \begin{pmatrix} 52 \\ 5 \end{pmatrix} - 2 \begin{pmatrix} 48 \\ 5 \end{pmatrix} \right $
22.4 c)	22.9 d) $\left(\frac{n}{n+1}\right)^n$	22.13 g)
22.5 b)	22.10 a)	(26)
22.5 c)	22.10 b) 9	$1 \times 3 \times 12 \binom{36}{2}$
22.5 d)	22.10 c)	22.13 h) $+\binom{3}{2}\binom{12}{2}\binom{36}{1}$
22.5 e)	22.10 d)	
22.5 f)	22.10 e)	22.14 a)
22.5 g)	22.10 f)	22.14 b) $\binom{5}{2}\binom{3}{2} = 30$
22.5 h)	22.11 a) $\boxed{\frac{n(n^2 - 3n + 8)}{6}}$	(11) (7) (0)
22.6 a)		22.15 a) $\begin{pmatrix} 11 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
22.6 b)	22.11 b) $\binom{n+1}{3}$	(1) (1) (2)
22.6 c)	22.11 c)	22.15 b) . $\begin{pmatrix} 11 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
22.6 d)		22.16 voir corrigé
22.6 e)	22.11 d) $\left\lfloor \frac{2(2n+1)}{n+1} \right\rfloor$	22.17 a) $(2n+1)$
22.6 f)		22.17 a) $\frac{2n+1}{2(n+1)}$

Corrigés

22.1 a) Puisque
$$\frac{1}{5} - \frac{7}{15} = \frac{3-7}{15} = -\frac{4}{15}$$
, on a $\frac{2}{\frac{1}{5} - \frac{7}{15}} = -2 \times \frac{15}{4} = -\frac{15}{2}$.

22.1 b) On a
$$\frac{\frac{2}{3} - \frac{1}{6}}{\frac{3}{5} - \frac{1}{6}} = \frac{\frac{4-1}{6}}{\frac{18-5}{30}} = \frac{1}{2} \times \frac{30}{13} = \frac{15}{13}.$$

22.1 c) On a
$$\frac{2-\frac{3}{7}}{\frac{1}{5}+\frac{3}{7}} = \frac{\frac{14-3}{7}}{\frac{7+15}{35}} = \frac{11}{7} \times \frac{35}{22} = \frac{5}{2}$$
.

22.2 a) On a
$$\sqrt{32} = \sqrt{2 \times 4^2} = 4\sqrt{2}$$
.

22.2 b) On a
$$\sqrt{45} = \sqrt{5 \times 3^2} = 3\sqrt{5}$$
.

22.2 c) On a
$$\sqrt{1200} = \sqrt{3 \times 20^2} = 20\sqrt{3}$$
.

22.2 d) On a
$$432 = 2^4 \times 3^3$$
, donc $\sqrt{432} = \sqrt{4^2 \times 3^2 \times 3} = 4 \times 3 \times \sqrt{3} = 12\sqrt{3}$.

22.3 b) On a
$$Card(A \cap B) = Card(A) + Card(B) - Card(A \cup B) = 7 + 8 - 12 = 3$$
.

22.3 c) On a
$$Card(B) = Card(A \cup B) + Card(A \cap B) - Card(A) = 8 + 2 - 3 = 7.$$

22.4 a) D'après la formule d'inclusion-exclusion, on a

$$8 = \operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B) = 3\operatorname{Card}(A) - 4 \quad \operatorname{donc} \quad \operatorname{Card}(A) = \frac{8+4}{3} = 4.$$

.....

.....

.....

22.4 b) D'après la formule d'inclusion-exclusion, on a

$$13 = \mathsf{Card}(A \cup B) = \mathsf{Card}(A) + \mathsf{Card}(B) - \mathsf{Card}(A \cap B) = 3 + \mathsf{Card}(B) - 1 \quad \mathsf{donc} \quad \mathsf{Card}(B) = 11.$$

22.4 c) D'après la formule d'inclusion-exclusion, on a

$$9 = \mathsf{Card}(A \cup B) = \mathsf{Card}(A) + \mathsf{Card}(B) - \mathsf{Card}(A \cap B) = 2\,\mathsf{Card}(B) - 5 - 2$$

d'où
$$\operatorname{\mathsf{Card}}(B) = \frac{9+7}{2} = 8$$
 et par suite $\operatorname{\mathsf{Card}}(A) = \operatorname{\mathsf{Card}}(B) - 5 = 3$.

- **22.5** h) Attention! Par convention, on a 0! = 1. Grâce à cette convention, on a $1! = 1 \times 0!$
- **22.6** a) Par définition de la factorielle, on a $\frac{5!}{3!} = \frac{5 \times 4 \times 3!}{3!} = 5 \times 4 = 20$.
- **22.6** b) Par définition de la factorielle, on a $\frac{101!}{99!} = \frac{101 \times 100 \times 99!}{99!} = 101 \times 100 = 10 \ 100.$
- **22.6** c) Par définition de la factorielle et sachant que 3! = 6, on a $\frac{7!}{3!^2} = \frac{7 \times 6 \times 5 \times 4 \times 3!}{3!^2} = 7 \times 5 \times 4 = 140$.
- **22.6** d) Par définition de la factorielle, on a $\frac{3! \times 6!}{4! \times 5!} = \frac{3! \times 6 \times 5!}{4 \times 3! \times 5!} = \frac{6}{4} = \frac{3}{2}$.
- **22.6** e) Par définition de la factorielle, on a $4! 3! = 4 \times 3! 3! = (4 1)3! = 3 \times 6 = 18$.
- **22.6** f) Par définition de la factorielle, on a $7! 6! = 7 \times 6! 6! = (7 1)6! = 6 \times 720 = 4320$.
- **22.7** a) On commence ici par déterminer d'éventuels facteurs communs entre les dénominateurs afin de regrouper les fractions de façon optimale. En l'occurence $5! = 5 \times 4!$, ainsi

$$\frac{1}{5!} - \frac{1}{4!} = \frac{1-5}{5!} = \frac{-4}{5 \times 4 \times 3!} = -\frac{1}{5 \times 6} = -\frac{1}{30}.$$

22.7 b) Selon le même principe, ayant $4! = 1 \times 2 \times 3 \times 4 = 3 \times 2^3$, un dénominateur commun est 3×2^4 , d'où

$$\frac{3 \times 3!}{2^4} - \frac{5}{4!} = \frac{3^2 \times 6 - 2 \times 5}{3 \times 2^4} = \frac{2(27 - 5)}{3 \times 2^4} = \frac{22}{3 \times 2^3} = \frac{11}{12}$$

22.7 c) De la même façon, puisque $6! = 6 \times 5 \times 4!$, on a

$$\frac{7}{4!} - \frac{3 \times 3!^2}{6!} = \frac{7 \times 6 \times 5 - 3 \times 6^2}{6!} = \frac{6(35 - 18)}{6!} = \frac{17}{5!} = \frac{17}{120}.$$

22.8 a) Par définition de la factorielle et sachant $n \ge 1$, on a

$$\frac{(n+2)!}{(n-1)!} = \frac{(n+2)(n+1)n \times (n-1)!}{(n-1)!} = n(n+1)(n+2).$$

- **22.8** b) Par définition de la factorielle, on a $\frac{(2n+2)!}{(2n)!} = \frac{(2n+2)(2n+1)\times(2n)!}{(2n)!} = 2(n+1)(2n+1)$.
- **22.8** c) Par définition de la factorielle, on a $\frac{(n^2-1)n!}{(n+2)!} = \frac{(n-1)(n+1) \times n!}{(n+2)(n+1) \times n!} = \frac{n-1}{n+2}$.
- **22.9** a) Puisque $(n+1)! = (n+1) \times n!$, on $\frac{1}{n!} \frac{1}{(n+1)!} = \frac{n+1-1}{(n+1)!} = \frac{n}{(n+1)!}$.
- **22.9** b) Puisque $(n+1)! = (n+1) \times n!$ et $2^{2(n+1)} = 4 \times 2^{2n}$, on a

$$\frac{(n+1)!}{2^{2(n+1)}} - \frac{n!}{2^{2n}} = \frac{(n+1) \times n! - 4 \times n!}{2^{2(n+1)}} = \frac{(n-3)n!}{2^{2(n+1)}}.$$

22.9 c) Puisque $(n+1)! = (n+1) \times n!$, on a

$$\begin{split} \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{n \times n!} &= \frac{1}{(n+1) \times n!} + \frac{1}{(n+1)^2 \times n!} - \frac{1}{n \times n!} \\ &= \frac{n(n+1) + n - (n+1)^2}{n(n+1)^2 \times n!} \\ &= \frac{n^2 + n + n - \left(n^2 + 2n + 1\right)}{n(n+1) \times (n+1)!} = \frac{-1}{n(n+1)(n+1)!}. \end{split}$$

22.9 d) Pour tout $n \in \mathbb{N}$, on a

$$\frac{u_{n+1}}{u_n} = \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \frac{(n+1)!}{n!} \times \frac{n^n}{(n+1)^{n+1}} = \frac{(n+1) \times n!}{n!} \times \frac{n^n}{(n+1) \times (n+1)^n} = \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1}\right)^n.$$

22.10 a) Par définition, on a $\binom{4}{2} = \frac{4!}{2! \times (4-2)!} = \frac{4 \times 3 \times 2!}{2!^2} = \frac{4 \times 3}{2} = 6.$

On peut aussi retenir que, pour tout $n \geqslant 2$, on a $\binom{n}{2} = \frac{n(n-1)}{2}$. Ainsi, on a $\binom{4}{2} = \frac{4 \times 3}{2} = 6$.

Plus généralement, pour tout entier $k \in [1, n]$, $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$.

22.10 b) Par définition, on a
$$\binom{9}{8} = \frac{9!}{8! \times (9-8)!} = \frac{9 \times 8!}{8! \times 1!} = 9.$$

On peut aussi retenir que, pour tout $n \ge 1$, on a $\binom{n}{1} = \binom{n}{n-1} = n$. Ainsi, on a $\binom{9}{8} = 9$.

22.10 c) Par définition, on a
$$\binom{7}{3} = \frac{7!}{3!(7-3)!} = \frac{7 \times 6 \times 5 \times 4!}{3! \times 4!} = 7 \times 5 = 35.$$

22.10 d) Pour tout
$$n \in \mathbb{N}$$
, on a $\binom{n}{0} = \binom{n}{n} = 1$.

22.10 f) Par définition, on a
$$\binom{9}{3} = \frac{9!}{3!(9-3)!} = \frac{9 \times 8 \times 7 \times 6!}{3! \times 6!} = \frac{9 \times 8 \times 7}{3!} = 3 \times 4 \times 7 = 84.$$

22.11 a) Par définition, sachant $n \ge 3$, on a

$$\binom{n}{1} + \binom{n}{3} = n + \frac{n!}{3!(n-3)!} = n + \frac{n(n-1)(n-2) \times (n-3)!}{3!(n-3)!} = n + \frac{n(n-1)(n-2)}{3!}$$
$$= \frac{6n + n(n-1)(n-2)}{6} = \frac{n(6 + (n-1)(n-2))}{6} = \frac{n(n^2 - 3n + 8)}{6}.$$

22.11 b) On peut procéder comme à la question précédente. Toutefois ici il est plus intéressant de penser à la formule de Pascal, qui donne directement

$$\binom{n}{2} + \binom{n}{3} = \binom{n+1}{3} = \frac{n(n+1)(n-1)}{6}.$$

22.11 c) Comme on a
$$\binom{k}{1} = \binom{k}{k-1} = k$$
, pour tout $k \ge 1$, on a ici $\binom{n+1}{n} - \binom{n}{n-1} = (n+1) - n = 1$.

22.11 d) Par définition, on a

$$\begin{split} \frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} &= \frac{\frac{(2n+2)!}{(n+1)!^2}}{\frac{(2n)!}{n!^2}} \\ &= \frac{(2n+2)(2n+1)\times(2n)!}{((n+1)\times n!)^2} \times \frac{n!^2}{(2n)!} \\ &= \frac{2(n+1)(2n+1)}{(n+1)^2} \\ &= \frac{2(2n+1)}{n+1}. \end{split}$$

- **22.12** On dispose de cinq fruits, et on doit en choisir trois pour former une corbeille. Il s'agit donc de choisir 3 éléments dans un ensemble de cardinal 5, soit $\binom{5}{3} = 10$ choix.
- **22.13** a) On choisit cinq cartes parmi un ensemble de 52 cartes : il y a $\binom{52}{5}$ choix possibles.
- **22.13** b) Cinq cartes d'une même couleur s'obtiennent en choisissant :
- une couleur, soit 4 choix possibles;
- tine content, soit 4 choix possibles,
 cinq cartes parmi les treize cartes d'une même couleur, soit (13)/5 choix possibles.

Ainsi, le nombre total de possibilités est égal à $4 \times \begin{pmatrix} 13 \\ 5 \end{pmatrix}$.

- **22.13** c) Puisqu'il y a 12 figures dans le jeu, on obtient $\binom{12}{5}$ possibilités.
- **22.13** d) Pour obtenir une telle main, on choisit deux piques (on a $\binom{13}{2}$ choix), puis un cœur (on a $\binom{13}{1}$ choix) et enfin deux carreaux (on a $\binom{13}{2}$ choix). Ainsi, le nombre total de possibilités est égal à $\binom{13}{2}\binom{13}{1}\binom{13}{2}$.
- 22.13 e) Pour obtenir une telle main, on choisit
- une carte de trèfle : on a $\binom{13}{1}$ choix possibles;
- puis quatre cartes parmi les 52 13 = 39 cartes qui ne sont pas des trèfles : on a $\binom{39}{4}$ choix possibles;

Ainsi, le nombre total de possibilités est égal à $\binom{13}{1}\binom{39}{4}$.

22.13 f) Notons A l'ensemble des mains avec au moins un valet et Ω l'ensemble de toutes les mains possibles.

Commençons par déterminer le nombre de mains ne contenant aucun valet (c'est-à-dire le cardinal du complémentaire de A dans Ω). Une telle main s'obtient en choisissant cinq cartes parmi les 52-4=48 cartes qui ne sont pas des valets : on a $\binom{48}{5}$ possibilités. On a alors $\mathsf{Card}(A) = \mathsf{Card}(\Omega) - \mathsf{Card}(\bar{A}) = \binom{52}{5} - \binom{48}{5}$.

22.13 g) Notons B l'ensemble des mains avec au moins une dame, notons C l'ensemble des mains avec au moins un neuf, et notons Ω l'ensemble de toutes les mains possibles. Le nombre de mains recherché correspond alors à $Card(B \cap C)$. Or, on a

$$\mathsf{Card}(B\cap C) = \mathsf{Card}(\Omega) - \mathsf{Card}\big(\overline{B\cap C}\big) = \mathsf{Card}(\Omega) - \mathsf{Card}\big(\bar{B}\cup\bar{C}\big).$$

Or, la formule d'inclusion-exclusion donne

$$\mathsf{Card}ig(ar{B}\cupar{C}ig)=\mathsf{Card}ig(ar{B}ig)+\mathsf{Card}ig(ar{C}ig)-\mathsf{Card}ig(ar{B}\capar{C}ig).$$

On en déduit en combinant ces deux formules :

$$\mathsf{Card}(B\cap C) = \mathsf{Card}(\Omega) - \mathsf{Card}\left(\bar{B}\right) - \mathsf{Card}\left(\bar{C}\right) + \mathsf{Card}\left(\bar{B}\cap\bar{C}\right).$$

D'une part, comme à la question précédente, on obtient $\operatorname{\mathsf{Card}}(\bar{B}) = \operatorname{\mathsf{Card}}(\bar{C}) = \binom{48}{5}$.

D'autre part, un élément de $\bar{B} \cap \bar{C}$ est une main ne contenant ni dame ni neuf, ce qui revient à choisir cinq cartes parmi $44 \ (= 52 - 2 \times 4)$, et donc $\operatorname{Card}(\bar{B} \cap \bar{C}) = \binom{44}{5}$.

