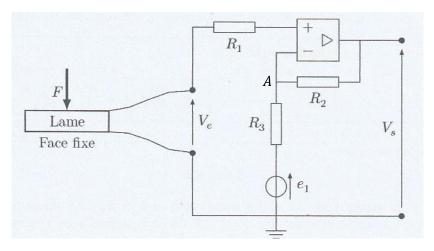
CLASSES DE PCSI 1 et 3 – Corrigé du D.S N° 6 DE PHYSIQUE

Problème : étude et applications de matériaux piézoélectriques

Q 1. Dans un ALI idéal, l'impédance d'entrée est supposée infinie ce qui nous permet de faire l'hypothèse que $i_+ = i_- = 0$. En régime linéaire, la tension différentielle $\varepsilon = V_+ - V_- = 0$ donc $V_+ = V_-$

Schéma du circuit :



Appliquons la loi des nœuds exprimées en termes de potentiels, au point A:

$$\frac{e_1}{R_3} + \frac{V_S}{R_2} = V_A \cdot \left(\frac{1}{R_3} + \frac{1}{R_2}\right)$$

Avec $V_A = V_- = V_+ = V_e$ (avec $i_+ = 0$):

$$\frac{e_1}{R_3} + \frac{V_s}{R_2} = V_e \cdot \left(\frac{1}{R_3} + \frac{1}{R_2}\right)$$

On vérifie que :

$$V_e = \frac{R_2.\,e_1 + R_3.\,V_s}{R_2 + R_3}$$

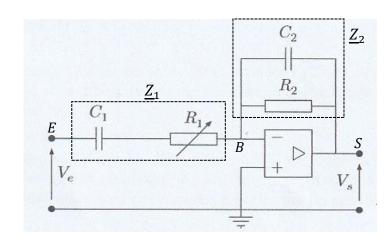
Q 2. A.N. : $V_e = 0.95 V$.

Q 3. Avec $q = C.V_e = K.F$:

$$F = \frac{C.V_e}{K}$$

A.N. : F = 0.76 N

Q 4. Schéma du circuit :



En adoptant les notations complexes, appliquons la loi des nœuds exprimées en termes de potentiels, au point B:

$$\frac{\underline{V}_{e}}{\underline{Z}_{1}} + \frac{\underline{V}_{s}}{\underline{Z}_{2}} = \underline{V}_{B} \cdot \left(\frac{1}{\underline{Z}_{1}} + \frac{1}{\underline{Z}_{2}}\right)$$

En notant que $\underline{V}_B = \underline{V}_- = \underline{V}_+ = 0$:

$$\frac{\underline{V}\,e}{\underline{Z}_1} + \frac{\underline{V}\,s}{\underline{Z}_2} = 0$$

On en déduit que :

$$\underline{H}(j.\omega) = \frac{\underline{V}_s}{\underline{V}_e} = -\frac{\underline{Z}_2}{\underline{Z}_1}$$

avec:

$$\underline{Z}_1 = R_1 + \frac{1}{j \cdot C_1 \cdot \omega}$$
 et $\underline{Z}_2 = \frac{R_2}{1 + j \cdot R_2 \cdot C_2 \cdot \omega}$

$$\underline{H}(j,\omega) = -\frac{R_2}{\left(R_1 + \frac{1}{j.C_1.\omega}\right).(1 + j.R_2.C_2.\omega)}$$

En développant :

$$\underline{H}(\mathbf{j}.\,\omega) = -\frac{R_2}{R_1 + \frac{R_2.\,C_2}{C_1} + j.\,R_1.\,R_2.\,C_2.\,\omega + \frac{1}{j.\,C_1.\,\omega}} = -\frac{1}{\frac{R_1}{R_2} + \frac{C_2}{C_1} + j.\left(R_1.\,C_2.\,\omega - \frac{1}{R_2.\,C_1.\,\omega}\right)}$$

