Interro de cours n°5 (10mn) PCSI 3
Codez votre numéro d'étudiant et inscrivez votre nom et prénom ci-dessous :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Question 1 On considère un point matériel M de masse m ayant un mouvement circulaire uniforme de rayon R et une vitesse angulaire ω . Représenter la trajectoire du point M puis définir le système de coordonnées adapté à l'étude du mouvement de M . Exprimer enfin les vecteurs position, vitesse et accélération dans la base choisie en fonction de R , ω et des vecteurs unitaires de la base choisie.
Question 2 \clubsuit On considère un système en mouvement dans le référentiel terrestre en contact avec un support plan solide faisant un angle α avec l'horizontale. On appelle $\overrightarrow{R} = \overrightarrow{R}_T + \overrightarrow{R}_N$ la force exercée par le support sur le système. Cochez les affirmations justes si elles existent. La force de frottement solide \overrightarrow{R}_T est proportionnelle à la vitesse du système. Dans le cas où le système glisse sur le support $ \overrightarrow{R}_T = f \overrightarrow{R}_N $. La norme de la réaction normale est toujours égale à celle du poids
Question 3 \(\blacktriangle \) On considère une voiture se déplaçant suivant une route rectiligne d'axe (Ox) . La droite d'équation $y_G = b$ où y_G est l'ordonnée du centre d'inertie de la voiture et b une constante homogène à des mètres est l'équation de la trajectoire de la voiture. L'accélération de la voiture dans le référentiel terrestre s'écrit $\vec{a} = \vec{0}$ lorsque la vitesse de la voiture est constante. Le vecteur vitesse de la voiture est indépendant du référentiel choisi. Lorsque la voiture freine la projection de l'accélération suivant l'axe (Ox) est négative. L'équation horaire de la voiture lors d'un mouvement uniforme peut s'écrire : $x(t) = x_0 + v_0 t$ avec $x_0 = x(t = 0)$ et v_0 la vitesse de la voiture à l'instant $t = 0$.

CORRECTION

•	Donner l'expression de la antes de $r = M_1 M_2$. On dé	0		
mi ci miz dista	miles de $r = m_1 m_2$. On de	mma soigneuseme	one les différences gr	 c Réservé