Au total, le nombre de mains avec au moins une dame et un neuf vaut $\operatorname{\mathsf{Card}}(B\cap C) = \binom{52}{5} - 2\binom{48}{5} + \binom{44}{5}$.

22.13 h) Notons D (respectivement E) l'ensemble des mains avec exactement deux rois et deux cœurs dont le roi de cœur (respectivement sans le roi de cœur), et encore Ω l'ensemble de toutes les mains possibles. Le nombre de mains recherché correspond alors à $\mathsf{Card}(D \cup E) = \mathsf{Card}(D) + \mathsf{Card}(E)$, car les ensembles D et E sont disjoints par construction. D'une part, pour obtenir une main avec exactement deux rois et deux cœurs dont le roi de cœur, on choisit :

• le roi de cœur, soit 1 choix possible;

250

- un autre roi parmi les 3 rois restants, soit 3 choix possibles;
- une autre carte de cœur parmi les 12 restantes, soit 12 choix possibles;
- deux autres cartes parmi les 36, qui ne sont ni un roi ni un cœur, soit $\binom{36}{2}$ choix possibles.

Au total, le nombre de possibilités est égal à $\operatorname{Card}(D) = 1 \times 3 \times 12 \binom{36}{2}$. D'autre part, de façon similaire, on a $\operatorname{Card}(E) = \binom{3}{2} \binom{12}{2} \binom{36}{1}$. Donc, le nombre cherché vaut $1 \times 3 \times 12 \binom{36}{2} + \binom{3}{2} \binom{12}{2} \binom{36}{1}$.

22.14 a) Le mot « MAISON » est formé de 6 lettres distinctes. Ainsi, se donner une anagramme de ce mot équivaut à se donner une permutation de ces 6 lettres. Il y a donc 6! anagrammes.

22.14 b) Le mot « RADAR » est un mot de cinq lettres formé de deux R, deux A et un D. Ainsi, pour se donner une anagramme du mot « RADAR », on peut :

- choisir la position des deux lettres R, parmi les cinq positions possibles, soit $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ choix;
- choisir la position des deux lettres A, parmi les trois positions possibles restantes, soit $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ choix;
- il reste alors une seule position possible pour placer la lettre D.

Au total, le nombre de possibilités est égal à $\binom{5}{2} \times \binom{3}{2} \times 1 = \frac{5 \times 4}{2} \times 3 \times 1 = 30.$

22.15 a) On commence par remarquer que le mot « MISSISSIPPI » est formé de onze lettres, dont quatre I, quatre S, deux P et un M. Ainsi, pour se donner une anagramme du mot « MISSISSIPPI », on peut :

- ullet choisir la position des quatre lettres I, parmi les onze positions possibles, soit $\begin{pmatrix} 11 \\ 4 \end{pmatrix}$ choix ;
- choisir la position des quatre lettres S, parmi les sept positions possibles restantes, soit $\binom{7}{4}$ choix;
- choisir la position des deux lettres P, parmi les trois positions possibles restantes, soit $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ choix;
- il reste alors une seule position possible pour placer la lettre M.

Au total, le nombre de possibilités est égal à $\binom{11}{4} \times \binom{7}{4} \times \binom{3}{2} \times 1 = 330 \times 35 \times 3 \times 1$.

22.15 b) On procède comme à la question précédente, en remarquant que le mot « ABRACADABRA » est formé de onze lettres, dont cinq A, deux B, deux R, un C et un D. Le nombre d'anagramme du mot « ABRACADABRA » vaut

$$\binom{11}{5}\binom{6}{2}\binom{4}{2}\binom{2}{1}\times 1=462\times 15\times 6\times 2\times 1.$$

22.16 D'après la formule d'inclusion-exclusion pour deux ensembles.

$$\mathsf{Card}(A \cup B \cup C) = \mathsf{Card}\Big((A \cup B) \cup C\Big) = \mathsf{Card}(A \cup B) + \mathsf{Card}(C) - \mathsf{Card}\Big((A \cup B) \cap C\Big).$$

Or, on a aussi

$$\mathsf{Card}(A \cup B) = \mathsf{Card}(A) + \mathsf{Card}(B) - \mathsf{Card}(A \cap B) \qquad \text{et} \qquad \mathsf{Card}\Big((A \cup B) \cap C\Big) = \mathsf{Card}\Big((A \cap C) \cup (B \cap C)\Big).$$

À nouveau, d'après la formule d'inclusion-exclusion pour deux ensembles,

$$\mathsf{Card}\Big((A\cap C)\cup (B\cap C)\Big) = \mathsf{Card}(A\cap C) + \mathsf{Card}(B\cap C) - \mathsf{Card}\Big((A\cap C)\cap (B\cap C)\Big)$$
$$= \mathsf{Card}(A\cap C) + \mathsf{Card}(B\cap C) - \mathsf{Card}(A\cap B\cap C).$$

Au total, on a donc

 $Card(A \cup B \cup C)$

$$= \mathsf{Card}(A) + \mathsf{Card}(B) - \mathsf{Card}(A \cap B) + \mathsf{Card}(C) - \left(\mathsf{Card}(A \cap C) + \mathsf{Card}(B \cap C) - \mathsf{Card}(A \cap B \cap C)\right) \\ = \mathsf{Card}(A) + \mathsf{Card}(B) + \mathsf{Card}(C) - \mathsf{Card}(A \cap B) - \mathsf{Card}(A \cap C) - \mathsf{Card}(B \cap C) + \mathsf{Card}(A \cap B \cap C).$$

22.17 a) Soit $n \in \mathbb{N}$. On a déjà vu que $\frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} = \frac{2(2n+1)}{n+1}$. Donc, on a

$$\frac{u_{n+1}}{u_n} = \frac{2^{-2n-2} \binom{2n+2}{n+1}}{2^{-2n} \binom{2n}{n}} = \frac{1}{2^2} \times \frac{2(2n+1)}{n+1} = \frac{2n+1}{2(n+1)}.$$

22.17 b) Notons, pour tout $n \in \mathbb{N}$, $v_n = (n+1)u_n^2$. Remarquons que la suite $(v_n)_{n\geqslant 0}$ est à valeurs strictement positives et, pour tout $n \in \mathbb{N}$, d'après le calcul précédent,

$$\frac{v_{n+1}}{v_n} = \frac{(n+2)u_{n+1}^2}{(n+1)u_n^2} = \frac{n+2}{n+1} \times \left(\frac{2n+1}{2(n+1)}\right)^2 = \frac{(n+2)(2n+1)^2}{4(n+1)^3} = \frac{4n^3 + 12n^2 + 9n + 2}{4n^3 + 12n^2 + 12n + 4} < 1,$$

Ainsi, la suite $(v_n)_{n\geqslant 0}$ est décroissante.

.....

22.18 Pour tout entier $n \ge 1$, on a

$$2 \times 4 \times 6 \times \cdots \times (2n-2) \times 2n = (2 \times 1) \times (2 \times 2) \times (2 \times 3) \times \cdots \times (2(n-1)) \times 2n$$

$$= \underbrace{(2 \times 2 \times 2 \times \cdots \times 2 \times 2)}_{n \text{ facteurs}} \times (1 \times 2 \times 3 \times \cdots \times (n-1) \times n)$$

$$= 2^{n} n!.$$

22.19 a) Par définition de I et P, le produit $I \times P$ est le produit des entiers consécutifs de 1 à 2n + 1. Donc,

$$I \times P = (2n+1)!.$$

22.19 b) Pour tout entier $n \ge 1$, on sait que $P = 2^n n!$ (calcul précédent). Ainsi, P est non nul et

$$I = \frac{I \times P}{P} = \frac{(2n+1)!}{2^n n!}.$$

22.20 a) Pour tous entiers naturels n et p avec $p \leq n$, on a

$$\sum_{k=p}^{n} (a_k - a_{k+1}) = (a_p - a_{p+1}) + (a_{p+1} - a_{p+2}) + (a_{p+2} - a_{p+3}) + \dots + (a_{n-1} - a_n) + (a_n - a_{n+1}).$$
simplification simplification simplification

On observe alors une simplification des termes de proche en proche. On a donc $\sum_{k=p}^{n} (a_k - a_{k+1}) = a_p - a_{n+1}$.

22.20 b) Rappelons la formule de Pascal : pour tout $n \in \mathbb{N}$ et pour tout $j \in \{1, 2, ..., n\}$, on a

$$\binom{n}{j-1} + \binom{n}{j} = \binom{n+1}{j}.$$

En appliquant cette formule pour n=p+k et k=p+1, avec $p\in\mathbb{N}$ et $k\in\mathbb{N}$ non nul, il vient

$$\binom{p+k}{p} + \binom{p+k}{p+1} = \binom{p+k+1}{p+1} \text{ et donc } \binom{p+k+1}{p+1} - \binom{p+k}{p+1} = \binom{p+k}{p}.$$

22.20 c) Pour tout entier $n \ge 1$, on a

$$\begin{split} \sum_{k=0}^{n} \binom{p+k}{p} &= \binom{p}{p} + \sum_{k=1}^{n} \binom{p+k}{p} \\ &= \binom{p}{p} + \sum_{k=1}^{n} \binom{p+k+1}{p+1} - \binom{p+k}{p+1} \\ &= \binom{p}{p} + \binom{p+n+1}{p+1} - \binom{p+1}{p+1} \\ &= \binom{p+n+1}{p+1}, \end{split}$$

d'après les deux calculs précédents, et sa chant que $\binom{p}{p}=\binom{p+1}{p+1}=1.$

Fiche nº 23. Dénombrement I

Réponses

Reponses		
23.1 a)	23.9 a)	23.14 c) $3 \times (2^5 - 2)$
23.1 b)	23.9 b)	23.14 d) $3^5 - 3 \times 2^5 + 3$ 23.15 a) $12 \times 11 \times 10$
23.2 a)	23.9 c) $\binom{10}{6} - 7$	23.15 b) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
23.2 b)	23.9 d)	$23.15 \text{ c}) \boxed{10 \times 9 \times 8}$
23.3 b). $ \frac{1}{(n+3)(n+2)(n+1)n} $	$23.10 \dots \boxed{7 \times 6 \times 5 \times 4}$	23.15 d)
23.3 c)	23.11 a)	23.16 a) $\binom{52}{5}$
23.3 d)	23.11 b)	23.16 b)
23.4 a)	23.11 c) $7^3 - 7$ 23.12 a) 10^4	23.16 c) $4 \times {13 \choose 5}$
23.4 c)	23.12 b) $10 \times 9 \times 8 \times 7$	23.16 d) $\binom{52}{5} - \binom{48}{5}$
23.6 a) 26^4	23.12 c) 5^4 10^3	
23.6 b)	23.12 e) $\binom{10}{4}$	23.16 e)
23.6 c)	23.13 a)	23.16 f) $ \left \begin{pmatrix} 4 \\ 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} \right $
23.7 a) $15 \times 14 \times 13$ 23.7 b) $15 \times 14 \times 13 \times 12 \times 11$	23.13 b)	23.16 g) $13 \times 12 \times {4 \choose 3} \times {4 \choose 2}$
23.7 c)	23.13 c)	
23.7 d). $14 \times 13 \times 12 \times 11 \times 10$	23.13 d)	$23.17 \dots \qquad \boxed{\binom{n+p}{n}}$
23.8 a)	23.14 a)	23.18 a)
23.8 b)	20.13 0) 0	23.18 b)

Corrigés

23.1 a) On a
$$\frac{1}{2} + \frac{1}{5} - \frac{1}{3} = \frac{15}{30} + \frac{6}{30} - \frac{10}{30} = \frac{11}{30}$$
.

23.1 b) On a
$$\frac{5}{7} - \left(\frac{2}{21} + \frac{5}{14}\right) = \frac{30}{42} - \frac{4}{42} - \frac{15}{42} = \frac{11}{42}$$
.

23.2 a) On a
$$\frac{10!}{8!} = \frac{10 \times 9 \times 8!}{8!} = 90.$$

23.2 b) On a
$$\frac{10 \times 8 \times 6 \times 4}{5!} = \frac{2 \times 5 \times 2 \times 4 \times 2 \times 3 \times 2 \times 2}{5!} = 2^4 = 16.$$

23.3 a) On a $\frac{n!}{(n-2)!} = \frac{n(n-1)(n-2)!}{(n-2)!} = n(n-1).$

23.3 c) On a
$$\frac{(n^2-1)n!}{(n+1)!} = \frac{(n-1)(n+1)n!}{(n+1)!} = \frac{(n-1)(n+1)!}{(n+1)!} = n-1.$$

23.3 d) On a
$$\frac{(3!)^4 \times 4!}{2^7} = \frac{(3 \times 2)^4 \times 4 \times 3 \times 2}{2^7} = \frac{3^5 \times 2^7}{2^7} = 3^5 = 243.$$

23.4 a) Une corbeille est entièrement déterminée par son nombre de pommes. Comme celui-ci peut valoir 0, 1, 2, 3, 4 ou 5, on en déduit qu'il y a 6 corbeilles possibles.

.....

23.4 b) On retire au nombre total la corbeille qui ne contient pas d'orange. Il y a donc 5 possibilités.

.....

23.4 c) Pour contenir plus d'oranges que de pommes, la corbeille doit contenir au moins trois oranges. Elle en contiendra alors trois, quatre ou cinq. Il y a donc 3 possibilités.

.....

Pour la première chambre, il y a quinze couleurs possibles, pour la deuxième quatorze et pour la troisième treize. On en déduit qu'il y a $15 \times 14 \times 13 = 2730$ possibilités.

23.6 a) Un tel code est un quadruplet des 26 lettres de l'alphabet. Il y en a 26⁴.

23.6 b) La première lettre doit être un « E », il reste donc trois lettres à choisir en tenant compte de l'ordre et en autorisant les répétitions. Un tel code est un triplet des 26 lettres de l'alphabet. Il y en a 26³.

- **23.6** c) Comme le pays est fixé, la région du monde l'est aussi. Donc, la première lettre est fixée. Ainsi, il reste deux lettres à choisir en tenant compte de l'ordre et en autorisant les répétitions; il s'agit d'un couple des 26 lettres de l'alphabet. Il y en a 26².
- **23.7** a) Un tiercé est une liste d'éléments distincts de trois chevaux parmi les quinze. Il y en a $15 \times 14 \times 13 = 2940$.
- **23.7** b) De même que précédemment, il y a $15 \times 14 \times 13 \times 12 \times 11 = 360$ 360 quintés possibles.

.

23.7 c) Il y a 3 places possibles pour « Étalon Noir ». Ensuite, il reste 14×13 façons de placer les deux autres chevaux. En tout, il y a $3 \times 14 \times 13 = 546$ tiercés possibles dans lesquels le cheval « Étalon Noir » apparaît.

.....

23.7 d) Il reste 14 chevaux, on a donc $14 \times 13 \times 12 \times 11 \times 10 = 240$ 240 quintés possibles.

23.8 a) Le nombre de boules rouges, qui détermine entièrement l'urne, peut varier entre 0 et n. On en déduit qu'il y a n+1 urnes possibles.

.....

.....

23.8 b) On retire du résultat précédent les urnes qui ne conviennent pas : celle contenant une seule boule rouge et celle qui n'en contient aucune. On obtient n-1 urnes possibles.

23.9 a) Un tel groupe d'amis correspond à une partie de six personnes parmi les dix. Il y en a $\binom{10}{6} = 210$.

23.9 b) Un groupe d'amis ne comportant pas de garçon est une combinaison de six personnes parmi les sept filles. Il y en a $\binom{7}{6} = 7$.

.....

.....

23.9 c) On retire au nombre total de groupes le nombre de groupes ne comportant pas de garçon.

On obtient $\binom{10}{6} - 7 = 203$ groupes.