En factorisant $\left(\frac{R_1}{R_2} + \frac{C_2}{C_1}\right)$ au dénominateur :

$$\frac{H(j,\omega) = -\frac{1}{\left(\frac{R_1}{R_2} + \frac{C_2}{C_1}\right)\left(1 + j \cdot \left(\frac{R_1 \cdot C_2 \cdot \omega}{\frac{R_1}{R_2} + \frac{C_2}{C_1}} - \frac{1}{R_2 \cdot C_1 \cdot \omega} \left(\frac{1}{\frac{R_1}{R_2} + \frac{C_2}{C_1}}\right)\right)\right)}$$

Posons:

$$\underline{H}(j,\omega) = -\frac{A}{1 + j \cdot \left(\frac{\omega}{\omega_1} - \frac{\omega_2}{\omega}\right)}$$

Par identification, on établit que :

$$A = \frac{1}{\frac{R_1}{R_2} + \frac{C_2}{C_1}} = \frac{R_2 \cdot C_1}{R_1 C_1 + R_2 C_2}$$

$$\omega_1 = \frac{1}{R_1 C_1} + \frac{1}{R_2 C_2} \quad \text{et} \quad \omega_2 = \frac{1}{R_1 C_1 + R_2 C_2}$$

Q 5. On note $H(\omega)$ le gain du filtre :

$$H(\omega) = \frac{A}{\sqrt{1 + \left(\frac{\omega}{\omega_1} - \frac{\omega_2}{\omega}\right)^2}}$$

On peut noter $H(\omega) \to 0$ à basse et à haute fréquence, ceci est caractéristique **d'un filtre passe-bande**.

Q 6. Le gain $H(\omega)$ est maximal quand le dénominateur est minimal, c.à.d. pour :

$$\frac{\omega}{\omega_1} - \frac{\omega_2}{\omega} = 0$$

On en déduit que le gain est maximal à la pulsation :

$$\omega = \sqrt{\omega_1.\omega_2}$$

- **Q 7.** On visualise les tension $V_e(t)$ et $V_s(t)$ à l'oscilloscope en connectant le point E à la voie 1 de l'oscilloscope et S à la voie 2 (la masse de l'oscilloscope est commune à celle du GBF), on peut dire que les deux signaux sont en opposition de phase (déphasage de π mod $(2,\pi)$):
 - en mode balayage : quand l'un des signaux présente un maximum, le deuxième présente un minimum.
 - en mode XY, on observe une droite de pente négative (cf TP).
- **Q 8.** Les signaux sont en opposition de phase à la pulsation $\omega = \sqrt{\omega_1 \cdot \omega_2} = 2 \cdot \pi \cdot f$

$$f = \frac{1}{2.\pi} \sqrt{\omega_1.\omega_2} = \frac{1}{2.\pi} \sqrt{\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_2}\right) \cdot \left(\frac{1}{R_1C_1 + R_2C_2}\right)}$$

$$f = \frac{1}{2.\pi\sqrt{R_1.R_2.C_1.C_2}}$$

A.N.: $f = 3.2.10^2 \text{ Hz}$

- **Q 9.** On assimile la masse m à un point matériel observé dans le référentiel de la voiture non galiléen. Dans ce référentiel, la masse m est soumise à son poids \vec{p} , à la réaction (normale) du support \vec{R} , à la force de rappel \vec{T} , à la force de frottement fluide \vec{f} ainsi qu'à la force d'inertie d'entrainement \vec{f}_{ie} .
- **Q 10.** Appliquons le principe fondamental de la dynamique à la masse m dans le référentiel de la voiture :

$$m. \vec{a} = \vec{p} + \vec{R} + \vec{T} + \vec{f} + \vec{f}_{ie}$$

En notant que le mouvement s'effectue sur l'axe Ox $(\vec{p} + \vec{R} = \vec{0})$, en adoptant le système de cartésiennes et en projetant sur \vec{u}_x on établit :

$$m.\ddot{x} = -k.(x(t) - L_0) - \alpha.\dot{x} + m.a$$

On pose que $X(t) = x(t) - L_0$ donc $\dot{X}(t) = \dot{x}(t)$ et $\ddot{X}(t) = \ddot{x}(t)$:

$$m.\ddot{X} = -k.X - \alpha.\dot{X} + m.a$$

On vérifie que:

$$\frac{\mathrm{d}^2 X}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}X}{\mathrm{d}t} + \omega_0^2.X = a$$

