
| Interro de cours n°3 (20mn)                                                                                                                                                                                                                                                                                                                           | PCSI 3                                                                                                                                              |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                 | Nom:                                                                                                                                                |  |  |  |
| On considère le signal $s(t)$ issu d'un oscilloscope don dessous. On peut modéliser ce signal par l'expression $s$ $(t=0)$ correspond au centre de l'oscillogramme et les ét dessous de l'oscillogramme (une division (div) est défini $s(t)$                                                                                                         | $f(t)=S_0+S_m\cos(\omega t+\varphi)$ . L'origine des temps chelles verticales et horizontales sont données au                                       |  |  |  |
| S(t)                                                                                                                                                                                                                                                                                                                                                  | 0,25 ms/div                                                                                                                                         |  |  |  |
| Question 1 Quelle est l'amplitude du signal $s(t)$ ?                                                                                                                                                                                                                                                                                                  | 5,25 MB/ div                                                                                                                                        |  |  |  |
| 4.0 V<br>6.0 V                                                                                                                                                                                                                                                                                                                                        | 1.0 V aucune de ces réponses                                                                                                                        |  |  |  |
| Question 2 Quelle est la fréquence de ce signal?                                                                                                                                                                                                                                                                                                      |                                                                                                                                                     |  |  |  |
| 1 kHz aucune de ces réponses                                                                                                                                                                                                                                                                                                                          | ☐ 0.5 kHz<br>☐ 3 kHz                                                                                                                                |  |  |  |
| Question 3 Quelle est la valeur moyenne de ce signal?                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |  |  |  |
| aucune de ces réponses  1.0 V  5.0 V                                                                                                                                                                                                                                                                                                                  | ☐ 4.0 V<br>☐ 3.0 V                                                                                                                                  |  |  |  |
| <b>Question 4</b> Quelle est la phase à l'origine $\varphi$ de ce sign                                                                                                                                                                                                                                                                                | gnal (cf expression ci-dessus)?                                                                                                                     |  |  |  |
| $\square$ aucune de ces réponses $\square$ 90° $\square$ 45°                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |  |  |  |
| Question 5 ♣ Cochez les affirmations justes :  Une onde est une perturbation transportant de l'a Un signal sinusoïdal de période T peut s'écrire so L'onde se propageant à la surface d'un liquide après Une onde lumineuse peut se propager dans le vid Une onde sonore est une onde longitudinale. Le domaine de fréquence d'une onde sonore est co | us la forme $s(t) = S_m \cos(\frac{2\pi}{T}t + \varphi)$ .<br>s avoir jeté un projectile est une onde transversale.<br>e (en l'absence de matière). |  |  |  |

d *Réservé* 

a b

On considère pour les trois questions suivantes une onde s(x,t) se propageant suivant les x croissants à la vitesse  $c=5~\mathrm{m.s^{-1}}$ . Cette onde est représentée ci-dessous à la position  $x=x_1$ .



Question 6 \$\ \text{Sous quelle(s) forme(s) mathématique(s) peut-on écrire cette onde?}

| $s(\frac{x}{c}+t)$ | s(t-cx)   | $s(\frac{x}{c}+t)$ | s(ct-x)           | $    s(t-\frac{x}{2}) $ |
|--------------------|-----------|--------------------|-------------------|-------------------------|
| L ( c   v)         | 1 3(0 00) | L 0(c 1 0)         | 1 1 3 ( C t t t ) | °(°                     |

Question 7 On choisit comme nouvelle origine des x la position  $x=x_1=0$  m. Tracer l'évolution de  $s(x,t_0)=s_x(t_0)$  pour  $t_0=8$  s en expliquant sommairement.

**Question 8** L'onde ci-dessus parcours une distance  $\Delta x = 8$  m. À quel instant commence alors le début de la perturbation.

Question 9 On considère une lunette de Galilée constituée d'un objectif convergent  $(L_1)$  de distance focale  $f'_1$  et d'un oculaire divergent  $(L_2)$  de distance focale  $f'_2$  tel que  $f'_1 = 4|f'_2|$ . Faire la construction puis déterminer l'expression du grossissement défini par le rapport entre l'angle sous lequel on voit l'image  $\alpha'$  avec la lunette et l'angle sous lequel on voit l'objet sans la lunette  $(\alpha)$ .