23.9 d) Un tel groupe est constitué de trois filles et de trois garçons, il y en a $\binom{3}{3} \times \binom{7}{3} = 35$.

23.10 Un mot de quatre lettres est une liste ordonnée d'éléments distincts des sept lettres tirées. Il y en a $7 \times 6 \times 5 \times 4 = 840$.

23.11 a) Si aucun membre ne peut cumuler plusieurs fonctions, il y a 7 choix pour le responsable de la vaisselle et 6 pour le rangement puis 5 pour le ménage. En tout, $7 \times 6 \times 5 = 210$.

23.11 b) Si un membre peut cumuler plusieurs fonctions, le choix des responsables est un triplet des sept membres du groupe. Il v en a $7^3 = 343$.

du groupe. If y en a 7 = 545.

23.11 c) Pour déterminer le nombre de groupes de responsables où un même membre peut cumuler au plus deux fonctions, il faut retirer du total les groupes où un même membre peut cumuler les trois fonctions. Il y a 7 tels groupes de responsables, ce qui donne $7^3 - 7 = 336$ groupes de responsables possibles.

23.12 a) Un code est un quadruplet des dix chiffres de 0 à 9. Il y en a $10^4 = 10~000$.

Un code est un quadruplet des dix chiffres de 0 à 9. Il y en a $10^4 = 10~000$.

23.12 b) Un tel code est une liste d'éléments distincts de quatre chiffres parmi les dix chiffres. Il y en a $10 \times 9 \times 8 \times 7 = 5040$.

- **23.12** c) Un code avec des chiffres pairs est un quadruplet des cinq éléments de $\{2,4,6,8,0\}$. Il y en a $5^4 = 625$.
- **23.12** d) Si un code se termine par 9, il reste à choisir un triplet de trois chiffres. Il y a donc $10^3 = 1000$ codes se terminant par le chiffre 9.

23.12 e) Étant donnés 4 entiers différents, il n'y a qu'une seule façon de les ranger dans l'ordre croissant. Il y a donc autant de codes avec des chiffres tous différents rangés dans l'ordre croissant que de combinaisons de 4 éléments parmi 10. Il y a donc $\binom{10}{\cdot} = 210$.

23.13 a) Une anagramme du mot « FICHE » est une permutation des cinq lettres, toutes différentes, de ce mot. Il y en a 5! = 120.

.....

23.13 b) L'anagramme commence par les voyelles, il y a 2! = 2 façons de les placer en première et deuxième positions. De même, il y a 3! façons de placer les consonnes ensuite. On obtient $2! \times 3! = 12$ possibilités. 23.13 c) Si le mot se termine par un « E », il faut permuter les quatre autres lettres pour former les quatre premières lettres de l'anagramme. Il y a donc 4! = 24 possibilités. 23.13 d) Si l'on souhaite qu'il y ait alternance entre les voyelles et les consonnes, l'anagramme ne peut que commencer par une consonne. Pour la première lettre, il y a donc 3 possibilités, 2 pour la deuxième, il reste deux consonnes pour la troisième lettre, ensuite la quatrième lettre est automatiquement la voyelle restante et la dernière lettre est la consonne restante. En tout, on obtient $3 \times 2 \times 2 = 12$ possibilités. 23.14 a) À chaque jean, on associe un tiroir, le nombre de rangements est donc un 5-uplet des 3 tiroirs. Il v en a $3^5 = 243$. 23.14 b) Il s'agit là de choisir le tiroir où l'on mettra tous les jeans : on a 3 possibilités. **23.14** c) On a 3 façons de choisir le tiroir qui restera vide. Sachant cela, on a $2^5 = 32$ possibilités de mettre les jeans dans les deux tiroirs restants. À ces 2^5 possibilités, il faut retirer les deux possibilités où l'un des deux tiroirs sera vide. En tout, il y a $2^5 - 2$ possibilités de ranger les pantalons sachant que le tiroir choisi est le seul vide. Au total, il y a donc $3 \times (2^5 - 2) = 90$ possibilités. 23.14 d) Il suffit de retirer aux 3⁵ possibilités les possibilités où exactement un tiroir est vide et où deux tiroirs sont vides. On a vu qu'il y a $3 \times (2^5 - 2)$ cas où il y a exactement un tiroir vide et il y a 3 cas où il y a deux tiroirs vides. On obtient $3^5 - 3 \times (2^5 - 2) - 3 = 3^5 - 3 \times 2^5 + 3 = 150$ possibilités. 23.15 a) Un bureau est une liste d'éléments distincts de trois personnes parmi les douze membres de l'association, il y en a $12 \times 11 \times 10 = 1320$ 23.15 b) On retire du nombre total de bureaux possibles le nombre de bureaux où Pierre et Jean siègent ensemble. Pour constituer un bureau où Pierre et Jean siègent ensemble, il faut déterminer le rôle de Pierre : 3 possibilités, déterminer le rôle de Jean : 2 possibilités restantes et choisir le dernier membre : 10 choix. En tout, on obtient $3\times2\times10$ bureaux où Pierre et Jean siègent ensemble, ce qui donne $12\times11\times10-3\times2\times10=1$ 260 bureaux où Pierre et Jean ne siégeront pas ensemble. 23.15 c) Le bureau sera dans ce cas une liste d'éléments distincts de trois membres parmi les dix restants. If y en a $10 \times 9 \times 8 = 720$. 23.15 d) Pour constituer un bureau où le doyen et le plus jeune du groupe (le « benjamin ») siègent ensemble, il faut déterminer le rôle du doyen (on a 3 possibilités), déterminer le rôle du benjamin (on a 2 possibilités restantes) et choisir le dernier membre (il y a 10 choix). En tout, on obtient $3 \times 2 \times 10 = 60$ bureaux où le doyen et le plus jeune du groupe siègent ensemble.

23.16 a) Choisir une main revient à choisir une partie à cinq éléments de l'ensemble des 52 cartes. Il y en a $\binom{52}{5} = \frac{52 \times 51 \times 50 \times 49 \times 48}{5!} = 2598960 \text{ choix possibles.}$

23.16 b) Il y a 13 carrés possibles (un par type de carte). Pour chacun de ces carrés possibles, il reste une carte à choisir parmi les 48 cartes qu'il reste. En tout, il y a donc $13 \times 48 = 624$ carrés possibles.

.....

23.16 c) Il y a quatre couleurs. Comme il y a 13 cartes de chaque couleur, pour chacune de ces couleurs, il y a $\binom{13}{5}$ mains de cette couleur. En tout, il y a $4 \times \binom{13}{5} = 4 \times \frac{13 \times 12 \times 11 \times 10 \times 9}{5!} = 5$ 148 mains unicolores.

23.16 d) Calculons d'abord le nombre de mains ne contenant pas de roi. Il y en a $\binom{48}{5} = 1712304$.

Le nombre de mains contenant au moins un roi est donc $\binom{52}{5} - \binom{48}{5} = 2598960 - 1712304 = 886656$.

23.16 e) On ajoute le nombre de mains ne contenant aucun roi et le nombre de mains qui en contiennent exactement un.

- Pour les mains ne contenant qu'un roi : on a 4 choix pour le roi, il reste à choisir 4 cartes parmi les 48 cartes qui ne sont pas des rois, ce qui donne $4 \times \binom{48}{4} = 778 \ 320$.

 • Pour les mains ne contenant aucun roi, il y en a $\binom{48}{5}$.

 En tout, il y a $\binom{48}{5} + 4 \times \binom{48}{4} = 1 \ 712 \ 304 + 778 \ 320 = 2 \ 490 \ 624 \ telles mains.$

23.16 f) On a $\binom{4}{3}$ = 4 façons de choisir les rois. À chacune de ces façons, il y a $\binom{4}{2}$ = 6 façons de choisir les deux as. Au total, il y a $\binom{4}{3} \times \binom{4}{2} = 24$ façons de choisir trois rois et deux as.

23.16 g) On a 13 façons de choisir la figure qui sera répétée 3 fois et 12 façons de choisir la figure qui sera répétée 2 fois. Ensuite, comme pour la question précédente, il y a 24 façons d'obtenir un full avec ces deux figures choisies. En tout $13 \times 12 \times \binom{4}{3} \times \binom{4}{2} = 3$ 744 fulls possibles.

Il y a $\binom{n+p}{n}$ façons de choisir les n éléments pour constituer un groupe de n éléments. À partir de là, les p éléments restant constituent le groupe à p éléments.

On a donc $\binom{n+p}{n} = \binom{n+p}{p}$ façons de constituer ces deux groupes.

23.18 a) On a
$$\frac{\binom{n}{p}}{\binom{n}{p+1}} = \frac{\frac{n!}{p!(n-p)!}}{\frac{n!}{(p+1)!(n-p-1)!}} = \frac{n!}{p!(n-p)!} \times \frac{(p+1)! \times (n-p-1)!}{n!} = \frac{p+1}{(n-p)}$$
. Donc, $\lim_{n \to \infty} \frac{\binom{n}{p}}{\binom{n}{p+1}} = 0$.

23.18 b) On a $\binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{1}{p!}n \times (n-1) \times \cdots \times (n-p+1)$. Ce produit est une expression polynomiale

de degré p en n. Or, pour tout entier k, on a $\lim_{n\to\infty}\frac{n^k}{2^n}=0$ par croissance comparée. Par somme, $\lim_{n\to\infty}\frac{\binom{n}{p}}{2^n}=0$.

Fiche nº 24. Dénombrement II

Réponses

Corrigés

24.1 b) On a
$$\binom{n}{2} = \frac{n!}{2! \times (n-2)!} = \frac{n(n-1)}{2}$$
.

24.1 c) On a
$$\binom{n+2}{n+1} = \frac{(n+2)!}{(n+1)! \times 1!} = n+2$$
. On pouvait aussi utiliser la formule de symétrie des coefficients

binomiaux : pour tout $0 \le k \le n$, on a $\binom{n}{k} = \binom{n}{n-k}$. Ainsi, on a $\binom{n+2}{n+1} = \binom{n+2}{1} = n+2$.

24.1 d) On a
$$\binom{n+3}{n} = \frac{(n+3)!}{n! \times 3!} = \frac{(n+3)(n+2)(n+1)}{3!} = \frac{(n+3)(n+2)(n+1)}{6}$$
.

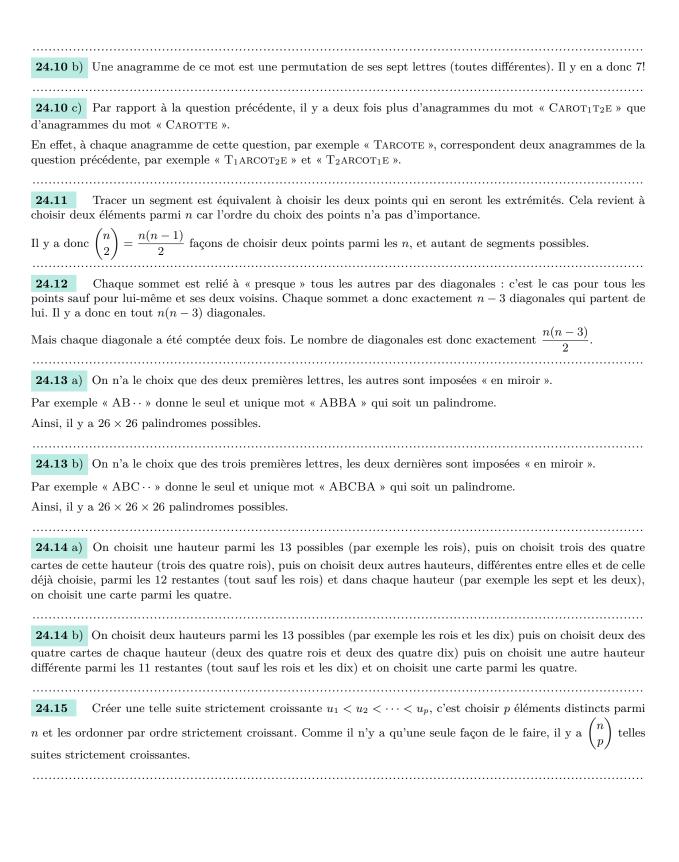
24.2 c) On a
$$\frac{5!}{7!} = \frac{1}{6 \times 7} = \frac{1}{42}$$
.

24.2 d) On a
$$\frac{\binom{11}{5}}{\binom{10}{4}} = \frac{11!}{5! \times 6!} \times \frac{4! \times 6!}{10!} = \frac{11}{5}$$
.

Cette propriété est vraie de façon générale : pour tous $k, n \in \mathbb{N}$ tels que $0 \le k \le n$, on a

$$\frac{n+1}{k+1} \times \binom{n}{k} = \binom{n+1}{k+1}.$$

- **24.5** a) On peut faire un arbre où chaque embranchement correspond à un choix. J'ai 2 choix de pantalons, 3 choix de chemises et 4 choix de chapeaux. Au total, j'ai $2 \times 3 \times 4 = 24$ choix.
- **24.5** b) C'est une permutation de 6 éléments : il y a 6! = 720 façons différentes d'écouter les six chansons.
- **24.5** c) Il y a $\binom{5}{2}$ = 10 façons de choisir deux pantalons parmi cinq.
- **24.5** d) Chaque fléchette a 4 possibilités pour sa zone d'arrivée. Les 3 fléchettes sont différentes. On a donc $4^3 = 64$ tirages possibles différents.
- **24.6** a) Pour chaque roue, on a 10 possibilités. L'ordre compte et il peut y avoir des répétitions. Ainsi, au total, il y a 10^5 possibilités.
- **24.6** b) L'ordre compte et il n'y a pas de répétition possible. On a donc $5 \times 4 \times 3 = 60$ possibilités.
- **24.6** c) Pour chacun des huit chiffres qui manquent, on a 10 possibilités. L'ordre compte et il peut y avoir des répétitions. On a donc 10⁸ possibilités.
- **24.7** a) On peut réfléchir en pensant à un arbre : il y a 20 possibilités de choix pour l'arrivée du premier cheval; puis (donc multiplication) 19 possibilités de choix pour l'arrivée du premier cheval; puis (donc multiplication) 18 possibilités de choix pour l'arrivée du troisième cheval.
- **24.7** b) Il s'agit de prendre un groupe de trois chevaux parmi les vingt; il y a donc $\binom{20}{3}$ tiercés dans le désordre.
- **24.8** b) Il y a $\binom{5}{3}$ = 10 façons possibles de choisir trois fromages parmi cinq.
- **24.8** c) Je dois choisir une partie de cet ensemble de cinq fromages. Comme le nombre de parties d'un ensemble à n élements est 2^n , j'ai $2^5 = 32$ choix possibles.
- **24.9** a) J'ai 5 choix pour le fromage et 3 choix pour le dessert. Au total, j'ai $3 \times 5 = 15$ choix.
- **24.9** b) J'ai $\binom{5}{3}$ choix pour les fromages et 3 choix pour le dessert. Au total, j'ai $\binom{5}{3} \times 3 = 10 \times 3 = 30$ choix.
- **24.9** c) Je dois choisir une partie de cet ensemble de huit « choses à manger ». Comme le nombre de parties d'un ensemble à n élements est 2^n , j'ai $2^8 = 256$ choix possibles.
- 24.10 a) Une anagramme du mot « LAPIN », c'est une permutation des cinq lettres de ce mot. Donc il y en a 5!