Avec:

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 et $Q = \frac{m.\omega_0}{\alpha} = \frac{\sqrt{k.m}}{\alpha}$

- **Q 11.** Pour t < 0, X(t) = 0.
- **Q 12.** Pour $0 < t < t_0$, le régime d'évolution est critique. La solution de cette équation différentielle avec second membre est du type :

$$X(t) = (A + B.t).e^{-\omega_0.t} + \frac{a}{\omega_0^2}$$

où A et B sont des constantes définies par les conditions initiales à savoir X(0)=0 et $\dot{X}(0)=0$. On établit que $A=-a/\omega_0^2$ et B=A. ω_0 soit :

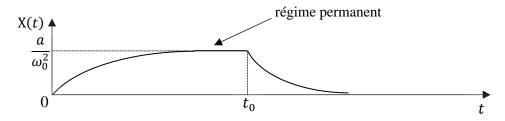
$$X(t) = -\frac{a}{\omega_0^2} (1 + \omega_0.t).e^{-\omega_0.t} + \frac{a}{\omega_0^2}$$

On suppose que t_0 est suffisamment grand pour que l'on observe le régime permanent, on peut donc faire l'hypothèse que $e^{-\omega_0.t_0} \to 0$ et donc que $X(t_0) \approx a/\omega_0^2$.

A partir de t_0 la voiture est à l'arrêt et la force d'inertie est nulle (le référentiel de la voiture devient galiléen...). L'équation différentielle vérifiée par la masse m devient :

$$\frac{\mathrm{d}^2 X}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}X}{\mathrm{d}t} + \omega_0^2. X = 0$$

Le retour vers la position d'équilibre se fait selon un régime critique. On en déduit l'allure de X(t) pour tout t:



Q 13. Pour déterminer l'accélération moyenne pendant la phase de freinage posons :

$$a = \frac{\Delta V}{\Delta t} = -V/\Delta t$$

A.N.: $a = -10 \text{ m. s}^{-2}$.

Q 14. De le même manière $a = -1.7.10^2 \text{ m. s}^{-2}$.

Q 15. Avec $f_{ie} = \|\overrightarrow{f_{le}}\| = m$. a, pour le freinage brutal $f_{ie} = 28.10^{-3}$ N et pour un choc $f_{ie} = 0.47$ N

Q 16. Par analyse dimensionnelle on peut dire que la tension qui apparait aux bornes du cristal de quartz est $U_Q = \chi$. f_{ie} . Pour un freinage brutal $U_Q = 0.17 V$ et pour un choc $U_Q = 2.8 V$. Ces tensions sont décelables sans difficultés.

Q 17. Le régime critique correspond aux conditions de retour le plus rapide vers la position d'équilibre. Si le régime permanent n'était pas atteint entre 0 et t_0 la mesure de l'intervalle de temps Δt ne correspondrait pas à la réelle phase de décélération.

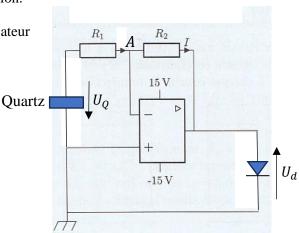
Q 18. Réalisons un montage de type amplificateur inverseur (cf TP d'électricité) :

En appliquant la loi des nœuds exprimée en termes de potentiels au point *A* on établit :

$$-\frac{U_Q}{R_1} + \frac{U_d}{R_2} = V_A \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Avec
$$V_A = 0$$
:

$$-\frac{U_Q}{R_1} + \frac{U_d}{R_2} = 0$$



$$U_d = \left(\frac{R_2}{R_1}\right). U_Q$$

Si on souhaite que la tension aux bornes de la diode soit $U_d = 1.9 V$ pour un choc, c.à.d. pour une tension $U_Q = 2.8 V$ alors le rapport des tensions est $R_2/R_1 = 0.68$ et la diode s'allume. Pour un freinage brutal, pour $U_Q = 0.17 V$ la tension aux bornes de la diode est $U_d = 0.12 V$: la diode est éteinte.

