Programme Colles PCSI 3 - 2025/26

Semaine de colles n°3 du 06/10/25 au 10/10/25

DU PROGRAMME PRÉCÉDENT :

• Généralités sur les fonctions réelles

I - Généralités sur les fonctions réelles

II - Propriétés globales

III – Régularité

IV - Propriétés de la courbe représentative

V - Bilan : comment étudier une fonction à valeurs réelles

VI - Fonction bijective

Fonction bijective, bijection réciproque et dérivation de la bijection réciproque.

• Fonctions usuelles : Rappels de Terminale et compléments

I - Fonctions exponentielle, logarithme népérien

inégalités à connaître : $\forall x \in \mathbb{R}, x+1 \le e^x$ et $\forall x > 0, \ln x \le x-1$

II - Fonctions puissances

- Définition de ab avec a et b réels tel que a > 0, propriétés de calcul.
- ightharpoons Étude complète des fonctions puissances $x \longmapsto x^{\alpha} = e^{\alpha \ln x}$ variations et prolongements suivant les valeurs de α
- Fonctions racine n-ième.
- \Rightarrow Méthode d'étude de fonctions de la forme $x \longmapsto u(x)^{v(x)}$.
- Croissances comparées.

III - Fonctions circulaires

- Rappels : fonctions cosinus et sinus
- ▶ Inégalités à connaître : $\forall x \in \mathbb{R}, |\sin x| \le |x|$ et $\forall x \in [0, \frac{\pi}{2}], \frac{2}{\pi}x \le \sin x \le x$ (*)
- 🟓 Les fonctions cosinus et sinus sont indéfiniment dérivables sur 🏿 expression des dérivées n-ième. (*)
- Fonction tangente : Étude complète avec ensemble de définition, dérivée, variations, limites, courbe représentative.

Une question de cours pourra être de réaliser l'étude de la fonction tangente. (*)

Formules d'addition, de linéarisation et de duplication.

NOUVEAU COURS :

• Les nombres complexes

I - Ensemble des nombres complexes C

- Définition, unicité de la forme algébrique d'un complexe, parties réelles et imaginaires.
- Addition et multiplication : propriétés.
- 🟓 Conjugaison, propriétés de calcul, expressions de Re(z) et Im(z), caractérisation des éléments de ℝ et iℝ.
- Module, propriétés de calcul.
- ➡ Inégalité triangulaire et cas d'égalité. (*)

II - Forme trigonométrique

- **▶** Ensemble U des nombres complexes de module 1.
- Notation e i0, propriétés de calcul, formules de De Moivre et d'Euler.
- Argument d'un complexe de module 1, d'un complexe non nul, propriétés de calcul,
- Caractérisation des réels et des imaginaires purs à l'aide des arguments.
- Une méthode à connaître : factorisation par l'angle moitié.

Ex. Module et arguments de $1 + e^{it}$ ou $1 - e^{it}$, à discuter suivant les valeurs de $t \in \mathbb{R}$ (*)

Exponentielle complexe et propriétés. Résolution d'équations de la forme $e^z = a$.

III - Applications à la trigonométrie

- Formules de trigonométrie usuelles : linéarisation, factorisation.
- Transformation de a cos x + b sin x et résolution d'équations de la forme : a cos x + b sin x = c.

(*) <u>Démonstrations / Méthodes à connaître</u> et TOUT le cours est à connaître!

Prévisions semaine n° 4 : Nombres complexes (fin)

Déroulement d'une colle

- 1. Une formule de trigonométrie A CONNAITRE SANS HESITATION! cf. formulaire
- 2. Un calcul parmi:
 - Justification d'une formule de trigonométrie
 - Équation de la forme $e^z = a$ ou $a \cos x + b \sin x = c$

Vous devez être efficaces dans vos calculs.

- 3. Une question de cours : méthode ou démonstration signalées par (*).
- 4. Exercice(s): On commencera par un exercice identique ou très proche d'un exercice « à savoir refaire » (cf. liste ci-dessous).

Un cours non connu entraine une note < 10.

Programme Colles

PCSI 3 - 2025/26

Semaine de colles n°3 du 06/10/25 au 10/10/25 - Exercices à savoir refaire

Exercices Chap. 2

Exercice fait dans le cours :

Soit f une fonction définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = \frac{e^{2x} - 1}{2x + 2}$

- **a.** Montrer que f est une bijection de \mathbb{R} sur un intervalle à déterminer.
- **b.** Déterminer alors la bijection réciproque de f.

Exercice 27:

Soit f une fonction définie sur \mathbb{R}^{+*} par : $\forall x \in \mathbb{R}^{+*}$, $f(x) = x^2 + \ln x + 1$.