Fiche nº 25. Généralités sur les probabilités

Réponses

Réponses		
25.1 a) $2^2 \times 3^7$	25.6 a)	25.8 d) $ \frac{109}{100} $
25.1 b)	25.6 b)	25.9 a)
25.2 a) $(x-1)^2$	25.6 c)	25.9 b) $ \frac{5}{18} $
25.2 b)	25.6 d) $ P_{R_1}(R_2) P(R_1) + P_{\overline{R_1}}(R_2) P(\overline{R_1}) $	25 9 c) 11
25.2 c) $(x-1)(x+1)(x^2+1)$	25.6 e)	3
25.2 d) $2(x+6)^2$	25 7 a) 9	25.9 d)
25.3 a) $\left\lfloor \frac{1}{2} \right\rfloor$	1	25.9 e) $\left[\frac{17}{36}\right]$
25.3 b) $\frac{3}{10}$	25.7 b) $\frac{1}{2}$	25.10 a) $\left\lfloor \frac{1}{4} \right\rfloor$
25.3 c) $\left\lfloor \frac{1}{2} \right\rfloor$	25.7 c) $ P(R) + P(T) - P(R \cap T) $	25.10 b)
25.3 d) $ \frac{1}{10} $	25.7 d) $ \frac{1}{10} $	25.10 c)
25.4 a)	25.7 e)	25.11 a)
25.4 b)	25.7 f)	25.11 b)
25.4 c)	25.7 h)	25.11 c)
$P_T(S) P(T)$	25.7 i)	25.12 b)
$+ P_{\overline{T}}(S) P(\overline{T})$ 27. (a)	25.7 j) $\left\lfloor \frac{1}{2} \right\rfloor$	25.13 a) $\left[-\frac{1}{5} \right]$
25.4 e)	25.7 k) $\left\lfloor \frac{1}{2} \right\rfloor$	25.13 b)
25.5 a)	25.8 a) $ \frac{4}{5} $	25.14 a)
25.5 b)	25.8 b)	25.14 b)
25.5 c) $ P_C(J) P(C) + P_{\overline{C}}(J) P(\overline{C}) $	$\begin{array}{c c} & & & \\ \hline 25.8 c) & & \hline -\frac{1}{-} \end{array}$	25.14 d)
25.5 d)	10	25.15 a)

.....

Corrigés

25.3 a) La somme des probabilités vaut 1.

25.3 b) On a
$$P(X \le 1) = P(X = -\frac{3}{2}) + P(X = 0)$$
.

25.3 c) On a
$$P(X \ge 3) = P(X = 3)$$
.

25.3 d) On a
$$P(X < 0) = P(X = -\frac{3}{2}) = \frac{1}{10}$$
.

25.4 a) Chaque paquet a la même probabilité d'être choisi.

25.4 b) Sachant que le paquet contient 32 cartes, une seule carte porte le numéro 7.

25.4 c) Sachant que le paquet contient 52 cartes, une seule carte porte le numéro 7.

25.4 d) On utilise la formule des probabilités totales ou une représentation avec un arbre.

25.4 e) On a
$$\frac{1}{2} \times \frac{1}{32} + \frac{1}{2} \times \frac{1}{52} = \frac{21}{832}$$
.

25.5 c) On utilise la formule des probabilités totales ou une représentation avec un arbre.

25.5 d) On a
$$\frac{60}{100} \times 1 + \frac{40}{100} \times \frac{1}{3} = \frac{3 \times 3 + 2}{3 \times 5} = \frac{11}{15}$$

25.6 b) Sachant qu'une boule rouge a été tirée, il reste une boule rouge et une boule noire dans l'urne.

.....

25.6 c) Sachant qu'une boule noire a été tirée, il reste uniquement deux boules rouges dans l'urne.

25.6 d) On utilise la formule des probabilités totales ou une représentation avec un arbre.

25.6 e) On a $\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times 1 = \frac{2}{3}$.

.....

.....

25.7 a) Il y a une unique carte numérotée 7 dans le paquet de 10 cartes, donc en notant S l'événement « Tirer un 7 », $P(\overline{S}) = 1 - P(S) = 1 - \frac{1}{10}$.

- **25.7** b) Tirer un nombre pair correspond à tirer un 2, un 4, un 6, un 8 ou un 10.
- **25.7** d) Seul 6 est un nombre inférieur à 10 qui soit multiple de 3 et pair.

25.7 e) On a
$$P(R \cup T) = P(R) + P(T) - P(R \cap T) = \frac{1}{2} + \frac{3}{10} - \frac{1}{10} = \frac{7}{10}$$
.

- **25.7** f) Il y a 10 possibilités pour la première carte, puis seulement 9 possibilités pour la seconde.
- **25.7** g) Pour que le numéro de la seconde carte soit supérieur à 1, il y a 9 possibilités.
- 25.7 h) Pour que le numéro de la seconde carte soit supérieur à 1, il y a 8 possibilités.
- **25.7** i) Pour les tirages favorables :
 - si la première carte tirée est un 1, il y a 9 cartes possibles pour la seconde;
 - si la première carte tirée est un 2, il y a 8 cartes possibles pour la seconde;
- ..
- si la première carte tirée est un 8, il y a 1 carte possible pour la seconde;
- si la première carte tirée est un 9, il y a 0 carte possible pour la seconde.

Le nombre de tirages favorables est donc égal à $1 + \dots + 9 = \sum_{k=1}^{9} k = \frac{9 \times 10}{2}$.

Toutes les cartes ont la même probabilité d'être tirées. On utilise donc un modèle d'équiprobabilité. Ainsi, on a $p = \frac{45}{90}$.

On aurait également pu remarquer que, lorsqu'on tire deux cartes, soit elles sont ordonnées par ordre croissant, soit elles le sont par ordre décroissant et il y a autant de tirages dans un sens que dans l'autre.

25.7 k) Le nombre de tirages possibles est 17×16 . En reprenant le calcul précédent, le nombre de tirages

favorables est $\sum_{k=1}^{10} k = \frac{16 \times 17}{2}$. La probabilité vaut donc $\frac{1}{2}$. On remarque qu'elle est indépendante du nombre de cartes dans le paquet!

25.8 a) On a
$$P(X \le 0) = P(X = -2) + P(X = -1) + P(X = 0) = \frac{1}{10} + \frac{1}{5} + \frac{1}{2} = \frac{4}{5}$$
.

25.8 b) On a
$$P(X < 2) = P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) = \frac{1}{10} + \frac{1}{5} + \frac{1}{2} + \frac{1}{10} = \frac{9}{10}$$
.

25.8 c) D'après la définition de l'espérance, on a

$$\mathrm{E}(X) = -2 \times \frac{1}{10} - 1 \times \frac{1}{5} + 0 \times \frac{1}{2} + 1 \times \frac{1}{10} + 2 \times \frac{1}{10} = \frac{-2 - 2 + 1 + 2}{10} = -\frac{1}{10}.$$

25.8 d) D'après la définition de la variance, on a

$$\begin{split} \mathrm{V}(X) &= \left(-2 + \frac{1}{10}\right)^2 \times \frac{1}{10} + \left(-1 + \frac{1}{10}\right)^2 \times \frac{1}{5} + \left(0 + \frac{1}{10}\right)^2 \times \frac{1}{2} + \left(1 + \frac{1}{10}\right)^2 \times \frac{1}{10} + \left(2 + \frac{1}{10}\right)^2 \times \frac{1}{10} \\ &= \frac{19^2 + 2 \times 9^2 + 5 + 11^2 + 21^2}{10^2 \times 10} = \frac{361 + 162 + 5 + 121 + 441}{10^2 \times 10} = \frac{1090}{10^2 \times 10} = \frac{109}{10^2}. \end{split}$$

À noter que les carrés se calculent relativement vite. Par exemple, on a

$$19^2 = (10+9)^2 = 10^2 + 2 \times 10 \times 9 + 9^2 = 100 + 180 + 81 = 361.$$

- **25.9** a) On dessine un arbre et la probabilité recherchée vaut : $\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$.
- **25.9** b) On dessine un arbre et la probabilité recherchée vaut : $\frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{3} = \frac{3+2}{18} = \frac{5}{18}$.
- **25.9** c) On dessine un arbre et la probabilité recherchée vaut : $\frac{1}{3} \times 1 + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{3} = \frac{6+3+2}{18} = \frac{11}{18}$.
- 25.9 d En utilisant la loi de X déterminée précédemment et la définition de l'espérance, on trouve

$$E(X) = 1 \times \frac{11}{18} + 2 \times \frac{5}{18} + 3 \times \frac{1}{9} = \frac{11 + 10 + 6}{18} = \frac{3}{2}.$$

25.9 e) En utilisant la loi de X déterminée précédemment et la définition de la variance, on trouve

$$V(X) = \left(1 - \frac{3}{2}\right)^2 \times \frac{11}{18} + \left(2 - \frac{3}{2}\right)^2 \times \frac{5}{18} + \left(3 - \frac{3}{2}\right)^2 \times \frac{1}{9} = \frac{(2 - 3)^2 \times 11 + (4 - 3)^2 \times 5 + (6 - 3)^2 \times 2}{4 \times 18}$$
$$= \frac{11 + 5 + 18}{4 \times 18} = \frac{17}{36}.$$

25.10 a) Comme ([X = -3/2], [X = 0], [X = 1/3]) forme un système complet d'événements, on a

$$\frac{1}{4} + \frac{1}{2} + p = 1$$
 donc $p = \frac{1}{4}$

- **25.10** b) D'après la définition de l'espérance, on a $E(X) = -\frac{3}{2} \times \frac{1}{4} + 0 \times \frac{1}{2} + \frac{5}{2} \times \frac{1}{4} = \frac{1}{4}$.
- **25.10** c) D'après la définition de la variance, on a $V(X) = \left(-\frac{3}{2} \frac{1}{4}\right)^2 \frac{1}{4} + \left(0 \frac{1}{4}\right)^2 \frac{1}{2} + \left(\frac{5}{2} \frac{1}{4}\right)^2 \frac{1}{4} = \frac{33}{16}$.
- **25.11** a) Comme ([X=1], [X=2], [X=3], [X=4]) forme un système complet d'événements, on a $\alpha + 2\alpha + 3\alpha + 4\alpha = 1$ donc $\alpha(1+2+3+4) = 1$ donc $\alpha(\frac{4\times 5}{2}) = 1$ donc $\alpha = \frac{1}{10}$.
- 25.11 b) D'après la définition de l'espérance, on a

$$E(X) = \sum_{i=1}^{4} i P(X=i) = \sum_{i=1}^{4} i \times \frac{i}{10} = \frac{1}{10} \sum_{i=1}^{4} i^2 = \frac{1}{10} \times \frac{4(4+1)(2\times 4+1)}{6} = \frac{4\times 5\times 9}{10\times 6} = 3.$$

25.11 c) D'après la définition de la variance, on a

$$V(X) = (1-3)^2 \frac{1}{10} + (2-3)^2 \frac{2}{10} + (3-3)^2 \frac{3}{10} + (4-3)^2 \frac{4}{10} = \frac{4}{10} + \frac{2}{10} + \frac{4}{10} = 1.$$

25.12 a) D'après la linéarité de l'espérance, on a E(Y) = 3E(X) + 4.

.....

- **25.12** b) D'après les propriétés de la variance, on a $V(Y) = 3^2 V(X)$.
- **25.13** a) D'après la linéarité de l'espérance, on a $E(Y) = \frac{-E(X) + 2}{5}$.
- **25.13** b) D'après les propriétés de la variance, on a $V(Y) = \left(-\frac{1}{5}\right)^2 V(X)$.
- **25.14** a) D'après la linéarité de l'espérance, on a $E(Y) = 10 E(X) 3 = 10 \times \frac{4}{5} 3$.
- **25.14** b) D'après les propriétés de la variance, on a $V(Y) = 10^2 V(X) = 10^2 \times \frac{4}{5} \left(1 \frac{4}{5}\right)$.
- **25.14** c) Si X prend la valeur 0, alors Y prend la valeur -3. Si X prend la valeur 1, alors Y prend la valeur 7.
- **25.14** d) On a $P(Y = 7) = P(X = 1) = \frac{4}{5}$.
- **25.15** a) Si X prend la valeur -5, alors Y prend la valeur 0. Si X prend la valeur 10, alors Y prend la valeur 1.
- **25.15** b) On a $P(Y = 1) = P(X = 10) = \frac{1}{3}$. Ainsi, $P(Y = 0) = 1 P(Y = 1) = \frac{2}{3}$.
- **25.16** a) On a $E(X_1) = \sum_{k=1}^{6} k \times \frac{1}{6} = \frac{1}{6} \times \frac{6(6+1)}{2}$.
- **25.16** b) On a

$$V(X_1) = \sum_{k=1}^{6} \left(k - \frac{7}{2}\right)^2 \frac{1}{6} = \frac{1}{6} \left[\sum_{k=1}^{6} \left(k^2 - 7k + \frac{49}{4}\right)\right]$$

$$= \frac{1}{6} \left(\sum_{k=1}^{6} k^2 - 7\sum_{k=1}^{6} k + 6 \times \frac{49}{4}\right) = \frac{1}{6} \left(\frac{6 \times 7 \times 13}{6} - 7 \times \frac{6 \times 7}{2} + 6 \times \frac{49}{4}\right)$$

$$= \frac{7 \times 13}{6} - \frac{3 \times 7^2}{6} + \frac{49}{4} = -\frac{56}{6} + \frac{49}{4} = \frac{-112 + 147}{12} = \frac{35}{12}.$$

- **25.16** c) En utilisant la linéarité de l'espérance, on a $E(S_n) = \sum_{k=1}^n E(X_k) = \sum_{k=1}^n \frac{7}{2}$.
- **25.16** d) Comme les variables aléatoires sont indépendantes, on a $V(S_n) = \sum_{k=1}^n V(X_k) = \sum_{k=1}^n \frac{35}{12}$.

25.17 a) D'après la linéarité de l'espérance, on a

$$V(X) = E((X - E(X))^{2}) = E(X^{2} - 2X E(X) + E(X)^{2}) = E(X^{2}) - 2E(X) E(X) + E(X)^{2}.$$

- **25.17** b) On a $E(Y) = E(X^2) = V(X) + E(X)^2 = 5 + 3^2 = 14$.
- **25.18** Comme *X* est à valeurs dans $\{0,1\}$, on a $X^2 = X$. Ainsi, $E(X) E(X^2) = E(X) E(X) = 0$.
- **25.19** a) En utilisant la linéarité de l'espérance, on trouve $f(x) = E(X^2 2xX + x^2) = E(X^2) 2x E(X) + x^2$.
- **25.19** b) La fonction f est une fonction trinôme dont le coefficient dominant vaut 1. La fonction f atteint donc son minimum en $x_0 = -\frac{-2 \operatorname{E}(X)}{2}$.
- **25.19** c) Le minimum de f vaut alors $f(x_0) = E((X E(X))^2) = V(X)$.
- 25.20 a) On utilise la linéarité de l'espérance. On trouve

266

$$E(S_n) = E\left(\frac{1}{\sqrt{n}\sigma}\left(\sum_{k=1}^n X_k - nm\right)\right) = \frac{\sum_{k=1}^n E(X_k) - nm}{\sqrt{n}\sigma} = \frac{nm - nm}{\sqrt{n}\sigma}.$$

25.20 b) Comme X_1, \ldots, X_n sont indépendantes, d'après les propriétés de la variance, on a

$$V(S_n) = \frac{1}{(\sqrt{n}\sigma)^2} \sum_{k=1}^n V(X_k) = \frac{n\sigma^2}{n\sigma^2}.$$

