Devoir Maison no 5

Cinématique

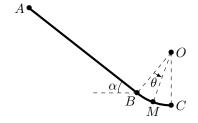
Problème: Cinématique de sports d'hiver

Les deux parties de ce problème sont totalement indépendantes.

A Saut à ski

Un skieur s'élance en A sur un tremplin constitué de deux parties représentées en coupe sur la figure cidessous. Le skieur est assimilé à un point matériel M glissant dans le plan vertical de la figure. Le début de la piste entre A et B est rectiligne, de longueur $L=AB=60\,\mathrm{m}$ et de pente caractérisée par l'angle $\alpha=35^\circ$. La fin de la piste entre B et C est assimilée à un arc de cercle de rayon $R=10\,\mathrm{m}$. Nous nous limitons à l'étude de la phase d'élan.

Le skieur s'élance en A à l'instant t=0 sans vitesse initiale.



Entre A et B son mouvement est rectiligne et uniformément accéléré, de vecteur accélération $\vec{a}(M) = a_0 \vec{u}_x$ avec $a_0 = 5.6 \,\mathrm{m\,s^{-2}}$ et $\vec{u}_x = \frac{\overrightarrow{AB}}{AB}$.

A.1 Déterminer les vecteurs vitesse $\overrightarrow{v}(M)$ et position \overrightarrow{AM} du skieur à chaque instant au cours de cette première phase.

A.2 À quel instant le skieur arrive-t-il en *B*? Quelle vitesse possède-t-il alors?

Entre B et C le mouvement de M est circulaire et l'angle θ permet de repérer sa position. La vitesse angulaire $\dot{\theta}$ dépend de θ selon la loi $\dot{\theta} = \omega_0 \sqrt{\cos(\alpha - \theta) + \beta}$ où $\omega_0 = 1,4 \, \text{rad s}^{-1}$ et β est une constante.

A.3 Exprimer le vecteur position \overrightarrow{OM} et le vecteur vitesse \overrightarrow{v} dans un système de coordonnées judicieusement choisi en fonction de R, $\dot{\theta}$ et des vecteurs unitaires préalablement définis.

A.4 En déduire la vitesse au point B en fonction de R, ω_0 , α et β , puis montrer que $\beta = \frac{2La_0}{R^2\omega_0^2} - \cos\alpha$ et calculer sa valeur numérique.

A.5 Exprimer le vecteur accélération de M. Le mouvement de M est-il uniforme?

A.6 Exprimer puis calculer la vitesse du skieur en C.

B Super G

Lors d'une descente de super G, le skieur, repéré par le point M de coordonnées (x;y) dans le référentiel $R(O;\overrightarrow{e}_x,\overrightarrow{e}_y,\overrightarrow{e}_z)$, part du point $(0,d_0)$ puis est astreint a suivre une trajectoire sinusoïdale de slalom entre des portes espacées d'une distance L de manière à conserver a tout moment une vitesse dont la composante suivant Ox est constante : $\dot{x}=v_0=40\,\mathrm{km}\,\mathrm{h}^{-1}$. On s'intéresse dans cette partie à la cinématique du skieur.

B.1 Expliquer en quelques mots, en quoi consiste la cinématique du point.

B.2 La trajectoire se met sous la forme $y(x) = A\cos(Bx)$. Exprimer A et B en fonction de d_0 et L.

B.3 Exprimer x(t) puis y(t).

B.4 En déduire l'expression du vecteur vitesse et montrer que le vecteur accélération du skieur s'écrit $\overrightarrow{a} = -d_0 \left(\frac{v_0 \pi}{L}\right)^2 \cos\left(\frac{\pi v_0 t}{L}\right) \overrightarrow{e_y}$.

B.5 Pour que le skieur reste en piste, il doit conserver à tout moment une accélération inférieure à 0,7g où $g=9.8\,\mathrm{m\,s^{-2}}$. À quelle distance minimum L_{min} doit-on placer les portes. On donne $d_0=3.0\,\mathrm{m}$. Faire l'application numérique.

