Programme Colles PCST 3 - 2024/25

Semaine de colles n°26 du 12/05/25 au 16/05/25

DU PROGRAMME PRÉCÉDENT :

• Applications linéaires

I - Définitions et propriétés de calcul

II - Noyau et image d'une application linéaire

- Novau et image d'une application linéaire, structure.
- f: E → F linéaire alors: finjective ⇔ Ker f = {OE} et f surjective ⇔ Imf = F.
- \Longrightarrow Sife $\mathscr{L}(E,F)$ et $g\in \mathscr{L}(F,G)$: \cdot Im $(g\circ f)\subset$ Im g et $\ker f\subset \ker(g\circ f)$ \cdot $g\circ f=0\Leftrightarrow$ Im $f\subset \ker g$
- Équations linéaires : définition et structure de l'ensemble des solutions.
- Formes linéaires et hyperplans : un hyperplan est le noyau d'une forme linéaire non nulle.
- Si D droite vectorielle non contenue dans un hyperplan H alors $E = H \oplus D$, caractérisation en dimension finie.

III - Lien avec les familles de vecteurs

- Timage par une application linéaire d'une famille génératrice / d'une famille liée.
- Image par une application linégire injective d'une famille libre.
- Définition d'une application linéaire par l'image d'une base :

$$\text{Si } (e_1,\,e_2,_..\,e_n) \text{ est une base } \text{de } E \text{ et } (y_1,\,y_2,_..\,y_n) \in \, F^n, \text{alors} : \, \exists \,\,!\,\, f \in \, \mathscr{L}(E,\,F), \, \forall \,\, i \in \, [\![\,1,\,n\,]\!] \,\,, \, f(e_i) = y_i \,\, [\![\,1,\,n\,]\!] \,\,, \, f(e_i) = y_i \,\,, \, f(e_i) = y_i \,\, [\![\,1,\,n\,]\!] \,\,, \, f(e_i) = y_i \,\,, \, f(e_i) = y_i$$

De plus, on a : f injective \Leftrightarrow (y_1, y_2, y_n) famille libre dans F

f surjective \Leftrightarrow $(y_1, y_2, ... y_n)$ famille génératrice de F

- ➡ Si F et G sev supplémentaires de E, alors une application linéaire définie sur E est entièrement déterminée par ses restrictions à F et G.
- ➡ Deux e.v., sont isomorphes ssi ils ont même dimension, tout K-ev de dimension n > 0, est isomorphe à K".
- ➡ Si E et F sont deux ev de dimension finie alors 🖍 (E, F) est de dimension finie égale à dim E × dim F.

IV - Introduction aux matrices d'applications linéaires

- 🟓 Écriture de la matrice d'une application linéaire f e £(E, F) définie par l'image d'une base de E ou définie explicitement, relativement à des bases données.
- 🟓 Multiplication d'une matrice par la matrice colonne des coordonnées d'un vecteur pour obtenir les coordonnées de son image par f. Il faut faire attention aux bases avec lesquelles on travaille.

IV - Applications linéaires en dimension finie

- Rang d'une application linéaire.
- Théorème du rana :

Scit E ev., F ev. quelconque et $f \in \mathcal{L}(E, F)$. Im f est isomorphe à tout supplémentaire de Ker f dans E. (*) Si de plus, E est de dimension finie: dim E = dim(Kerf) + rgf = dim(Kerf) + dim(Imf) (*)

- ➡ Caractérisation des applications linéaires injectives, surjectives, bijectives à l'aide du rang.
- \Rightarrow Si dim E = dim F et f $\in \mathcal{L}(E, F)$ alors on a: f bijective \Leftrightarrow f injective \Leftrightarrow f surjective

Si f endomorphisme en dimension finie, f bijective ssi f inversible à droite ou à gauche

🟓 Invariance du rang par composition, à droite ou à gauche, par un isomorphisme,

V - Exemples usuels d'applications linéaires

- Homothéties vectorielles
- Projecteurs : définition, propriétés, caractérisation par idempotence :