Fiche nº 26. Autour de la loi binomiale

Réponses

26.1 a)
$$2x^4 + 5x^3 - 3x^2 - 7x - 2$$

26.1 c) ...
$$4x^4 + 16x^3 + 5x^2 -5x - 2$$

26.1 d)
$$x^4 - 6x^2 - 3x + 2$$

26.2 a).....
$$(2x-3)(2x+3)$$

26.2 c)
$$(x-1)(x-2)$$

26.2 d)
$$x(x+3)(x-1)$$

26.4 a).....
$$(1-p)^n$$

26.4 c)
$$np(1-p)^{n-1}$$

26.4 d)
$$np^{n-1}(1-p)$$

26.4 e)
$$\frac{n(n-1)}{2} p^2 (1-p)^{n-2}$$

26.4 f).
$$\frac{n(n-1)}{2}p^{n-2}(1-p)^2$$

26.5 a)
$$\binom{n}{k} \frac{1}{2^n}$$

26.5 d)
$$\frac{n+1}{2^n}$$

26.7 c)
$$\left| \left(6, \frac{1}{4} \right) \right|$$

26.8 d)
$$\left(n, \frac{1}{2} \right)$$

26.10 c)
$$3np+1$$

26.10 d)
$$5np-2$$

26.11 a)
$$np(1-p)$$

26.11 b)
$$9np(1-p)$$

26.11 c)
$$9np(1-p)$$

26.11 d)
$$25np(1-p)$$

26.12 a).....
$$\frac{50}{3}$$

26.12 b).....
$$\frac{1}{6}$$

26.12 d)
$$\frac{1}{720}$$

26.14 b).....
$$\mathcal{B}(10; 0,9)$$

26.14 c)
$$(0,1)^{10}$$

26.14 d)
$$9 \times (0,1)^9$$

26.14 e) .
$$45 \times (0.9)^2 \times (0.1)^8$$

26.14 g)
$$(0,9)^{10}$$

26.15 a).....
$$\left| \left(\frac{5}{8} \right)^{10} \right|$$

26.15 b)
$$1 - \left(\frac{5}{8}\right)^{10}$$

26.15 c)
$$1-7 \times \left(\frac{5}{8}\right)^{10}$$

26.15 d).....
$$\frac{1 - 7 \times \left(\frac{5}{8}\right)^{10}}{1 - \left(\frac{5}{8}\right)^{10}}$$

26.17 a)
$$p(1-p)$$

$$\mathbf{26.17} \text{ c)} \dots \dots \dots \boxed{\frac{1}{2\sqrt{n\alpha}}}$$

$$\mathbf{26.17} \text{ d)} \dots \boxed{\frac{X}{n} - \frac{1}{2\sqrt{n\alpha}},}$$

$$\frac{X}{n} + \frac{1}{2\sqrt{n\alpha}} \boxed{}$$

Corrigés

- **26.1** a) Soit $x \in \mathbb{R}$. On a $(x^2 + 3x + 1)(2x^2 x 2) = 2x^4 x^3 2x^2 + 6x^3 3x^2 6x + 2x^2 x 2 = 2x^4 + 5x^3 3x^2 7x 2.$
- **26.2** a) On a $4x^2 9 = (2x)^2 3^2 = (2x 3)(2x + 3)$ d'après l'identité remarquable $a^2 b^2 = (a b)(a + b)$.
- **26.2** b) On reconnaît une identité remarquable : on a $9x^2 + 6x + 1 = (3x)^2 + 2 \times (3x) \times 1 + 1^2 = (3x + 1)^2$.
- **26.2** c) L'expression $x^2 3x + 2$ est une expression polynomiale du second degré. Le discriminant associé vaut $(-3)^2 4 \times 1 \times 2 = 1$ et les racines associées sont $\frac{-(-3) \sqrt{1}}{2 \times 1} = 1$ et $\frac{-(-3) + \sqrt{1}}{2 \times 1} = 2$.
- **26.2** d) On a $(x^2 + 3x)(x 2) + x(x + 3) = x(x + 3)(x 2) + x(x + 3) = x(x + 3)(x 2 + 1) = x(x + 3)(x 1)$.
- **26.3** D'après la formule du cours, on a $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- **26.4** a) Pour tout $k \in [0, n]$, on a $P(X = k) = \binom{n}{k} p^k (1 p)^{n-k}$. En particulier, pour k = 0, on obtient $P(X = 0) = \binom{n}{0} p^0 (1 p)^{n-0} = 1 \times 1 \times (1 p)^n = (1 p)^n$. On procède de même dans les calculs suivants.
- **26.5** a) On a $P(X = k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(1 \frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^{k+n-k} = \binom{n}{k} \frac{1}{2^n}.$
- **26.5** b) On a $P(X = 0) = \binom{n}{0} \frac{1}{2^n} = \frac{1}{2^n}$ et $P(X = n) = \binom{n}{n} \frac{1}{2^n} = \frac{1}{2^n}$ donc P(X = 0) P(X = n) = 0.
- **26.5** c) De même, on a $P(X = k) = \binom{n}{k} \frac{1}{2^n}$ et $P(X = n k) = \binom{n}{n k} \frac{1}{2^n} = \binom{n}{k} \frac{1}{2^n}$ d'après la propriété de symétrie des coefficients binomiaux, donc P(X = k) P(X = n k) = 0.
- **26.5** d) L'événement $\{X \le 1\}$ est la réunion des deux événements incompatibles $\{X = 0\}$ et $\{X = 1\}$. On a donc $P(X \le 1) = P(\{X = 0\} \cup \{X = 1\}) = P(X = 0) + P(X = 1) = \binom{n}{0} \frac{1}{2^n} + \binom{n}{1} \frac{1}{2^n} = \frac{1+n}{2^n}$.
- **26.6** a) Pour tout $k \in \llbracket 0, n \rrbracket$, on a $P(X = k) = \binom{n}{k} \left(\frac{1}{4}\right)^k \left(1 \frac{1}{4}\right)^{n-k}$. En particulier, pour k = 0, on a $P(X = 0) = \binom{n}{0} \left(\frac{1}{4}\right)^0 \left(\frac{3}{4}\right)^{n-0} = 1 \times 1 \times \left(\frac{3}{4}\right)^n = \frac{3^n}{4^n}$. On procède de même dans les calculs suivants.

.....

26.7 a) On peut considérer le lancer d'une pièce de monnaie comme une épreuve de Bernoulli (expérience à deux issues : succès et échec), dans laquelle l'événement « obtenir pile » représente le succès. Puisque la variable aléatoire X compte le nombre de succès lorsqu'on répète indépendamment cette épreuve, elle suit une loi binomiale. L'épreuve étant répétée 5 fois et la probabilité d'un succès étant $\frac{1}{2}$, X suit la loi binomiale de paramètre $\left(5,\frac{1}{2}\right)$.

26.7 b) On peut considérer le lancer d'un dé à six faces comme une épreuve de Bernoulli, dans laquelle l'événement « obtenir 1 » représente le succès. Puisque la variable aléatoire X compte le nombre de succès lorsqu'on répète indépendamment cette épreuve, elle suit une loi binomiale. L'épreuve étant répétée 3 fois et la probabilité d'un succès étant $\frac{1}{6}$, X suit la loi binomiale de paramètre $\left(3, \frac{1}{6}\right)$.

26.7 c) On peut considérer le tirage d'une boule de l'urne comme une épreuve de Bernoulli, dans laquelle l'événement « obtenir une boule bleue » représente le succès. Puisque la variable aléatoire X compte le nombre de succès lorsqu'on répète 6 fois l'expérience, elle suit la loi binomiale de paramètre $\left(6, \frac{1}{4}\right)$.

- 26.8 a) Comme la variable aléatoire X ne peut pas prendre la valeur 0, X ne suit pas une loi binomiale.
- 26.8 b) Comme la variable aléatoire X ne peut pas prendre la valeur 0, X ne suit pas une loi binomiale.

26.8 c) On peut considérer le lancer d'un dé à six faces comme une épreuve de Bernoulli, dans laquelle l'événement « obtenir 6 » représente le succès. Puisque la variable aléatoire X compte le nombre de succès lorsqu'on répète indépendamment cette épreuve, elle suit une loi binomiale. L'épreuve étant répétée n fois et la probabilité d'un succès étant $\frac{1}{6}$, X suit la loi binomiale de paramètre $\left(n, \frac{1}{6}\right)$.

26.8 d) On peut considérer le lancer d'un dé à six faces comme une épreuve de Bernoulli, dans laquelle l'événement « obtenir un nombre pair » représente le succès. Puisque la variable aléatoire X compte le nombre de succès lorsqu'on répète indépendamment cette épreuve, elle suit une loi binomiale. L'épreuve étant répétée n fois et la probabilité d'un succès étant $\frac{3}{6} = \frac{1}{2}$, X suit la loi binomiale de paramètre $\left(n, \frac{1}{2}\right)$.

26.9 b) Intuitivement : les tirages n'étant ici plus indépendants, X ne représente pas le nombre de succès lors de la répétition indépendante d'une même épreuve de Bernoulli et donc X ne suit pas une loi binomiale.

26.10 a) D'après le cours, on a E(X) = np.

26.10 b) D'après le cours, pour tout $a \in \mathbb{R}$, on a E(aX) = aE(X). On a donc E(3X) = 3E(X) = 3np.

26.10 c) On sait que, pour $a, b \in \mathbb{R}$, on a E(aX + b) = aE(X) + b. Ici, on a donc E(3X + 1) = 3E(X) + 1 = 3np + 1.

.....

26.10 d) De même, on a E(5X - 2) = 5E(X) - 2 = 5np - 2.

26.11 a) D'après le cours, on a V(X) = np(1-p).

26.11 b) D'après le cours, pour tout $a \in \mathbb{R}$, on a $V(aX) = a^2 V(X)$. On a donc V(3X) = 9 V(X) = 9np(1-p).

26.11 c) On sait que, pour $a, b \in \mathbb{R}$, on a $V(aX + b) = a^2 V(X)$. Donc, V(3X + 1) = 9 V(X) = 9np(1 - p).

- **26.11** d) De même, on a V(5X 2) = 25V(X) = 25np(1-p).
- 26.12 a) On peut considérer le lancer d'un dé à six faces comme une épreuve de Bernoulli, pour laquelle l'événement « obtenir 1 » représente le succès. Puisque la variable aléatoire X compte le nombre de succès lorsqu'on répète indépendamment cette épreuve, elle suit une loi binomiale. L'épreuve étant répétée 100 fois et la probabilité d'un succès étant $\frac{1}{6}$, X suit la loi binomiale de paramètre $\left(100, \frac{1}{6}\right)$. On a donc $\mathrm{E}(X) = \frac{100}{6} = \frac{50}{3}$

- **26.12** b) D'après les propriétés de l'espérance, on a $E(Y) = \frac{1}{100} E(X) = \frac{1}{100} \times \frac{100}{6} = \frac{1}{6}$.
- **26.12** c) Puisque X suit la loi binomiale de paramètre $\left(100, \frac{1}{6}\right)$, on a $V(X) = 100 \times \frac{1}{6} \times \frac{5}{6} = \frac{500}{36} = \frac{125}{9}$
- **26.12** d) D'après les propriétés de la variance, on a $V(Y) = \frac{1}{100^2} V(X) = \frac{1}{100^2} \frac{500}{36} = \frac{5}{3600} = \frac{1}{720}$.
- **26.13** a) D'après les propriétés de l'espérance, on a $\mathrm{E}(Y) = \frac{1}{\sqrt{np(1-p)}}(\mathrm{E}(X) np) = 0$ car $\mathrm{E}(X) = np$.
- **26.13** b) On a V(Y) = $\left(\frac{1}{\sqrt{np(1-p)}}\right)^2$ V(X) = $\frac{1}{np(1-p)}$ V(X) = 1 car V(X) = np(1-p).
- **26.14** a) Puisque la variable aléatoire X_1 ne peut prendre que les valeurs 0 et 1, sa loi est la loi de Bernoulli de paramètre $P(X_1 = 1) = p = 0.9$.
- 26.14 b) La variable aléatoire X est la somme de 10 variables de Bernoulli indépendantes de même paramètre p = 0.9. Donc, X suit la loi binomiale de paramètre (10; 0.9).
- **26.14** c) Puisque X suit la loi binomiale $\mathcal{B}(10, 0.9)$, on a $P(X = k) = \binom{10}{k} (0.9)^k (1 0.9)^{10-k}$ pour tout $k \in [0, 10]$. En particulier, pour k = 0, on obtient $P(X = 0) = {10 \choose 0} (0.9)^0 (0.1)^{10} = (0.1)^{10}$.
- **26.14** h) D'après la formule de l'espérance d'une loi binomiale, on a $E(X) = 10 \times 0.9 = 9$.
- **26.14** i) Pour $j \in \{1,2\}$, on note A_j l'événement : « le j-ième relecteur a corrigé la première erreur ». Les événements A_1 et A_2 sont indépendants, donc leurs contraires $\overline{A_1}$ et $\overline{A_2}$ le sont aussi. On a ainsi

.....

$$P(X_1=0) = P(\overline{A_1} \cap \overline{A_2}) = P(\overline{A_1}) P(\overline{A_2}) = 0.1 \times 0.1 = 0.01.$$

- 26.14 j) La variable aléatoire X est la somme de 10 variables de Bernoulli indépendantes de même paramètre
- p = 0.99, donc X suit la loi binomiale de paramètre (10; 0.99).
- **26.14** k) D'après la formule de l'espérance d'une loi binomiale, on a $E(X) = 10 \times 0.99 = 9.9$.

26.15 a) La variable aléatoire X suit la loi $\mathscr{B}(10, \frac{3}{8})$. Donc, on a $P(X = 0) = \binom{10}{0} \left(\frac{3}{8}\right)^0 \left(1 - \frac{3}{8}\right)^{10 - 0} = \left(\frac{5}{8}\right)^{10}$.

26.15 b) Les événements $\{X \ge 1\}$ et $\{X = 0\}$ étant contraires, on a $P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{5}{8}\right)^{10}$.

26.15 c) Les événements $\{X \ge 2\}$ et $\{X \le 1\}$ étant contraires, on a $P(X \ge 2) = 1 - P(X \le 1)$. Or, l'événement $\{X \le 1\}$ est la réunion des deux événements incompatibles $\{X = 0\}$ et $\{X = 1\}$. On a donc

$$\begin{split} \mathbf{P}(X\leqslant 1) &= \mathbf{P}\left(\{X=0\} \cup \{X=1\}\right) = \mathbf{P}(X=0) + \mathbf{P}(X=1) \\ &= \left(\frac{5}{8}\right)^{10} + \left(\frac{10}{1}\right) \left(\frac{3}{8}\right)^{1} \left(\frac{5}{8}\right)^{9} = \left(\frac{5}{8}\right)^{10} + \frac{30}{8} \left(\frac{5}{8}\right)^{9} = \left(\frac{5}{8}\right)^{10} + 6 \left(\frac{5}{8}\right)^{10} = 7 \left(\frac{5}{8}\right)^{10}. \end{split}$$
 Donc, $\mathbf{P}(X\geqslant 2) = 1 - 7 \times \left(\frac{5}{8}\right)^{10}.$

26.15 d) On a
$$P_{(X\geqslant 1)}(X\geqslant 2) = \frac{P(\{X\geqslant 2\}\cap \{X\geqslant 1\})}{P(X\geqslant 1)} = \frac{P(X\geqslant 2)}{P(X\geqslant 1)} = \frac{1-7\times\left(\frac{5}{8}\right)^{10}}{1-\left(\frac{5}{8}\right)^{10}}.$$

26.16 a) Pour commencer, il faut montrer que X suit la loi $\mathscr{B}\left(n,\frac{1}{4}\right)$. Puis, on en déduit que $\mathrm{E}(X)=\frac{n}{4}$.

26.16 b) Puisque chacune des X bonnes réponses rapporte 3 points et chacune des n-X mauvaises réponses retire 1 point, la note est $N=3\times X-1\times (n-X)=4X-n$. Donc, $\mathrm{E}(N)=4\,\mathrm{E}(X)-n=4\frac{n}{4}-n=0$.

26.17 a) On a E(X) = np et V(X) = np(1-p). D'après l'inégalité de Bienaymé-Tchebychev, on a

$$P\left(\left|\frac{X}{n} - p\right| \geqslant \delta\right) = P(|X - np| \geqslant n\delta) \leqslant \frac{np(1-p)}{(n\delta)^2} = \frac{p(1-p)}{n\delta^2}.$$

26.17 b) La fonction polynôme du second degré $t \mapsto t(1-t)$ atteint son maximum en « $\frac{-b}{2a}$ », qui ici vaut $\frac{1}{2}$, et pour lequel elle vaut $\frac{1}{4}$.