Si on souhaite que la diode s'allume aux delà d'une certaine limite (inférieure à $U_Q = 2.8 V$), le rapport des tensions dépend de la limite que l'on se fixe...Si la limite est fixée pour $U_Q = 2.0 V$ alors le rapport des résistances est $R_2/R_1 = 0.95$. Pour une tension inférieure à $U_Q = 2.0 V$, la diode est éteinte et pour une tension supérieure la diode s'allume...

Q 19. La quantité de mouvement de la poutre est égale au produit de sa masse par la vitesse de son centre d'inertie. Le terme $M \frac{d^2z}{dt^2}$ est la dérivée (par rapport au temps) de la quantité de mouvement de la poutre.

Q 20. Le terme (-k,z) représente une force de rappel et $\left(-\alpha \frac{dz}{dt}\right)$ une force de frottement fluide. Le premier terme traduit l'opposition de la poutre à la déformation alors que le second traduit les déperditions énergétiques aux cours de ces déformations.

Q 21. En adoptant les notations complexes dans l'équation différentielle :

$$M\frac{d^2\underline{z}}{dt^2} + \alpha \frac{d\underline{z}}{dt} + k.\underline{z} = F_0.e^{i\omega t}$$

avec $\underline{z} = \underline{Z}_m . e^{i\omega . t}$:

$$(M.(-\omega^2) + i.\alpha.\omega + k).\underline{Z}_m.e^{i\omega.t} = F_0.e^{i\omega t}$$

On établit que :

$$\underline{Z}_m = \frac{F_0}{k - M.\,\omega^2 + i.\,\alpha.\,\omega}$$

Q 22. Pour $\omega = \omega_0 = \sqrt{k/M}$:

$$\underline{Z}_m(\omega_0) = \frac{F_0}{i.\,\alpha.\,\omega_0}$$

A cette pulsation, la position du centre d'inertie de la poutre est donnée par :

$$z(t) = \frac{F_0}{\alpha \cdot \omega_0} \cos\left(\omega_0 \cdot t - \frac{\pi}{2}\right)$$

Q 23. On en déduit l'expression de $v_z(t)$:

$$v_z(t) = \frac{dz(t)}{dt} = -\frac{F_0}{\alpha} \sin\left(\omega_0 \cdot t - \frac{\pi}{2}\right)$$
$$v_z(t) = \frac{F_0}{\alpha} \cos(\omega_0 \cdot t)$$

Q 24. C₀ est la capacité du circuit électrique équivalent

Q 25. Homogénéité:

$$[\beta] = \begin{bmatrix} F \\ II \end{bmatrix}$$
 donc $[\beta, v_z] = \begin{bmatrix} F, v_z \\ II \end{bmatrix}$

En notant que le produit de la force par une vitesse est homogène à une puissance : $[F, v_z] = P$:

$$[\beta. v_z. U] = P$$

Sachant que le produit d'une tension par une intensité est également homogène à une puissance, on en déduit que β . v_z est homogène à l'intensité d'un courant électrique :

$$[\beta. v_z] = I$$

 ${f Q}$ 26. On note $\underline{Z}_{\acute{e}q}$ l'impédance équivalente à l'association des deux dipôles en dérivation :

$$\underline{Z}_{\acute{e}q} = \frac{R}{1 + j. R. C_0. \omega_0}$$

En appliquant la loi d'Ohm généralisée aux bornes du dipôle :

En explicitant :

$$\underline{V}_m = \underline{Z}_{\acute{e}q} \cdot \left(\beta \cdot \frac{F_0}{\alpha}\right)$$

$$\underline{V}_{m} = \frac{R.\beta.F_{0}}{\alpha.(1+j.R.C_{0}.\omega_{0})}$$

Q 27. La puissance instantanée récupérée par la résistance est :

$$p(t) = R.i_R^2(t) = \frac{V^2(t)}{R} = \frac{R.\beta^2.F_0^2.\cos^2(\omega_0.t)}{\alpha^2.(1 + (R.C_0.\omega_0)^2)}$$

