DS₁

1 heure et 30 minutes

Lisez attentivement les consignes ci-dessous

- Les documents, calculatrices et autres appareils électroniques sont interdits.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- Laissez la première page de votre première copie double vierge.
 - > N'y écrivez que vos nom et prénom, votre classe, le numéro du DS, la matière.
 - ▷ Écrivez-y aussi, en haut à gauche, en gros, en couleur et en l'entourant votre numéro d'élève.
- La présentation de la copie sera prise en compte dans l'évaluation.
 - > Soignez votre écriture.
 - → Maintenez une marge dans vos copies et aérez vos copies.
 - > Numérotez vos copies et indiquez sur la première copie le nombre total de copies.
 - ▷ Écrivez « OK » sur la première page de votre copie pour montrer que vous avez bien lu ces consignes.
- Vos programmes doivent être clairs.
 - ▷ Choisissez judicieusement les noms de vos variables ainsi que les noms de vos fonctions auxiliaires.
 - > Indiquez les indentations par des traits verticaux.
 - > Si nécessaire, commentez vos programmes en utilisant une couleur secondaire.
 - ▷ Un programme juste mais qui n'est pas suffisamment clair sera considéré comme faux.

Applications

Dans ce sujet, on étudie une implémentation en Python de quelques notions de théorie des ensembles relatives aux applications.

Partie I - Autour de append()

La commande append()

- Si 1 est une liste et si a est un objet, on rappelle que la commande 1.append(a) modifie la liste 1 en lui ajoutant l'objet a.
- Par exemple, si

$$1 = [3, 2, -5]$$

alors, après exécution de la commande 1. append (50), on aura 1 = [3, 2, -5, 50].

1. On considère les instructions suivantes :

```
1 = []
1.append(1)
1.append(2)
1.append(3)
x = 1[2]
```

- 1
- (a) Après exécution de ces instructions, que vaut la variable 1?
- (b) Après exécution de ces instructions, que vaut la variable ${\tt x}\,?$
- 2. On considère les instructions suivantes :

```
m = []
m.append(1)
m.append(2)
m.append(3)
x = m[0]
if m[1] == 1:
    x = x+1
else:
    x = x+10
```


Après exécution de ces instructions, que vaut la variable \mathbf{x} ?

3. On considère les instructions suivantes :

```
u = []
u.append(1)
u.append(2)
u.append(3)
x = u[0]
y = u[x]
if y == y+1:
    y = y-1
else:
    y = y+1
```

Après exécution de ces instructions, que vaut la variable y?

4. On considère la fonction :

```
def f(n):
    1 = []
    i = 0
    while i <= n:
        1.append(i)
        i = i+1
    return 1</pre>
```

1

- (a) Que renvoie l'instruction f(0)?
- (b) Que renvoie l'instruction f(5)?
- 5. On considère la fonction:

```
def g(n):
    1 = []
    for i in range(n):
        l.append(i)
    return 1
```

1

- (a) Que renvoie l'instruction g(0)?
- (b) Que renvoie l'instruction g(5)?
- 6. On considère les instructions suivantes :

```
w = []
w.append([])
w.append([0])
w.append([0, 1])
w.append([0, 1, 2])
i = 3
x = w[i]
x = x[i-1]
```

1

Après exécution de ces instructions, que vaut la variable \mathbf{x} ?

7. Dans cette question, on considère la fonction g(n) définie à la question 4.. On définit alors la fonction :

```
def h(n):
    1 = []
    for i in range(n):
        m = g(i)
        l.append(m)
    return 1
```

11

- (a) Que renvoie l'instruction h(0)?
- (b) Que renvoie l'instruction h(1)?
- (c) Que renvoie l'instruction h(3)?
- 8. On considère les instructions suivantes :


```
l = []
l.append(0)
l.append(1)
w = 1[1]
x = w[0]
if x == x+1:
    x = x-1
else:
    x = x+1
```

Après exécution de ces instructions, que vaut la variable x?