26.17 c) D'après ce qui précède, pour que l'inégalité $P\left(\left|\frac{X}{n}-p\right|\geqslant\delta\right)\leqslant\alpha$ soit vraie, il suffit d'avoir $\frac{p(1-p)}{n\delta^2}\leqslant\alpha$. Or, d'après le résultat admis, cela est réalisé si on a $\frac{1}{4n\delta^2}\leqslant\alpha$, c'est-à-dire si $\delta^2\geqslant\frac{1}{4n\alpha}$.

On peut donc choisir $\delta = \frac{1}{2\sqrt{n\alpha}}$.

 $\textbf{26.17 d)} \ \ \text{D'après ce qui précède, on a P} \left(\left| \frac{X}{n} - p \right| \geqslant \frac{1}{2\sqrt{n\alpha}} \right) \leqslant \alpha, \ \text{donc on a P} \left(\left| \frac{X}{n} - p \right| < \frac{1}{2\sqrt{n\alpha}} \right) \geqslant 1 - \alpha.$

Or, on a

$$\left|\frac{X}{n} - p\right| < \frac{1}{2\sqrt{n\alpha}} \iff -\frac{1}{2\sqrt{n\alpha}} < p - \frac{X}{n} < \frac{1}{2\sqrt{n\alpha}} \iff \frac{X}{n} - \frac{1}{2\sqrt{n\alpha}} < p < \frac{X}{n} + \frac{1}{2\sqrt{n\alpha}}.$$

Finalement, on a $P\left(p \in \left[\frac{X}{n} - \frac{1}{2\sqrt{n\alpha}}, \frac{X}{n} + \frac{1}{2\sqrt{n\alpha}}\right]\right) \geqslant 1 - \alpha$.

26.17 e) Avec les données numériques, on a ici $\frac{X}{n} = \frac{220}{500} = 0,44$, $\alpha = 0,05$ et $\frac{1}{2\sqrt{n\alpha}} = \frac{1}{2\sqrt{25}} = 0,1$. L'intervalle I obtenu à la question précédente est donc l'intervalle]0,34, 0,54[.

Fiche nº 27. Droites dans l'espace

Réponses

27.1 a) $2^{n+1} - 1$	27.5 b)	27.12 b) oui
27.1 b) $3 \times \frac{3^n - 1}{2}$	27.6 a)	27.12 c)
$27.1 \text{ b}) \dots 3 \times {2}$	27.6 b)	$27.12 \ \mathbf{d}) \dots \qquad \boxed{x \in \mathbb{R}}$
$(4^{n+1}-1)$	27.7 a)	27.12 e)
27.1 c) $\left[\frac{4^{n+1}-1}{3}\right]$	27.7 b) $(0,-1,1)$	27.13 a)
27.1 d) $\frac{e^{n+1}-1}{e-1}$	27.8 a)	27.13 b)
	27.8 b) $x = 2$	27.13 c) impossible
27.2 a)	27.9 a)	27.13 d) $(2,-2)$ et $(-4,-8)$
27.2 b) $[]-\infty, -3] \cup [2, +\infty[]$	27.9 b)	27.14 a)
27.2 c)	27.9 c)	27.14 b) $M(-1, 10, -5)$
27.3 a)	27.10 a)	27.14 c)
27.3 b) oui	27.10 b) oui	27.14 d)
27.3 c) oui	27.10 c) oui	
27.3 d)	7	27.15 a) $m = 4, M(4, 1, 0)$
27.3 e)oui	$27.11 \dots \qquad \boxed{\frac{1}{2}}$	27.15 b)
27.4 a) oui	$\begin{pmatrix} 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \end{pmatrix}$	8
27.4 b)non	27.12 a) $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \vec{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
27 5 a)	(3) (1)	

Corrigés

27.5 a)..... oui

27.1 a) C'est la somme des termes d'une suite géométrique de raison 2 entre les rangs 0 et n.

27.1 b) C'est la somme des termes d'une suite géométrique de raison 3 entre les rangs 1 et n: on a

$$\sum_{k=1}^{n} 3^{k} = 3 \sum_{k=0}^{n-1} 3^{k} = 3 \times \frac{3^{n} - 1}{2}.$$

27.1 c) Observons que $2^{2k} = 4^k$ pour tout entier k. On calcule donc la somme des termes d'une suite géométrique de raison 4 entre les rangs 0 et n.

27.1 d) On calcule donc la somme des termes d'une suite géométrique de raison e entre les rangs 0 et n.

27.2 a) On a les équivalences : $|x-3| \le 4 \iff -4 \le x-3 \le 4 \iff -1 \le x \le 7$.

.....

- **27.2** b) On a les équivalences : $|2x+1| \ge 5 \iff (2x+1 \ge 5 \text{ ou } 2x+1 \le -5) \iff x \ge 2 \text{ ou } x \le -3.$
- **27.2** c) On a les équivalences : $|-x+3| \le 7 \iff |x-3| \le 7 \iff -7 \le x-3 \le 7 \iff -4 \le x \le 10$.

27.3 a) Ces deux vecteurs étant non nuls, \vec{u} et \vec{v} sont colinéaires si et seulement s'il existe un réel λ tel que $\vec{u} = \lambda \vec{v}$, ce qui signifie $2 = \lambda \times (-1), 4 = \lambda \times 3$ et $-6 = \lambda \times 2$. Comme $\frac{2}{-1} \neq \frac{4}{3}$, un tel nombre réel λ ne peut pas exister.

.....

27.4 a) Les vecteurs \vec{u} et \vec{v} n'étant pas colinéaires, les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement s'il existe deux réels α et β vérifiant $\vec{w} = \alpha \vec{u} + \beta \vec{v}$, ce qui donne un système de trois équations à deux inconnues :

$$\begin{cases} \alpha - \beta = 0 \\ 2\alpha + \beta = 3 \\ \alpha + 2\beta = 3. \end{cases}$$

Ici, il y a une solution évidente $\alpha = \beta = 1$.

.....

27.4 b) Le système à résoudre s'écrit $\begin{cases} -2\alpha + \beta = 1 \\ \alpha + \beta = 1 \end{cases}$. Les deux premières équations donnent $\alpha = 0$ et $\beta = 1$, $3\alpha + \beta = -3$

or le couple (0,1) ne vérifie pas la troisième équation. Il n'y a donc pas de solution au système considéré.

27.5 a) On a $\vec{w} = \frac{7}{3}\vec{u} - \frac{19}{3}\vec{v}$. Donc, les vecteurs considérés sont coplanaires.

.....

27.6 a) Toujours la même démarche : le système à résoudre s'écrit $\begin{cases} \alpha - \beta = 0 \\ 2\alpha + \beta = 3 \end{cases}$ Les deux premières équations $\alpha + 2\beta = m$

donnent $\alpha = \beta = 1$; d'où, en reportant dans la troisième, m = 3.

.....

27.6 b) On trouve comme ci-dessus $\vec{w} = -2\vec{u} + 3\vec{v}$ pour m = 7.

- **27.7** b) Là encore, il s'agit d'un système de trois équations à trois inconnues (a, b et c) à résoudre.
- 27.8 a) On cherche (a,b) de telle sorte que le vecteurs \overrightarrow{AC} soit colinéaire au vecteur \overrightarrow{AB} , c'est-à-dire qu'on

cherche un scalaire λ tel que $\begin{pmatrix} a-1\\b+2\\-1 \end{pmatrix} = \lambda \begin{pmatrix} 2\\1\\1 \end{pmatrix}$, ce qui donne $\lambda = -1$ puis a = -1 et b = -3.

27.8 b) On cherche x de telle sorte que les vecteurs \overrightarrow{AB} et \overrightarrow{EF} soient colinéaires, ce qui est réalisé si, et seulement si, $\overrightarrow{AB} = -2\overrightarrow{EF}$ et x = 2.

27.9 a) Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont jamais colinéaires!

 $\mathbf{27.9}$ c) Il suffit de regarder la colinéarité des vecteurs $\overrightarrow{\mathrm{BC}}$ et $\overrightarrow{\mathrm{BD}}$.

27.10 a) Pour commencer, remarquons que les vecteurs \overrightarrow{AB} et $\beta \overrightarrow{AC}$ ne sont pas colinéaires.

On cherche (α, β) vérifiant $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$: ce système n'admet pas de solution.

27.10 b) Les points sont bien coplanaires : en effet, on a B = D!

27.10 c) On trouve $\overrightarrow{AD} = \frac{27}{7} \overrightarrow{AB} - \frac{18}{7} \overrightarrow{AC}$.

27.11 On cherche α, β vérifiant $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$. Les deux dernières équations permettent de trouver α et β , d'où l'unique valeur de a convenable en reportant dans la première équation.

- **27.12** a) Une représentation paramétrique de la droite est $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \overrightarrow{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, ce qui donne le point C pour t = 1.
- **27.12** b) Une représentation paramétrique de la droite est $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \vec{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, ce qui donne le point C pour t = 1.
- **27.12** d) Pour tout $x \in \mathbb{R}$, le point D(1,2,x) appartient à (d).
- **27.13** a) La relation $\overrightarrow{AB} = t\overrightarrow{u}$ donne t = 0 pour les deux premières équations et impose x = -3 pour la troisième.
- **27.13** b) Cette fois-ci, on trouve t = 1; d'où x = -2.

27.13 c) La relation $\overrightarrow{AD} = t\overrightarrow{u}$ impose 1 + t = 1 et 6 - 2t = 5; comme ces deux équations sont incompatibles, aucun x ne peut convenir.

27.13 d) Si $\overrightarrow{AE} = t\overrightarrow{u}$, alors on a $\begin{cases} x = 1 + t \\ x^2 = 6 - 2t \end{cases}$. Les deux premières équations entraı̂nent $(1+t)^2 = 6 - 2t$, d'où y = -3 + t

t=1 ou t=-5. Pour t=1 on trouve x=2 et y=-2, pour t=-5 on trouve x=-4 et y=-8.

27.14 a) La première droite est décrite par la représentation paramétrique $A+t\vec{u}$, la seconde par $B+s\vec{v}$. Chercher leur intersection c'est chercher (s,t) vérifiant

$$\begin{cases} 1+t = 2+s \\ 6-2t = 6+s \\ -3+t = -2-s \end{cases}$$

Or, ce système de trois équations à deux inconnues n'a pas de solution, ce qui signifie concrètement que les droites ne se coupent pas : elles ne sont pas coplanaires.

27.14 b) On cherche (s,t) vérifiant

$$\begin{cases} 1+t = 11+s \\ 6-2t = 10 \\ -3+t = 7+s, \end{cases}$$

ce qui donne t=-2 et s=-12. On calcule ensuite les coordonnées du point d'intersection.

Fiche nº 28. Produit scalaire dans l'espace

Réponses

28.1 a) $ \frac{11}{6} $	28.7 b)
28.1 b)	28.7 c) $6 \ \vec{v}\ ^2 - 3 \ \vec{w}\ ^2 + 7 \vec{v} \cdot \vec{w}$
3	28.7 d)
28.1 c) $\frac{10}{3}$	28.8 a)
28.1 d)	28.8 b)
28.2 a)	28.8 c)
28.2 b)	28.8 d) $4 \ \vec{v}\ ^2 + 5 \ \vec{w}\ ^2 - 4\sqrt{5} \ \vec{v} \cdot \vec{w}$
28.2 c)	28.9 a)
28.2 d)	28.9 b)
28.3 a)	28.9 c)
28.3 b)oui	
28.3 c)non	28.9 d)
28.3 d) oui	28.9 e)
28.3 e)	28.9 f)
28.3 f)	28.10 a) $2x - y + 2z - 11 = 0$
28.4 a)	28.10 b) $2x - y + 2z - 10 = 0$
28.4 b)	28.10 c) $5x + 6y + 14 = 0$
28.4 c)	28.11
28.4 d)	28.12 a)
28.4 e) oui	28.12 b)
28.4 f)	28.12 c)
	28.12 d)
28.5 a) $\left \left\{ -\frac{8}{5} \right\} \right $	28.12 e)
28.5 b)	28.12 f)
28.6 a)	28.13 a)
28.6 b) $\left \left\{ -5 - \sqrt{31}, -5 + \sqrt{31} \right\} \right $	
28.7 a) $\boxed{6 \overrightarrow{v} \cdot \overrightarrow{w} - 2 \ \overrightarrow{v}\ ^2}$	28.13 b) $\begin{cases} x = 3 - 2t \\ y = 2t \\ z = 2 + t \end{cases}, t \in \mathbb{R}$

28.14 a)
$$x + 2y - z - 2 = 0$$

28.14 b)
$$H\left(\frac{4}{3}, \frac{5}{3}, \frac{8}{3}\right)$$

28.14 c)
$$\frac{7\sqrt{3}}{3}$$

28.15 a)
$$\sqrt{2t^2 - 6t + 9}$$

28.15 b)
$$\sqrt{\frac{2t-3}{\sqrt{2t^2-6t+9}}}$$

28.15 c)
$$\frac{3\sqrt{2}}{2}$$

28.16 a)
$$\begin{cases} x = 2 + t \\ y = 4 - 3t \\ z = 2t \end{cases}, \ t \in \mathbb{R}$$

28.16 b)
$$H(\frac{5}{2}, \frac{5}{2}, 1)$$

28.17 a) AM_t =
$$|t|\sqrt{a^2 + b^2 + c^2}$$

28.17 b)
$$-\frac{ax_A + by_A + cz_A + d}{a^2 + b^2 + c^2}$$

28.17 c).....
$$\frac{|ax_{A} + by_{A} + cz_{A} + d|}{\sqrt{a^{2} + b^{2} + c^{2}}}$$

28.18 d)
$$\frac{\sqrt{6}}{6}$$

28.19 a)
$$\begin{cases} x = 4 - 2t \\ y = 2 + t \\ z = 2 + t \end{cases}, \ t \in \mathbb{R}$$

28.19 b)
$$\frac{5\sqrt{3}}{3}$$

Corrigés

28.1 a) On a
$$P(1) = 1^2 + \frac{1}{2} \times 1 + \frac{1}{3} = \frac{6}{6} + \frac{3}{6} + \frac{2}{6} = \frac{11}{6}$$
.

28.1 b) On a
$$P(-4) = (-4)^2 + \frac{1}{2} \times (-4) + \frac{1}{3} = \frac{48}{3} + \frac{-6}{3} + \frac{1}{3} = \frac{43}{3}$$
.

28.1 c) On a
$$P\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)^2 + \frac{1}{2} \times \frac{3}{2} + \frac{1}{3} = \frac{9}{4} + \frac{3}{4} + \frac{1}{3} = \frac{12}{4} + \frac{1}{3} = 3 + \frac{1}{3} = \frac{10}{3}$$
.

.....

28.1 d) On a
$$P(\sqrt{2}) = (\sqrt{2})^2 + \frac{1}{2}\sqrt{2} + \frac{1}{3} = 2 + \frac{1}{3} + \frac{1}{2}\sqrt{2} = \frac{7}{3} + \frac{1}{2}\sqrt{2}$$
.

28.2 a) On a
$$u_1 = u_0 + 0 + 1 = 5$$
.

28.2 b) On a
$$u_2 = u_1 + 1 + 1 = 7$$
, d'où $u_3 = u_2 + 2 + 1 = 10$.

28.2 c) On a
$$v_1 = v_0 + 0 = 4$$
, d'où $v_2 = v_1 + 1 = 5$ et $v_3 = v_2 + 2 = 7$.

.....

28.2 d) On a
$$w_1 = w_0 - 0 + 1 = 5$$
, d'où $w_2 = w_1 - 1 + 1 = 5$ et $w_3 = w_2 - 2 + 1 = 4$.

28.3 a) On a
$$\vec{a} \cdot \vec{b} = 0 \times 14 + 3 \times (-1) + (-4) \times (-8) = 29$$
. Comme $\vec{a} \cdot \vec{b} \neq 0$, \vec{a} et \vec{b} ne sont pas orthogonaux.