Si p est un endomorphisme idempotent de E (càd p o p = p) alors :

1.
$$x \in \text{Im } p \Leftrightarrow p(x) = x$$

2. $E = \text{Ker } p \oplus \text{Im } p$

3. p est le projecteur sur Im p parallèlement à Ker p

🗪 Symétries vectorielles : définition, propriétés, caractérisation par involutivité :

Si s est un endomorphisme involutif de E (càd s o s = Id_E) alors :

- 1. $E = Ker(s id_E) \oplus Ker(s + id_E)$
- 2. s symétrie par rapport à Ker(s id_E) parallèlement à Ker(s + id_E).

NOUVEAU COURS :

• Comparaison locale des fonctions (Partie 1)

I - Relations de comparaison locale des fonctions

- Notion de voisinage
- Pelation de domination : définition, caractérisation par quotient, propriétés.
- Fonction négliaeable devant une autre : définition, caractérisation par quotient, propriétés, comparaison des fonctions de références.
- Fonctions équivalentes : définition, caractérisation par quotient Propriétés: symétrie, transitivité, compatibilité avec les opérations, substitution.
- Obtention d'équivalent par encadrement
- Équivalents et signe des expressions, liens entre équivalents et limites.
- ⇒ Si f dérivable en a et si $f'(a) \neq 0$ alors $f(x) f(a) \sim f'(a)$ (x a).
- Équivalents de référence : A savoir démontrer (*)
 - cas des fonctions polynomiales

•
$$\sin x \sim x$$
 et $\tan x \sim x$
• $\cos x \sim 1$
• $\cos x \sim 1$

• Utilisation des matrices en algèbre linéaire

I - Matrices représentatives

Adtrices représentatives d'un vecteur, d'une famille de vecteur, d'une application linéaire dans des bases données.

II - Opérations sur les matrices représentatives

- ➡ Combinaisons linéaires de matrices représentatives d'applications linéaires, isomorphisme entre ∠(E, F) et $\mathcal{M}_{n,p}(\mathbb{K})$ où dim E = p et dim F = n, dimension de $\mathcal{L}(\mathsf{E},\mathsf{F})$.
- ightharpoons Isomorphisme canonique de $\mathscr{L}(\mathbb{K}^p,\mathbb{K}^n)$ sur $m_{n,p}(\mathbb{K})$, application linéaire canoniquement associée à une matrice.
- Calcul des coordonnées de l'image d'un vecteur par une application linéaire.
- ➡ Produit de matrices représentatives d'applications linéaires, lien entre applications linéaires bijectives et matrices inversibles.
- (*) Démonstrations / Méthodes à connaître et TOUT le cours est à connaître!

Prévisions semaine n° 27: Utilisation des matrices en algèbre linéaire (Notion de rang) et déterminants

Déroulement d'une colle

- 1. Une question de cours parmi celles signalées par (*)
- 2. Un calcul de limite avec utilisation d'équivalents
- 3. Exercice(s) au choix de l'interrogateur : On pourra commencer par un exercice à savoir refaire ou assez proche.

Un cours non connu entraine une note < 10

Programme Colles PCSI 3 - 2024/25

Semaine de colles n°26 du 12/05/25 au 16/05/25 - Exercices à savoir refaire

Exercices Chap. 21

Exercice 6:

Soit \mathcal{B} la base canonique de \mathbb{R}^3 . On considère f un endomorphisme de \mathbb{R}^3 tel que :

$$\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z) = (2x - y + 2z, x - 3y - z, 4x - 7y)$$

- **1.** Écrire la matrice de f dans la base \mathcal{B} .
- 2. Déterminer le noyau et l'image de f. On déterminera une base de ces deux espaces.

Exercice 8:

Soit $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}[X]$ définie par : $\forall P \in \mathbb{R}_2[X], f(P) = (1 + X^2)P(2) + (X + 1)P'(1)$

- **1.** Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- Écrire sa matrice relativement à la base canonique de R₂[X].
- 3. Déterminer le noyau et l'image de f. On déterminera une base de ces deux espaces.