On en déduit l'expression de la puissance moyenne récupérée par la résistance d'utilisation :

$$P = \langle p(t) \rangle = \frac{R \cdot \beta^2 \cdot F_0^2}{\alpha^2 \cdot (1 + (R \cdot C_0 \cdot \omega_0)^2)} \langle \cos^2(\omega_0 \cdot t) \rangle$$

$$P = \frac{R.\beta^2.F_0^2}{2.\alpha^2.(1 + (R.C_0.\omega_0)^2)}$$

Q 28. et Q 29. Par définition :

$$\underline{H}(j.\omega) = \frac{\underline{v}_s}{\underline{v}_e} \quad \text{et} \quad \underline{K}(j.\omega) = \frac{\underline{v}_1 - \underline{v}_e}{\underline{v}_s}$$

Q 30. Avec:

$$\underline{K}(j.\omega) = \frac{\underline{v}_1 - \underline{v}_e}{\underline{v}_s} = \frac{\underline{v}_1}{\underline{v}_s} - \frac{\underline{v}_e}{\underline{v}_s} = \frac{1}{\underline{A}(j.\omega)} - \frac{1}{\underline{H}(j.\omega)}$$

On établit l'expression de la fonction de transfert globale du montage :

$$\underline{A}(j.\omega) = \frac{\underline{H}(j.\omega)}{1 + \underline{H}(j.\omega).\underline{K}(j.\omega)}$$

Q 31. Si v_1 est nulle :

$$\underline{K}(j.\omega) = \frac{\underline{v}_1 - \underline{v}_e}{\underline{v}_s} = -\frac{\underline{v}_e}{\underline{v}_s} = -\frac{1}{\underline{H}(j.\omega)}$$

On vérifie que : $\underline{\underline{H}(j.\omega).\underline{K}(j.\omega) = -1}$

Q 32. et **Q 33.** Relation entre les gains (R_1) : $H(\omega).K(\omega) = 1$ relation entre les phases (R_2) :

$$\arg\left(\underline{H}(j.\omega)\right) + \arg\left(\underline{K}(j.\omega)\right) = \pi \mod(2.\pi)$$

Q 34. En régime sinusoïdal forcé, l'impédance d'un condensateur est $\underline{Z}_C = 1/j$. C. ω . On peut donc dire qu'à basse fréquence un condensateur est équivalent à un interrupteur ouvert et qu'à haute fréquence le condensateur est équivalent à un fil de connexion. En représentant le circuit électrique équivalent à basse et à haute fréquence, on en déduit que le filtre de Wien est un filtre passe-bande.

Q 35. On note $\underline{Z}_{\acute{e}q}$ l'impédance de sortie et $\underline{Y}_{\acute{e}q}$ son admittance. En utilisant la relation du diviseur de tension, on peut poser que :

$$\underline{u}_{s} = \frac{\underline{Z}_{\acute{e}q} \cdot \underline{u}_{e}}{\underline{Z}_{R} + \underline{Z}_{C} + \underline{Z}_{\acute{e}q}}$$

$$\underline{K}(j,\omega) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{\underline{Z}_{\acute{e}q}}{\underline{Z}_R + \underline{Z}_C + \underline{Z}_{\acute{e}q}} = \frac{1}{1 + \underline{Y}_{\acute{e}q} \cdot (\underline{Z}_R + \underline{Z}_C)}$$

En explicitant:

$$\underline{K}(j.\omega) = \frac{1}{1 + \left(j.C.\omega + \frac{1}{R}\right).\left(R + \frac{1}{j.C.\omega}\right)}$$

$$\underline{K}(j.\omega) = \frac{1}{3 + j.R.C.\omega + \frac{1}{j.R.C.\omega}}$$

Q 36. En factorisant le facteur 3 au dénominateur, on vérifie que :

$$\underline{K}(j\omega) = \frac{A}{1 + j. \, Q. \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

avec:

$$A = \frac{1}{3}$$
 ; $Q = \frac{1}{3}$; $\omega_0 = 1/R.C$

Avec:

$$K(\omega) = \frac{A}{\sqrt{1 + Q^2 \cdot \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

On vérifie que $K(\omega) \to 0$ à basse et à haute fréquence ce qui confirme que le filtre de Wien est un passebande comme indiqué à la question 34.