28.3 b) On a
$$\vec{a} \cdot \vec{c} = 0 \times 2 + 3 \times 4 + (-4) \times 3 = 0$$
, on a ainsi montré que \vec{a} et \vec{c} sont orthogonaux.

28.4 a) Remarquons pour commencer que
$$\sqrt{2} \times \sqrt{3} = \sqrt{6}$$
 et qu'ainsi $\sqrt{2} \times \sqrt{6} = 2\sqrt{3}$ et $\sqrt{3} \times \sqrt{6} = 3\sqrt{2}$.

On a
$$\vec{a} \cdot \vec{b} = 4 \times (-2) + (-\sqrt{6}) \times (\sqrt{3} + \sqrt{6}) + 3\sqrt{2} \times (1 - 3\sqrt{2}) = -8 - 3\sqrt{2} - 6 + 3\sqrt{2} - 18 = -32$$
.

On a montré que $\vec{a} \cdot \vec{b} \neq 0$ donc que \vec{a} et \vec{b} ne sont pas orthogonaux.

28.4 b) On a
$$\vec{a} \cdot \vec{c} = 4 \times 2 + (-\sqrt{6}) \times \sqrt{3} + 3\sqrt{2} \times 1 = 8 - 3\sqrt{2} + 3\sqrt{2} = 8 \neq 0$$
.

28.4 c) On a
$$\vec{a} \cdot \vec{d} = [4 \times (-2\sqrt{3})] + [(-\sqrt{6}) \times (3 - \sqrt{2})] + [3\sqrt{2} \times (\sqrt{3} + \sqrt{6})]$$

$$= [-8\sqrt{3}] + [-3\sqrt{6} + \sqrt{6} \times \sqrt{2}] + [3\sqrt{2} \times \sqrt{3} + 3\sqrt{2} \times \sqrt{6}]$$

$$= [-8\sqrt{3}] + [-3\sqrt{6} + 2\sqrt{3}] + [3\sqrt{6} + 6\sqrt{3}] = 0.$$

28.4 d) On a
$$\vec{b} \cdot \vec{c} = -2 \times 2 + (\sqrt{3} + \sqrt{6}) \times \sqrt{3} + (1 - 3\sqrt{2}) \times 1 = -4 + 3 + 3\sqrt{2} + 1 - 3\sqrt{2} = 0$$
.

28.4 e) On a
$$\vec{b} \cdot \vec{d} = [-2 \times (-2\sqrt{3})] + [(\sqrt{3} + \sqrt{6}) \times (3 - \sqrt{2})] + [(1 - 3\sqrt{2}) \times (\sqrt{3} + \sqrt{6})]$$

$$= [4\sqrt{3}] + [3\sqrt{3} - \sqrt{3} \times \sqrt{2} + 3\sqrt{6} - \sqrt{6} \times \sqrt{2}] + [\sqrt{3} + \sqrt{6} - 3\sqrt{2} \times \sqrt{3} - 3\sqrt{2} \times \sqrt{6}]$$

$$= [4\sqrt{3}] + [3\sqrt{3} - \sqrt{6} + 3\sqrt{6} - 2\sqrt{3}] + [\sqrt{3} + \sqrt{6} - 3\sqrt{6} - 6\sqrt{3}] = 0.$$

28.4 f) On a
$$\vec{c} \cdot \vec{d} = 2 \times (-2\sqrt{3}) + \sqrt{3} \times (3 - \sqrt{2}) + 1 \times (\sqrt{3} + \sqrt{6}) = -4\sqrt{3} + 3\sqrt{3} - \sqrt{6} + \sqrt{3} + \sqrt{6} = 0.$$

28.5 a) On a
$$\vec{v} \cdot \vec{w} = 4(t+3) + 6t + 4 = 10t + 16$$
. On en déduit que $\vec{v} \cdot \vec{w} = 0$ si, et seulement si, $t = -\frac{8}{5}$.

28.5 b) On a
$$\vec{v} \cdot \vec{w} = 2t^2 + (2+t)(2-t) - 5 = (t-1)(t+1)$$
, donc $\vec{v} \cdot \vec{w} = 0$ si, et seulement si, $t = -1$ ou $t = 1$.

28.6 a) On a
$$\vec{v} \cdot \vec{w} = 4t + t + t^2 = t^2 + 5t = t(t+5)$$
, donc $\vec{v} \cdot \vec{w} = 0$ si, et seulement si, $t = 0$ ou $t = -5$.

28.6 b) On a
$$\vec{v} \cdot \vec{w} = (t-1)(t+1) + (t+2)^2 - (t-3)^2 = t^2 + 10t - 6 = (t+5)^2 - 31 = (t+5-\sqrt{31})(t+5+\sqrt{31}),$$
 donc $\vec{v} \cdot \vec{w} = 0$ si, et seulement si, $t = -5 - \sqrt{31}$ ou $t = -5 + \sqrt{31}$.

.....

28.7 a) On a
$$2\vec{v} \cdot (3\vec{w} - \vec{v}) = 6\vec{v} \cdot \vec{w} - 2\vec{v} \cdot \vec{v} = 6\vec{v} \cdot \vec{w} - 2 \|\vec{v}\|^2$$
.

28.7 b) On a
$$(\overrightarrow{v} + 2\overrightarrow{w}) \cdot (3\overrightarrow{w} - \overrightarrow{v}) = 3\overrightarrow{v} \cdot \overrightarrow{w} - \overrightarrow{v} \cdot \overrightarrow{v} + 6\overrightarrow{w} \cdot \overrightarrow{w} - 2\overrightarrow{w} \cdot \overrightarrow{v} = 6||\overrightarrow{w}||^2 + \overrightarrow{v} \cdot \overrightarrow{w} - ||v||^2$$
.

28.7 c) On a
$$(3\vec{v} - \vec{w}) \cdot (2\vec{v} + 3\vec{w}) = 6\vec{v} \cdot \vec{v} + 9\vec{v} \cdot \vec{w} - 2\vec{w} \cdot \vec{v} - 3\vec{w} \cdot \vec{w} = 6||v||^2 - 3||w||^2 + 7\vec{v} \cdot \vec{w}$$
.

28.7 d) On a
$$(\vec{v} + 3\vec{w}) \cdot (3\vec{w} - \vec{v}) = (3\vec{w} + \vec{v}) \cdot (3\vec{w} - \vec{v}) = ||3\vec{w}||^2 - ||\vec{v}||^2 = 9||\vec{w}||^2 - ||\vec{v}||^2$$
.

28.8 a) On a
$$\|\vec{v} + 2\vec{w}\|^2 = (\vec{v} + 2\vec{w})^2 = \vec{v}^2 + 2 \times (\vec{v} \cdot (2\vec{w})) + (2\vec{w})^2 = \|\vec{v}\|^2 + 4\vec{v} \cdot \vec{w} + 4\|\vec{w}\|^2$$
.

28.8 b) On a
$$||3\vec{v} - \vec{w}||^2 = ||3\vec{v}||^2 - 2 \times (3\vec{v}) \cdot \vec{w} + ||\vec{w}||^2 = 9||\vec{v}||^2 - 6\vec{v} \cdot \vec{w} + ||\vec{w}||^2$$
.

28.8 c) On a
$$||2\vec{v} + \sqrt{3}\vec{w}||^2 = ||2\vec{v}||^2 + 2 \times (2\vec{v}) \cdot (\sqrt{3}\vec{w}) + ||\sqrt{3}\vec{w}||^2 = 4 ||\vec{v}||^2 + 4\sqrt{3}\vec{v} \cdot \vec{w} + 3||\vec{w}||^2$$
.

$$\text{On a } ||2v + \sqrt{3}w|| = ||2v|| + 2 \times (2v) \cdot (\sqrt{3}w) + ||\sqrt{3}w|| = 4 ||v|| + 4\sqrt{3}v \cdot w + 3||w|| .$$

28.9 a) On a
$$(2\vec{v} - 3\vec{w}) \cdot (3\vec{v} + 2\vec{w}) = 6||\vec{v}||^2 - 6||\vec{w}||^2 - 5\vec{v} \cdot \vec{w} = 6 \times 1^2 - 6 \times 3^2 - 5 \times 0 = -48$$
.

28.9 b) On a
$$(2\vec{v} - 3\vec{w}) \cdot (3\vec{u} + 2\vec{w}) = 6\vec{v} \cdot \vec{u} + 4\vec{v} \cdot \vec{w} - 9\vec{w} \cdot \vec{u} - 6||\vec{w}||^2 = -6 \times 3^2 = -54$$
.

28.9 c) On a
$$(\vec{u} + \vec{w}) \cdot (2\vec{u} - 2\vec{w}) = 2\|\vec{u}\|^2 - 2\|\vec{w}\|^2 = 2 \times (\sqrt{2})^2 - 2 \times 3^2 = -14$$
.

28.9 d) On a
$$||2\vec{v} + 3\vec{w}||^2 = 4||\vec{v}||^2 + 9||\vec{w}||^2 + 12\vec{v} \cdot \vec{w} = 4 \times 1^2 + 9 \times 3^2 + 12 \times 0 = 85.$$

28.9 e) On a
$$\|\sqrt{2}\vec{u} + \vec{w}\|^2 = 2\|\vec{u}\|^2 + \|\vec{w}\|^2 + 2\sqrt{2} \times \vec{u} \cdot \vec{w} = 2 \times (\sqrt{2})^2 + 3^2 + 2 \times 0 = 13.$$

28.9 f) On a
$$\|\vec{u} + \vec{v} + \vec{w}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + \|\vec{w}\|^2 + 2\vec{u} \cdot \vec{v} + 2\vec{u} \cdot \vec{w} + 2\vec{v} \cdot \vec{w} = \|\vec{u}\|^2 + \|\vec{v}\|^2 + \|\vec{w}\|^2 = 12.$$

28.10 a) Soit M(x, y, z) un point de l'espace. Les assertions suivantes sont équivalentes :

- M appartient à \mathcal{P} .
- $\overrightarrow{AM} \begin{pmatrix} x-2 \\ y-5 \\ z-6 \end{pmatrix}$ et $\overrightarrow{n} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ sont orthogonaux.
- $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.
- 2(x-2) (y-5) + 2(z-6) = 0.
- 2x u + 2z 11 = 0

On a montré que \mathcal{P} admet pour équation 2x - y + 2z - 11 = 0.

28.10 b) Le plan \mathcal{P} admet \overrightarrow{n} pour vecteur normal donc \mathcal{P} admet une équation de la forme 2x - y + 2z + d = 0 avec d réel. De plus, A(1, -2, 3) appartient à \mathcal{P} donc $2 \times 1 - (-2) + 2 \times 3 + d = 0$ donc d = -10. Le plan \mathcal{P} admet pour équation 2x - y + 2z - 10 = 0.

The plant f withher point equation 2u - g + 2z = 10

28.10 c) Pour cette question et la suivante, on procède de façon identique à la question a) ou à la question b).

28.11 On substitue les coordonnées de A dans le membre de droite des différentes équations :

$$1+2\times 2+3=8, \qquad 1+0-2\times 2+3=0, \qquad 1+0+2\times 2-5=0, \qquad 1+2\times 2-5=0.$$

On en déduit que la réponse (a) n'est pas l'équation d'un plan passant par A.

Les plans dont les équations sont les réponses b, c et d admettent respectivement pour vecteurs normaux :

$$\overrightarrow{n_b}\begin{pmatrix}1\\1\\-2\end{pmatrix}$$
, $\overrightarrow{n_c}\begin{pmatrix}1\\1\\2\end{pmatrix}$ et $\overrightarrow{n_d}\begin{pmatrix}1\\0\\2\end{pmatrix}$. Le vecteur $\overrightarrow{n_b}$ est le seul de ces vecteurs qui soit colinéaire à $\overrightarrow{AB}\begin{pmatrix}1\\1\\-2\end{pmatrix}$.

La seule réponse correcte est donc la réponse b.

28.12 a) Les plans \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_3 et \mathcal{P}_4 admettent respectivement $\overrightarrow{n_1}\begin{pmatrix}1\\1\\1\end{pmatrix}$, $\overrightarrow{n_2}\begin{pmatrix}2\\-1\\0\end{pmatrix}$, $\overrightarrow{n_3}\begin{pmatrix}1\\-2\\1\end{pmatrix}$, $\overrightarrow{n_4}\begin{pmatrix}1\\2\\1\end{pmatrix}$ pour vecteurs

normaux. On a ainsi $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 1 \times 2 + 1 \times (-1) + 1 \times 0 = 1$. Les vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas orthogonaux donc les plans \mathcal{P}_1 et \mathcal{P}_2 ne sont pas perpendiculaires. On procède de façon identique pour les questions suivantes.

28.13 b) Soit M(x, y, z) un point de l'espace. M appartient à (BC) si, et seulement si, $\overrightarrow{BC}\begin{pmatrix} -2\\2 \end{pmatrix}$ et $\overrightarrow{BM}\begin{pmatrix} x-3\\y-0 \end{pmatrix}$

sont colinéaires, c'est-à-dire si, et seulement si, il existe un réel t tel que $\begin{cases} x-3=-2t \\ y=2t \\ z-2=t \end{cases}$, c'est-à-dire $\begin{cases} x=3-2t \\ y=2t \\ z=2+t \end{cases}$

28.13 c) Soit M(x, y, z) un point de l'espace. Les propositions suivantes sont équivalentes :

- M appartient à \mathcal{P} .
- \overrightarrow{AM} $\begin{pmatrix} x-3\\y-4\\z-12 \end{pmatrix}$ et \overrightarrow{BC} $\begin{pmatrix} -2\\2\\1 \end{pmatrix}$ sont orthogonaux.
- $\overrightarrow{AM} \cdot \overrightarrow{BC} = 0$.
- -2(x-3) + 2(y-4) + z 12 = 0.
- -2x + 2y + z 14 = 0.

On a montré que \mathcal{P} admet pour équation -2x + 2y + z - 14 = 0.

28.13 d) Le point H appartient à (BC) donc il existe un réel t tel que ses coordonnées soient H(3-2t, 2t, 2+t). De plus, H appartient à \mathcal{P} donc $-2(3-2t)+2\times 2t+2+t-14=0$. On en déduit que t=2 et H(-1,4,4).

.....

28.13 e) On a AH =
$$\sqrt{(-1-3)^2 + (4-4)^2 + (4-12)^2} = \sqrt{80} = 4\sqrt{5}$$
.

28.14 a) Le vecteur $\vec{n} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ est un vecteur directeur de d et un vecteur normal à \mathcal{P} , on en déduit que \mathcal{P} admet

une équation de la forme x+2y-z+d=0. De plus, $\mathcal P$ passe par A(5,0,3) donc $5+2\times 0-3+d=0$ et d=-2. Le plan $\mathcal P$ admet x+2y-z-2=0 pour équation.

28.14 b) Le point H appartient à d donc il existe un réel t tel que H(3+t,5+2t,1-t). Le point H appartient à \mathcal{P} donc 3+t+2(5+2t)-(1-t)-2=0. On en déduit que $t=-\frac{5}{3}$ et que $H\left(\frac{4}{3},\frac{5}{3},\frac{8}{3}\right)$.

28.14 c) On a AH =
$$\sqrt{\left(\frac{4}{3} - 5\right)^2 + \left(\frac{5}{3} - 0\right)^2 + \left(\frac{8}{3} - 3\right)^2} = \sqrt{\frac{147}{9}} = \frac{7\sqrt{3}}{3}$$
.

28.15 a) On a AM =
$$\sqrt{(t+1-2)^2 + (2-4)^2 + (2-t-0)^2} = \sqrt{(t-1)^2 + 4 + (t-2)^2} = \sqrt{2t^2 - 6t + 9}$$
.