Exercice 9 : Trace d'une matrice carrée.

1. On définit l'application trace par : $\varphi : \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$

Montrer que φ est une forme linéaire.

$$\mathbf{M} \longmapsto \operatorname{tr}(\mathbf{M}) = \sum_{i=1}^{n} m_{ii}$$

- **2.** Montrer que : \forall (A, B) $\in \mathcal{M}_n(\mathbb{R})^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 3. Existe-t-il un couple de matrices carrées (A, B) tel que AB BA = I_n ?

Exercice 11:

Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ telle que $f^2 - 3f + 2.id_E = 0$.

- **1.** Montrer que : $E = Ker(f id_E) \oplus Ker(f 2.id_E)$.
- **2.** Montrer que f est un automorphisme et déterminer f^{-1} .

Exercice 14:

Soit E un \mathbb{K} -espace vectoriel et f et g deux endomorphismes de E.

- **1.** Montrer que : $Ker(g \circ f) = Ker f \Leftrightarrow Ker g \cap Im f = \{0_E\}$
- **2.** Montrer que : $\operatorname{Im}(g \circ f) = \operatorname{Im} g \Leftrightarrow \operatorname{E} = \operatorname{Ker} g + \operatorname{Im} f$.

Exercice 15:

Soit f l'endomorphisme de $\mathbb{R}_2[X]$ ayant pour matrice $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$ relativement à la base canonique de $\mathbb{R}_2[X]$

- **1.** Déterminer le rang de f.
- 2. En déduire la dimension du noyau de f. Déterminer une base du noyau de f et une base de l'image de f.
- **3.** A-t-on Im $f \oplus \text{Ker } f = \mathbb{R}_2[X]$?

Exercice 17:

Soit E un espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E.

Soit f l'unique endomorphisme de E vérifiant : $f(e_1) = e_2 - e_3$, $f(e_2) = e_3 - e_1$ et $f(e_3) = e_1 - e_2$.

- 1. Déterminer une base de Im f et une base de Ker f.
- 2. Montrer que Ker f et Im f sont supplémentaires dans E.

Exercice 20:

Soit E espace vectoriel de dimension 3. On considère f non nul, dans $\mathcal{L}(E)$ tel que $f \circ f = 0_{\mathcal{L}(E)}$.

- **1.** Déterminer le rang de f.
- **2.** Montrer qu'il existe une base $\mathcal{B} = (e_1, e_2, e_3)$ de E dans laquelle la matrice de f soit : $\mathcal{M}(f, \mathcal{B}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Exercice 25:

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et f un endomorphisme de E.

On suppose que f est nilpotent d'ordre n c'est-à-dire $f^n = 0_{\mathcal{L}(E)}$ et $f^{n-1} \neq 0_{\mathcal{L}(E)}$.

- **1.** Justifier qu'il existe un vecteur x de E tel que $f^{n-1}(x) \neq 0_E$.
- **2.** Montrer que $(x, f(x), f^2(x), \dots, f^{n-1}(x))$ est une base de E.
- **3.** Déterminer la matrice de f dans cette base. Quel est le rang de f?

Exercice 26:

Soit E un espace vectoriel de dimension n. Soit f et g deux endomorphismes de E tels que f+g soit bijectif et $f \circ g = 0_{\mathcal{L}(E)}$. Que vaut rg f + rg g?

Exercice 31:

Soit u = (1, 1, 2), v = (-2, -1, 3) et w = (0, -3, -1) trois vecteurs de \mathbb{R}^3 . On pose : F = Vect(u, v) et G = Vect(w).

- **1.** Montrer que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 . Que peut-on en déduire ?
- **2. a.** Soit p le projecteur sur F parallèlement à G. Déterminer sa matrice relativement à la base \mathcal{B} .
- **b.** Déterminer la matrice de p relativement à la base canonique \mathcal{B} c de \mathbb{R}^3 .

Pas de liste d'exercices à savoir refaire sur le Chap. 22

Il faut savoir calculer des limites avec utilisation d'équivalents.