- 9. On considère dans cette question les fonctions g(n) et h(n) définies aux questions 5. et 7..
- 43
 - (a) Quand on exécute g(n), combien de fois la commande append est-elle appelée?
 - (b) Quand on exécute h(n), combien de fois la commande append est-elle appelée? Le résultat sera simplifié autant que possible.

Partie II - Applications

Objet-fonction associé à une fonction

Soit $n \in \mathbb{N}^*$.

• $Si\ f: \llbracket 0,n-1 \rrbracket \longrightarrow \llbracket 0,n-1 \rrbracket$ est une fonction, on lui associe la liste

$$[a_0, a_1, \ldots, a_{n-1}]$$

$$o\dot{u}$$
 $a_0 = f(0)$, $a_1 = f(1)$, ..., $a_{n-1} = f(n-1)$.

• On note alors cette liste f on l'appelle objet-fonction associé à f.

Un exemple

Par exemple, si f est la fonction de [0,3] dans [0,3] définie par

$$f(0) = 2$$
, $f(1) = 3$, $f(2) = 1$, $f(3) = 1$,

alors on aura f = [2, 3, 1, 1]. Dans cet exemple, on a n = 4.

Accéder au «n» d'un objet-fonction

Dans la suite, si ${\tt f}$ est un objet-fonction, on accèdera à l'entier n correspondant à ${\tt f}$ en utilisant la commande ${\tt taille(f)}$, définie par

Remarques

- Dans la suite, on pourra identifier
- \triangleright l'objet-fonction f et la fonction $f: [0, n-1] \longrightarrow [0, n-1]$;
- \triangleright l'objet n (qui est de type int) et l'entier $n \in \mathbb{N}$.
- Dans les fonctions prenant un objet-fonction f en argument, on supposera toujours que taille(f) ≥ 1.
- 10. Écrire une fonction moyenne(f) qui prend en argument un objet-fonction f et qui renvoie sa moyenne.
 - 11. Écrire une fonction maximum(f) qui prend en argument un objet-fonction f et qui renvoie son maximum.
 - 12. Écrire une fonction estCroissante(f) qui prend en argument un objet-fonction f et qui renvoie True quand f est croissante et False sinon.
 - 13. Écrire une fonction composee(g, f) qui prend en argument
 - un objet-fonction f
 - et un objet-fonction g tels que taille(f) = taille(g)

et qui renvoie l'objet-fonction associé à $g \circ f$.

On supposera que f et g, donnés en argument, vérifient bien taille(f) = taille(g).

Définition

Si $f: [0, n-1] \longrightarrow [0, n-1]$ est une fonction et si $x \in [0, n-1]$ est un entier vérifiant f(x) = x, on dit que x est un point fixe de f.

1

- 14. (a) Écrire une fonction estPointFixe(f, x) qui prend en argument un objet-fonction f et un objet x de type int tel que $0 \le x \le taille(f) 1$ et qui renvoie
 - ullet True si x est un point fixe de f
 - et False sinon.

1

- (b) Écrire une fonction pointsFixes(f) qui prend en argument un objet-fonction f et qui renvoie la liste des points fixes de f, rangés par ordre croissant.
- 15. Question de cours.

Écrire une fonction indiceElement(1, x) qui prend en argument une liste 1 triée (ie dont les éléments sont classés par ordre croissant) et un nombre x, et qui renvoie :

- un indice i tel que l[i] = x s'il en existe un;
- -1 si le nombre x n'est pas présent dans 1.

La fonction indiceElement(1, x) devra implémenter l'algorithme de recherche par dichotomie présentée en cours.

4

16. On peut démontrer que toute fonction croissante $f : [a,b] \longrightarrow [a,b]$ admet un point fixe. Écrire une fonction pointFixe(f) qui prend en argument un objet-fonction f telle que f est croissante et qui renvoie un point fixe x de f.

La fonction pointFixe(f) devra procéder par dichotomie. On pourra, en plus, procéder par récursivité.

Définition

Soit $f: [0, n-1] \longrightarrow [0, n-1]$. On dit que f est injective quand

$$\forall x, y \in [0, n-1], \quad x \neq y \implies f(x) \neq f(y).$$

2

17. Écrire une fonction estInjective(f) qui prend en argument un objet-fonction f et qui renvoie True quand f est injective et False sinon.