28.15 b) La fonction
$$f$$
 est dérivable sur \mathbb{R} et, pour tout réel t , on a $f'(t) = \frac{4t-6}{2\sqrt{2t^2-6t+9}} = \frac{2t-3}{\sqrt{2t^2-6t+9}}$.

28.15 c) En étudiant le signe de f', on montre que f admet un minimum en $t = \frac{3}{2}$.

Ce minimum vaut $f\left(\frac{3}{2}\right) = \frac{3\sqrt{2}}{2}$. La distance de A à d est donc égale à $\frac{3\sqrt{2}}{2}$.

28.16 a) Le plan \mathcal{P} admet pour vecteur normal $\vec{n} \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$. La droite (AH) passe par A et admet pour vecteur

directeur \vec{n} , on en déduit une représentation paramétrique de (AH) : $\begin{cases} x=2+t \\ y=4-3t \\ z=2t \end{cases}$, $t \in \mathbb{R}$.

28.16 b) D'après la question précédente, il existe un réel t tel que H(2+t,4-3t,2t). De plus, H appartient à \mathcal{P} donc $2+t-3(4-3t)+2\times 2t+3=0$ d'où $t=\frac{1}{2}$ et $H\left(\frac{5}{2},\frac{5}{2},1\right)$.

28.17 a) On a AM_t =
$$\sqrt{(x_A + at - x_A)^2 + (y_A + bt - y_A)^2 + (z_A + ct - z_A)^2} = \sqrt{(at)^2 + (bt)^2 + (ct)^2}$$

= $\sqrt{(a^2 + b^2 + c^2)t^2} = |t|\sqrt{a^2 + b^2 + c^2}$.

28.17 b) Les propositions suivantes sont équivalentes :

- $M_t(x_A + at, y_A + bt, z_A + ct)$ appartient à \mathcal{P} ; On a ainsi $t_H = -\frac{ax_A + by_A + cz_A + d}{a^2 + b^2 + c^2}$.
- $a(x_A + at) + b(y_A + bt) + c(z_A + ct) + d = 0$;
- $(a^2 + b^2 + c^2)t + ax_A + by_A + cz_A + d = 0.$

28.17 c) La distance de A à
$$\mathcal{P}$$
 est : $AM_{t_H} = \left| -\frac{ax_A + by_A + cz_A + d}{a^2 + b^2 + c^2} \right| \sqrt{a^2 + b^2 + c^2} = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$

28.18 a) On a
$$\overrightarrow{BF} \cdot \overrightarrow{BH} = (\overrightarrow{BP} + \overrightarrow{PF}) \cdot \overrightarrow{BH} = \overrightarrow{BP} \cdot \overrightarrow{BH} + \overrightarrow{PF} \cdot \overrightarrow{BH} = BP \times BH + 0.$$

28.18 b) Dans le triangle DAB rectangle en A, on a $BA^2 + AD^2 = BD^2$, d'où $BD^2 = 5$.

Dans le triangle DHB rectangle en D, on a $BD^2 + DH^2 = BH^2$, d'où $BH^2 = 6$ et $BH = \sqrt{6}$.

28.18 c) On a
$$\overrightarrow{BF} \cdot \overrightarrow{BH} = \overrightarrow{BF} \cdot (\overrightarrow{BF} + \overrightarrow{FH}) = ||\overrightarrow{BF}||^2 + \overrightarrow{BF} \cdot \overrightarrow{FH} = 1 + 0$$
.

28.18 d) D'une part, on a
$$\overrightarrow{BF} \cdot \overrightarrow{BH} = 1$$
, d'autre part on a $\overrightarrow{BF} \cdot \overrightarrow{BH} = BP \times BH$. Ainsi $\sqrt{6} \times BP = 1$ et $BP = \frac{1}{\sqrt{6}}$

28.18 e) Dans BPF, on a BF² = BP² + PF², d'où PF² = BF² - BP² =
$$1^2 - \left(\frac{\sqrt{6}}{6}\right)^2 = \frac{5}{6}$$
 et PF = $\sqrt{\frac{5}{6}} = \frac{\sqrt{30}}{6}$.

28.19 b) Le plan \mathcal{P} perpendiculaire à (BC) et passant par A admet \overrightarrow{BC} pour vecteur directeur, on en déduit que \mathcal{P} admet pour équation cartésienne : -2x + y + z = 0.

En utilisant la représentation paramétrique de (BC) et l'équation cartésienne de \mathcal{P} , on obtient les coordonnées du projeté orthogonal H de A sur (BC) : $H\left(\frac{8}{3}; \frac{8}{3}; \frac{8}{3}\right)$. On en déduit $AH = \frac{5\sqrt{3}}{3}$.

28.19 c) On a BC =
$$\sqrt{6}$$
 et AH = $\frac{5\sqrt{3}}{3}$. On en déduit que l'aire de ABC est égale à $\frac{BC \times AH}{2} = \frac{5\sqrt{2}}{2}$.

Fiche no 29. Plans et sphères dans l'espace

Réponses

Réponses		
29.1 a)	29.6 d) $x = 1$	
29.1 b)	29.7 a) $\vec{n} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	
29.2 a)	29.7 b) $\overrightarrow{n} \begin{pmatrix} \frac{2}{3} \\ -\frac{5}{3} \end{pmatrix}$	
29.2 b)		
29.2 c)	29.8 a) $3x - 2y + 4z = -13$ 29.8 b) $2x - y + 3z = -9$	
29.3 a)	29.9 a) $3x - 2y + 2z = -7$	
29.3 b)	29.9 b) $x - 2y + 4z = -15$	
29.3 c)	29.10 a) $x + y = 1$	
29.3 d)	29.10 b) $x + y = 1$	
29.4 a) $x = 1$	29.10 c)	
29.4 b)	29.11 $ \frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1 $	
29.4 c) $2x + 3y = 8$	29.12 a) $x = -1$	
29.5 a) $ \vec{n} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} $	29.12 b)	
29.5 b) $\overrightarrow{n} \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$	29.13 b)	
29.5 c) \overrightarrow{n} $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	29.13 c)	
29.5 d) $ \vec{n} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} $	29.14 b)	
29.6 a) $z = 3$		
29.6 b) $y = 2$		
29.6 c) $y = 2$		

```
29.19 a)..... \Omega(0,0,0) et R=2
29.15 b)..... A(2,0,-1) et \vec{u} 1
                                                    29.19 c) . . . . . . . . \Omega(-1, 2, 3) et R = \sqrt{13}
29.15 c) . . . . . . . . . A(-1, 1, 0) et \vec{u} = 0
                                                   29.20 a)..... \Omega\left(\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}\right) et R = 2
                                                    29.20 b) .......... \Omega(\cos(\alpha), \sin(\alpha), 0) et R = 2
29.16 a) . . . . . . . . . A(-6, 12, 0), \vec{u}
                                                   29.21 a) ... x^2 + y^2 + z^2 - 2x - 4y - 2z + 5 = 0
                                                   29.21 b)..... \begin{bmatrix} x & = 1+t \\ y & = 1-t \text{ où } t \text{ décrit } \mathbb{R} \\ z = 1+3t \end{bmatrix}
29.16 b) . . . . . . . . . A(9, -3, 0), \vec{u} 3
                                                   29.21 c) ...... M_1(1,1,1) et M_2\left(\frac{9}{11},\frac{13}{11},\frac{5}{11}\right)
29.16 c) . . . . . . . . A(3,4,0), \vec{u}
                                                   29.16 d)...... A 2
                                                   29.22 b) ..... M\left(\frac{1}{2}, \frac{5}{2}, 1 + \frac{\sqrt{2}}{2}\right)
29.17 a) . . . . . . . . . A(2,-1,-1)
                                                   29.23 a) . . . . . . . . . . . . |\{M(-4, 52, 34)\}|
                                                                la droite définie par A(-72, -42, 0)
29.23 b)... et dirigée par le vecteur \vec{u} \begin{pmatrix} 4 \\ 1 \end{pmatrix}
29.17 c) . . . . . A(25, -4, 1)
29.18 a).. x^2 + y^2 + z^2 - 2x - 4y - 6z - 35 = 0
                                                    29.18 b) ... x^2 + y^2 + z^2 - 2x + 4y - 2z + 2 = 0
```

Corrigés

29.2 a) Un trinôme est du signe de « a » à l'extérieur de l'intervalle des racines! Et ici, les racines sont $\frac{3}{2}$ et -1.

.....

29.2 b) Ici, le coefficient « a » vaut -2.

29.8 a) On détermine un vecteur $\vec{n} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ orthogonal à \vec{u} et \vec{v} . Les nombres x, y, z vérifient $\begin{cases} 4x + 2y - 2z = 0 \\ 4y + 2z = 0 \end{cases}$

ce qui donne $\begin{cases} x &= \frac{3}{4}z\\ y = -\frac{1}{2}z \end{cases}$ On cherche un (seul) vecteur normal, on choisit donc par exemple z=4, ce qui donne x=3 et y=-2. Ainsi, une équation du plan est de la forme 3x-2y+4z=d. Puis, on détermine d en écrivant que A appartient au plan.

.....

29.8 b) On détermine un vecteur $\vec{n} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ orthogonal à \vec{u} et \vec{v} . Les nombres x, y, z vérifient $\begin{cases} x + 5y + z = 0 \\ 2x + 4y = 0 \end{cases}$

ce qui donne x = -2y avec la seconde équation, d'où z = -x - 5y = -3y. On cherche un (seul) vecteur normal : on choisit par exemple y = -1, ce qui donne x = 2 et z = 3; donc, une équation du plan est de la forme 2x - y + 3z = d. Puis, on détermine d en écrivant que A appartient au plan.

29.9 a) On procède comme précédemment. On trouve le système $\begin{cases} 4x + y - 5z = 0 \\ 2x - 2y - 5z = 0 \end{cases}$, donc $\begin{cases} 4x - y = 5z \\ 2x - 2y = 5z \end{cases}$.

En choisissant z=2, on trouve l'équation 3x-2y+2z=d pour le plan. On détermine d en utilisant le point A.

29.9 b) On détermine un vecteur $\overrightarrow{n} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ orthogonal à \overrightarrow{u} et \overrightarrow{v} , ainsi x, y, z vérifient $\begin{cases} 2x + 3y + z = 0 \\ 4x + 8y + 3z = 0 \end{cases}$, ce qu'on

choisit de réécrire $\begin{cases} 2x+z=-3y\\ 4x+3z=-8y \end{cases}$, d'où z=-2y et $x=-\frac{1}{2}y$. On cherche un (seul) vecteur normal : on choisit par exemple y=-2, ce qui donne x=1 et z=4; donc, une équation du plan est de la forme x-2y+4z=d. Puis, on détermine d en écrivant que A appartient au plan.

.....

- **29.12** a) Ce plan passe par I(-1,0,0) et est orthogonal à $\overrightarrow{AB} \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix}$.
- **29.12** b) Ce plan passe par I(3,0,-3) et est orthogonal à $\overrightarrow{AB}\begin{pmatrix} 2\\-2\\0 \end{pmatrix}$
- **29.13** a) Une représentation paramétrique de la droite est donnée par $A + \lambda \vec{u}$. La droite et le plan ont un point d'intersection si, et seulement si, l'équation $(1 + \lambda) + 2(2 \lambda) = 6$ admet une solution, ce qui est le cas ici (pour $\lambda = -1$). On en déduit les coordonnées du point d'intersection $\begin{pmatrix} 1 + \lambda \times 1 \\ 2 + \lambda \times (-1) \\ -1 + \lambda \times 2 \end{pmatrix}$.
- **29.13** b) On trouve $\lambda = \frac{7}{4}$.
- **29.13** c) Le point A n'appartient pas au plan mais la droite est parallèle au plan; en effet le vecteur $\vec{n} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, qui est un vecteur normal au plan, est orthogonal au vecteur \vec{u} . Ainsi, la droite est strictement parallèle au plan.

.....

29.14 a) On trouve $\lambda = \frac{3}{2}$.

29.14 b) Là encore, le vecteur directeur de la droite (d) est orthogonal au vecteur $\vec{n} \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$, donc la droite est parallèle au plan. Mais, ici, le point A appartient au plan, donc la droite est toute entière incluse dans le plan.

- **29.15** a) Il suffit de se représenter la position de ces deux plans : ils sont tous deux parallèles au vecteur $\vec{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
- 29.16 a) L'intersection de ces deux plans est une droite, dont les points vérifient $\begin{cases} x+y-2z=6\\ y+z=12 \end{cases}$, qu'on écrit plutôt $\begin{cases} x & =-6+3z\\ y=12-z \end{cases}$. Comme il n'y a aucune condition sur z, on obtient la droite donnée par la représentation
- y = 12 zparamétrique A $\begin{pmatrix} -6\\12\\0 \end{pmatrix} + z\vec{u} \begin{pmatrix} 3\\-1\\1 \end{pmatrix}$.
- **29.16** b) L'intersection de ces deux plans est une droite, dont les points vérifient $\begin{cases} x+y-2z=6\\ x-y+z=12 \end{cases}$ et donc, après
- calcul, $\begin{cases} x & = 9 + \frac{1}{2}z \\ y = -3 + \frac{3}{2}z \end{cases}$. On obtient la droite donnée par la représentation paramétrique $A \begin{pmatrix} 9 \\ -3 \\ 0 \end{pmatrix} + z\vec{u} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$.
- **29.17** a) La deuxième équation est très pratique, on est donc ramené à $\begin{cases} x+y=1\\ x-y=3 \text{ dont la résolution est aisée.} \end{cases}$
- **29.17** c) Foin de substitutions hasardeuses! Éliminons x par différence entre les deux premières équations : on obtient $\begin{cases} x + 2y 3z = 6 \\ 3y 2z = 4 \end{cases}$. Les deux dernières lignes permettent de déterminer y et z; on déduit x avec la première.
- **29.18** a) On rappelle que la sphère de centre Ω et de rayon R est l'ensemble des points M vérifiant $\Omega M = R$. On en obtient une équation cartésienne en écrivant $\Omega M^2 = R^2$, c'est-à-dire $(x-1)^2 + (y-2)^2 + (z-3)^2 = 49$.
- **29.19** b) L'équation $x^2 + y^2 + z^2 + 2x 4y 3z + 10 = 0$ est équivalente à $(x+1)^2 + (y-2)^2 + \left(z \frac{3}{2}\right)^2 + \frac{11}{4} = 0$, et cette équation n'a pas de solution.
- **29.19** c) L'équation $x^2 + y^2 + z^2 + 2x 4y 6z + 1 = 0$ est équivalente à $(x+1)^2 + (y-2)^2 + (z-3)^2 13 = 0$.
- **29.20** a) On a $x^2 + y^2 + z^2 x 3y + z \frac{5}{4} = 0 \iff \left(x \frac{1}{2}\right)^2 + \left(y \frac{3}{2}\right)^2 + \left(z + \frac{1}{2}\right)^2 + \frac{11}{4} \frac{5}{4} = 0.$
- 29.21 c) Les points d'intersection sont déterminés par les éventuelles solutions de l'équation

$$(1+t)^2 - 2(1+t) + (1-t)^2 - 4(1-t) + (1+3t)^2 - 2(1+3t) + 5 = 0$$

d'inconnue t, dont les solutions sont t = 0 et $t = -\frac{2}{11}$.

- **29.22** a) La même démarche que ci-dessus amène à l'équation $5t^2 2t + 21 = 0$, qui n'a pas de solution réelle.
- **29.22** b) On trouve l'équation $2t^2 + 6t + \frac{9}{2} = 0$, dont la solution est $t = -\frac{3}{2}$. La droite est tangente à la sphère.
- **29.23** b) La troisième équation vérifie $E_3 = E_1 + 2E_2$, elle ne sert donc à rien. On se retrouve donc à déterminer

l'intersection de deux plans non parallèles, ce qui donne une droite.
29.24 a) $E_3 - (E_1 + E_2)$ est une équation impossible!