Q 37. On appelle résonance l'observation d'un maximum de tension en sortie du filtre, pour une pulsation particulière appelée pulsation de résonance, notée ω_r . Par définition, la tension de sortie est maximale quand $K(\omega)$ est maximal. La solution est évidente : il y a résonance pour :

A la résonance :

$$\omega_r = \omega_0 = \frac{1}{R.C}$$

$$\underline{K}(j\omega_0) = A = \frac{1}{3}$$

$$K(\omega_0) = \frac{1}{3}$$

$\varphi(\omega_0)=0:u_s(t)$ et $u_e(t)$ sont **en phase** à la résonance à la résonance

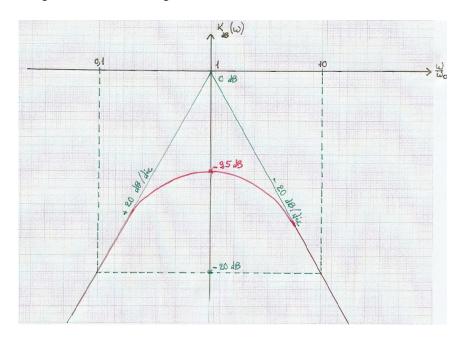
Q 38. Diagrammes de Bode en gain :

-a- A basse fréquence : $K(\omega) \sim \frac{A}{Q} \left(\frac{\omega}{\omega_0}\right) = \frac{\omega}{\omega_0}$ on en déduit l'équation de l'asymptote du gain en décibel

à basse fréquence : $K_{dB} = 20.\log K(\omega) = 20.\log \left(\frac{\omega}{\omega_0}\right)$: pente de +20 dB/déc.

A haute fréquence : $K(\omega) \sim \frac{A}{Q} \left(\frac{\omega_0}{\omega} \right) = \frac{\omega_0}{\omega}$ et $K_{dB} = 20.\log \left(\frac{\omega_0}{\omega} \right)$: pente de -20 dB/déc.

-b- Allure du diagramme de Bode en gain :



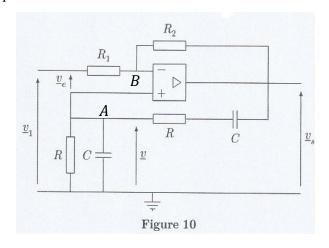
Q 39. Impédance complexe de la branche où R et C sont en série, à la pulsation ω_0 :

$$\underline{Z_S} = R + \frac{1}{j. C. \omega_0} = R. (1 - j)$$

 ${\bf Q}$ 40. Impédance complexe de la branche où ${\it R}$ et ${\it C}$ sont en parallèle, à la pulsation ω_0 :

$$\underline{Z}_P = \frac{R}{1 + j. R. C. \omega_0} = \frac{R}{1 + j}$$

Q 41. Schéma du circuit électrique :



Appliquons la loi des nœuds exprimée en termes de potentiels, au point A:

$$\frac{0}{\underline{Z}_P} + \frac{\underline{v}_S}{\underline{Z}_S} = \underline{v} \cdot \left(\frac{1}{\underline{Z}_P} + \frac{1}{\underline{Z}_S}\right)$$

On établit ainsi que :

$$\frac{\underline{v}}{\underline{v}_{s}} = \frac{\underline{Z}_{P}}{\underline{Z}_{S} + \underline{Z}_{P}}$$

En explicitant:

$$\frac{\underline{v}}{\underline{v}s} = \frac{\frac{R}{1+j}}{R.(1-j) + \frac{R}{1+j}} = \frac{1}{(1+j).(1-j)+1}$$

$$\frac{\underline{v}}{\underline{v}s} = \frac{1}{3}$$

On retrouve le même gain que celui établit à la question 37 pour $\omega = \omega_0$.