- **1.** Montrer que f est une bijection de \mathbb{R}^{+*} sur un ensemble J à déterminer
- 2. Donner le tableau de variations de f^{-1} .
- 3. Montrer que f^{-1} est dérivable sur J et exprimer sa dérivée en fonction de f^{-1} . On ne demande pas d'expliciter f^{-1} .
- **4.** Déterminer une équation de la tangente à la courbe représentative de f^{-1} au point d'abscisse 2.

Exercices Chap. 3

Exercice 1:

4. Montrer que : $\forall x \in]0, 1[, x^{x}(1-x)^{1-x} \ge \frac{1}{2}]$

Exercice 2 : Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

a.
$$\ln |x-1| + \ln |x-3| = \ln |3x^2 - 4x + 1|$$
 c. $2^{x+4} + 3^x = 2^{x+2} + 3^{x+2}$ **e.** $3^x + 4^x = 5^x$

c.
$$2^{x+4} + 3^x = 2^{x+2} + 3^{x+2}$$

e.
$$3^x + 4^x = 5^x$$

Exercice 5:

1. Étudier la fonction : $f: x \longmapsto x + \ln \left| \frac{x-1}{x+1} \right|$

Exercice 7:

1. Étudier la fonction : $f: x \longmapsto x^x$

Exercice 9 : Équations et inéquations trigonométriques.

Résoudre dans R les équations et inéquations suivantes :

2.
$$\tan x \tan 2x = 1$$

$$6. \tan \left(2x + \frac{\pi}{4} \right) = -1$$

7.
$$\tan x \ge 1$$

Exercice 13:

Déterminer toutes les fonctions définies sur \mathbb{R}^* et vérifiant : $\forall x \in \mathbb{R}^*$, $f(x) + 3f\left(\frac{1}{x}\right) = x^2$.

Exercices Chap. 4

Exercice 7:

Mettre sous forme exponentielle les complexes suivants. On précisera leur module et leurs arguments.

1.
$$z_1 = \frac{(1+i\sqrt{3})^7}{(1+i)^5}$$
 4. $z_4 = -2ie^{i\alpha}$, $\alpha \in \mathbb{R}$ 5. $z_5 = (1-i)^n + (1+i)^n$, $n \in \mathbb{N}$

4.
$$z_4 = -2ie^{i\alpha}$$
, $\alpha \in \mathbb{R}$

5.
$$z_5 = (1-i)^n + (1+i)^n, n \in \mathbb{N}$$

7.
$$z_7 = e^{ix} + e^{-iy}, (x, y) \in \mathbb{R}^2$$
 8. $z_8 = \frac{e^{ix} - 1}{e^{ix} + 1}, x \in]-\pi, \pi[$

3.
$$z_8 = \frac{e^{ix} - 1}{e^{ix} + 1}, x \in]-\pi, T$$

Exercice 9:

Soit z un complexe appartenant à $\mathbb{U} \setminus \{1\}$. Prouver que $\frac{z+1}{z+1}$ est un imaginaire pur.

2. Soit u appartenant à $\mathbb{C} \setminus \{1\}$ et $z \in \mathbb{C}$. Prouver que : $\frac{z - u\overline{z}}{1 + v} \in \mathbb{R} \iff u \in \mathbb{U}$ ou $z \in \mathbb{R}$.

Exercice 15: Soit u et v deux complexes.

Montrer que : 1.
$$|u| + |v| \le |u + v| + |u - v|$$

2. *Identité du parallélogramme.* $|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2)$

Exercice 23 : Équations avec des modules.

1. Trouver l'ensemble des complexes z tels que : |z + 1| = |z| + 1.

2. Trouver l'ensemble des complexes z tels que : $|z| = |1 - z| = \frac{1}{|z|}$

Exercice 24 : Équations avec des arguments.

1. Trouver l'ensemble des complexes z tels que : $2 \arg(z+i) \equiv \arg(z) + \arg(i) [\pi]$.

Exercice 25:

2. Trouver tous les complexes z tels que : $z^3 = -16 \overline{z}^7$.

Formulaire PCSI 3 - 25/26

TRIGONOMÉTRIE

I - Valeurs remarquables

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	\times

II - Relations entre cos, sin et tan

$$\forall x \in \mathbb{R}, \sin^2 x + \cos^2 x = 1$$

$$\forall x \in \mathbb{R} \setminus \{ \frac{\pi}{2} + k \pi, k \in \mathbb{Z} \}$$
 $\tan x = \frac{\sin x}{\cos x}$

$$\tan x = \frac{\sin x}{\cos x}$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

III - Angles associés

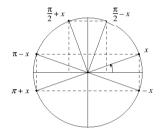
Une lecture efficace du cercle trigonométrique permet de retrouver les relations suivantes :