Partie III - Parties

Notations générales

Soit $n \in \mathbb{N}^*$.

• Si A est une partie de [0, n-1], on lui associe la liste

$$[b_0, b_1, \ldots, b_{n-1}]$$

- \triangleright $o\dot{u}$ $b_0 = \text{True } si \ 0 \in A \ et \ b_0 = \text{False } sinon,$
- \triangleright où $b_1 = True \ si \ 1 \in A \ et \ b_1 = False \ sinon,$

 $\triangleright \cdots$

- \triangleright $o\dot{u}$ $b_{n-1} = \text{True } si \ n-1 \in A \ et \ b_{n-1} = \text{False } sinon.$
- On note alors cette liste A, et on l'appelle objet-partie associé à A.
- Dans la suite, on pourra identifier une partie $A \subset [0, n-1]$ et A, l'objet-partie associé à A.

Accéder au «n» d'un objet-partie

• Dans la suite, si A est un objet-partie, on accèdera à l'entier n correspondant à A en utilisant la commande tailleAmbiante(A), définie par

def tailleAmbiante(A):
 return len(A)

- Dans les fonctions prenant un objet-partie A en argument, on supposera toujours que tailleAmbiante(A) $\geqslant 1$.
- Dans des fonctions prenant deux objets-parties A et B, on supposera toujours en outre que tailleAmbiante(A) = tailleAmbiante(B).
- 18. On considère l'objet-partie A définie par

- (a) Quel est le cardinal de la partie A dont elle est l'objet-partie associé ?
- (b) Quelle est cette partie A?
- 19. On suppose n=3. Donner l'objet-partie associé à $\{1\}$.
- **20.** Écrire une fonction cardinal(A) qui prend en argument un objet-partie A et qui renvoie le cardinal de A.
- 21. Écrire une fonction estVide(A) qui prend en argument un objet-partie A et qui renvoie True si A est vide et False sinon.
- 22. Écrire une fonction estInclus(A, B) qui prend en argument un objet-partie A et un objet-partie B et qui renvoie True si $A \subset B$ et False sinon.
- 23. (a) Écrire une fonction intersection (A, B) qui prend en argument un objet-partie A et un objet-partie B et qui renvoie l'objet-partie associé à $A \cap B$.
 - (b) Écrire une fonction union(A, B) qui prend en argument un objet-partie A et un objet-partie B et qui renvoie l'objet-partie associé à $A \cup B$.

Définitions

$$\begin{split} Si \ f : [\![0, n-1]\!] \longrightarrow [\![0, n-1]\!] \ et \ si \ A \subset [\![0, n-1]\!], \ on \ note \\ f[A] &= \{ f(a) \ ; \ a \in [\![0, n-1]\!] \} \\ f^{-1}[A] &= \{ x \in [\![0, n-1]\!] \mid f(x) \in A \}. \end{split}$$

- 24. Écrire une fonction imageDirecte(f, A) qui prend en argument un objet-fonction f et un objet-partie A et qui renvoie l'objet-partie associé à f[A].
 On supposera que si f: [0, n − 1] → [0, n − 1] alors on a bien A ⊂ [0, n − 1].
- 25. Écrire une fonction imageReciproque(f, A) qui prend en argument un objet-fonction f et un objet-partie A et qui renvoie l'objet-partie associé à $f^{-1}[A]$.

 On supposera que si $f: [0, n-1] \longrightarrow [0, n-1]$ alors on a bien $A \subset [0, n-1]$.
 - **26.** Écrire une fonction listeDesParties(n) qui prend en argument un entier n et qui renvoie la liste des objets-parties associées à toutes les parties $A \subset [0, n-1]$.

 On procèdera par récursivité.
 - **27.** Écrire une fonction listeDesFonctionsCroissantes(n) qui prend en argument un entier n et qui renvoie la liste des objets-fonctions associées à toutes les $f : [0, n-1] \longrightarrow [0, n-1]$ croissantes.

FIN DU SUJET.