Q 42. Appliquons la loi des nœuds exprimées en termes de potentiels au point *B* (cf figure ci-dessus) :

$$\frac{\underline{v}_1}{R_1} + \frac{\underline{v}_s}{R_2} = \underline{v}_B \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

avec $\underline{v}_B = \underline{V}_- = \underline{V}_+ = \underline{v}_-$ et, en appliquant la loi des mailles : $\underline{v}_1 = \underline{v}_e + \underline{v}_-$:

En explicitant, on établit que :

$$\underline{\underline{v}} = \underline{\underline{v}}_s + \left(\frac{R_2}{R_1}\right) \cdot \underline{\underline{v}}_e$$

Q 43. En divisant la relation précédente par \underline{v}_s :

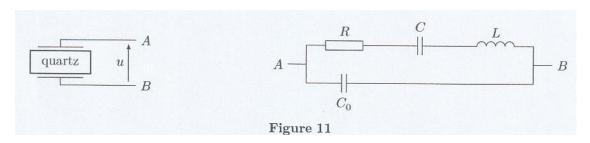
$$\frac{\underline{v}}{\underline{v}_s} = 1 + \left(\frac{R_2}{R_1}\right) \cdot \frac{\underline{v}_e}{\underline{v}_s} = \frac{1}{3}$$

$$\frac{\underline{v}_e}{\underline{v}_s} = -\frac{2}{3} \frac{R_1}{R_2} \quad \text{et} \quad \boxed{\underline{H}(j\omega_0) = \frac{\underline{v}_s}{\underline{v}_e} = -\frac{3}{2} \frac{R_2}{R_1}}$$

 $\mathbf{Q} \text{ 44. Sachant que } \underline{H}(j,\omega).\underline{K}(j,\omega) = -1 \text{ ; } H(\omega_0).K(\omega_0) = 1 \text{ avec } K(\omega_0) = 1/3 \text{ donc } H(\omega_0) = 3 \text{ : }$

$$\frac{R_2}{R_1} = 2$$

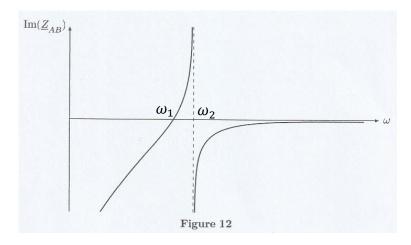
Q 45. Comportement asymptotique du modèle simplifié du quartz pour les cas $\omega \to 0$ et $\omega \to \infty$:



Sachant qu'en régime sinusoïdal forcé, l'impédance d'un condensateur est $\underline{Z}_C = 1/j$. $C.\omega$ et celle d'une bobine $\underline{Z}_L = j.L.\omega$ on peut donc dire qu'à basse fréquence le condensateur est équivalent à un interrupteur ouvert et la bobine à un interrupteur fermé, à haute fréquence c'est l'inverse.

On en déduit qu'à basse fréquence, le quartz est équivalent à un interrupteur ouvert $\left|\underline{Z}_{AB}\right| \to \infty$ et à haute fréquence, le quartz est équivalent à un interrupteur fermé (ou fil de connexion) $\left|\underline{Z}_{AB}\right| \to 0$.

Q 46. A partir de la figure 12, on peut distinguer deux pulsations particulières, celle pour laquelle $|\underline{Z}_{AB}| = 0$ (notée ω_1) et celle pour laquelle $|\underline{Z}_{AB}| \to \infty$ (notée ω_2).



Q 47. Le quartz possède un comportement de type capacitif quand son impédance est négative ($\varphi(\omega) = -\frac{\pi}{2}$ comme pour un condensateur) c.à.d. pour :

$$\omega \in [0, \omega_1]$$
 et $\omega \in]\omega_2, \infty[$