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos(\pi - x) = -\cos x$$
$$\sin(\pi - x) = \sin x$$

$$\cos(\pi + x) = -\cos x$$
$$\sin(\pi + x) = -\sin x$$



$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

Lorsque cela a un sens : $\tan\left(x + \frac{\pi}{2}\right) = \frac{\sin\left(x + \frac{\pi}{2}\right)}{\cos\left(x + \frac{\pi}{2}\right)} = -\frac{\cos x}{\sin x} = -\frac{1}{\tan(x)}$ et $\tan\left(\frac{\pi}{2} - x\right) = \frac{\sin\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} - x\right)} = \frac{1}{\tan(x)}$

IV - Formules usuelles

Formules d'addition.

cos(a + b) = cos a cos b - sin a sin b $\forall (a, b) \in \mathbb{R}^2$. cos(a - b) = cos a cos b + sin a sin b

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$ $\sin(a-b) = \sin a \cos b - \sin b \cos a$

Lorsque cela a un sens, on a : $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$

Formules de linéarisation.

 $\forall (a, b) \in \mathbb{R}^2$,

 $\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$

 $\sin a \sin b = -\frac{1}{2} [\cos(a+b) - \cos(a-b)]$

 $\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$

Formules de duplication.

$$\forall a \in \mathbb{R}, \quad \sin(2a) = 2 \sin a \cos a \\ \cos(2a) = \cos^2 a - \sin^2 a = 2 \cos^2 a - 1 = 1 - 2 \sin^2 a$$

$$\forall \ a \in \mathbb{R} \setminus \left(\left(\frac{\pi}{4} + \frac{\pi}{2} \mathbb{Z} \right) \cup \left(\frac{\pi}{2} + \pi \mathbb{Z} \right) \right), \ \tan(2a) = \frac{2 \tan a}{1 - \tan^2 a}$$

On en déduit :

$$\forall a \in \mathbb{R}, \quad \cos^2 a = \frac{1}{2} (1 + \cos(2a))$$

$$\sin^2 a = \frac{1}{2} (1 - \cos(2a))$$

Formules de factorisation.

$$\forall \ (p \ , \ q) \in \mathbb{R}^2, \cos p + \cos q = 2 \cos \left(\frac{p+q}{2}\right) \cos \left(\frac{p-q}{2}\right)$$

$$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin p \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

$$\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \qquad \qquad \sin p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

$$\ln p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

Si
$$x \notin \pi + 2\pi \mathbb{Z}$$
 et $t = \tan \frac{x}{2}$, on a: $\sin x = \frac{2t}{1+t^2}$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

$$\tan x = \frac{2t}{1-t^2}$$
 avec $x \notin \frac{\pi}{2} + \pi \mathbb{Z}$

Formule de De Moivre.

On a:
$$\forall (\theta, n) \in \mathbb{R} \times \mathbb{N}, (e^{i\theta})^n = e^{in\theta}$$
 c'est-à-dire $\forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}, (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

V - Équations trigonométriques

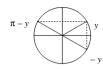
$$\cos x = \cos y \Leftrightarrow x = y + 2k\pi \text{ ou } x = -y + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x \equiv y [2\pi] \text{ ou } x \equiv -y [2\pi]$$

$$\sin x = \sin y \Leftrightarrow x = y + 2k\pi \text{ ou } x = \pi - y + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x \equiv y [2\pi] \text{ ou } x \equiv \pi - y [2\pi]$$

$$\tan x = \tan y \Leftrightarrow x = y + k\pi, k \in \mathbb{Z} \Leftrightarrow x \equiv y [\pi]$$



Cas particuliers:

$$\cos x = 0 \iff x \equiv \frac{\pi}{2} \ [\pi] \iff x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$
$$\sin x = 0 \iff x \equiv 0 \ [\pi] \iff x = k\pi, \ k \in \mathbb{Z}$$

VI – Transformation de $a \cos x + b \sin x$

But : Transformer de $a \cos x + b \sin x$ en $A\cos(x - \theta)$ où a et b sont deux réels, non tous les deux nuls.

• On met en facteur
$$\sqrt{a^2 + b^2} \neq 0$$
 et on obtient : $a \cos x + b \sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$

• Le complexe
$$\frac{a}{\sqrt{a^2+b^2}}+i\frac{b}{\sqrt{a^2+b^2}}$$
 est de module 1 donc : $\exists \ \theta \in \mathbb{R}, \ \frac{a}{\sqrt{a^2+b^2}}=\cos \theta$ et $\frac{b}{\sqrt{a^2+b^2}}=\sin \theta$

• On obtient :
$$a \cos x + b \sin x = \sqrt{a^2 + b^2} \left(\cos \theta \cos x + \sin \theta \sin x\right) = \sqrt{a^2 + b^2} \cos(x - \theta)$$

Rq. Cette transformation est utile lorsqu'on cherche à résoudre une équation de la forme $a \cos x + b \sin x = c$ avec a, b et c des réels tels que $(a, b) \neq (0, 0)$.