Interro de cours nº 5 (20mn)

Une fourche à deux extrémités vibre en frappant la surface de l'eau d'une cuve à onde en deux points O_1 et O_2 . Ces deux points ont pour mouvement des oscillations sinusoïdales de même amplitude, de même fréquence et sont en phase : $s_1(O_1,t) = s_2(O_2,t) = A\cos\omega t$. Les vibrations produites se propagent à la vitesse c et arrivent en un point M de la surface. On note respectivement $s_1(M,t)$ et $s_2(M,t)$ les signaux provenant des deux sources.

- 1. Pourquoi les signaux arrivant en M sont-ils déphasés? Exprimer le déphasage φ_1 du signal $s_1(M,t)$ par rapport au signal $s_1(O,t)$ puis le déphasage φ_2 du signal $s_2(M,t)$ par rapport au signal $s_2(O_2,t)$ en fonction des distances O_1M et O_2M .
- 2. Représenter dans le cas général les évolutions temporelles des signaux $s_1(M,t)$, $s_2(M,t)$. En déduire l'évolution temporelle du signal résultant s(M,t).
- 3. En déduire les conditions d'interférences constructives ou destructives en M. On exprimera ces conditions en fonction des distances O_1M , O_2M et la longueur d'onde λ .

Une corde de Melde de longueur finie L est excitée en x=0 par un vibreur et est tendue par une masse m accrochée à l'extrémité de la corde. L'onde résultante de l'onde incidente et des multiples ondes réfléchies s'écrit $s(x,t)=A\sin\omega t\sin\frac{\omega x}{c}$ avec ω la pulsation de l'excitation et c la célérité des ondes sur la corde.

- 4. Comment se traduit la condition aux limites s(x = L, t) = 0. En déduire les valeurs des fréquences propres de la corde f_n en fonction de n, c et L puis représenter le mode fondamental et le mode n = 2.
- 5. Définir les nœuds de vibration et exprimer leurs positions en fonction de L, n et p. Calculer la distance entre deux nœuds consécutifs en fonction de la longueur d'onde de l'onde λ .

PCSI3

Interro de cours nº 5 (20mn)

Une corde de Melde de longueur finie L est excitée en x=0 par un vibreur et est tendue par une masse m accrochée à l'extrémité de la corde. L'onde résultante de l'onde incidente et des multiples ondes réfléchies s'écrit $s(x,t)=A\sin\omega t\sin\frac{\omega x}{c}$ avec ω la pulsation de l'excitation et c la célérité des ondes sur la corde.

- 1. Comment se traduit la condition aux limites s(x = L, t) = 0. En déduire les valeurs des fréquences propres de la corde f_n en fonction de n, c et L puis représenter le mode fondamental et le mode n = 2.
- 2. Définir les nœuds de vibration et exprimer leurs positions en fonction de L, n et p. Calculer la distance entre deux nœuds consécutifs en fonction de la longueur d'onde de l'onde λ .

Une fourche à deux extrémités vibre en frappant la surface de l'eau d'une cuve à onde en deux points O_1 et O_2 . Ces deux points ont pour mouvement des oscillations sinusoïdales de même amplitude, de même fréquence et sont en phase : $s_1(O_1,t) = s_2(O_2,t) = A\cos\omega t$. Les vibrations produites se propagent à la vitesse c et arrivent en un point M de la surface. On note respectivement $s_1(M,t)$ et $s_2(M,t)$ les signaux provenant des deux sources.

- 3. Pourquoi les signaux arrivant en M sont-ils déphasés? Exprimer le déphasage φ_1 du signal $s_1(M,t)$ par rapport au signal $s_1(O,t)$ puis le déphasage φ_2 du signal $s_2(M,t)$ par rapport au signal $s_2(O_2,t)$ en fonction des distances O_1M et O_2M .
- 4. Représenter dans le cas général les évolutions temporelles des signaux $s_1(M,t)$, $s_2(M,t)$. En déduire l'évolution temporelle du signal résultant s(M,t).
- 5. En déduire les conditions d'interférences constructives ou destructives en M. On exprimera ces conditions en fonction des distances O_1M , O_2M et la longueur d'onde λ .