Programme Colles

Semaine de colles n°5 du 03/11/25 au 07/11/25

DU PROGRAMME PRÉCÉDENT :

• Les nombres complexes

I - Ensemble des nombres complexes C

II - Forme trigonométrique

III - Applications à la trigonométrie

- Formules de trigonométrie usuelles : linéarisation, factorisation.
- Transformation de a cos x + b sin x et résolution d'équations de la forme : a cos x + b sin x = c.
- ⇒ Calcul des sommes : $S_1 = \sum_{k=0}^{n} \cos(kx)$ et $S_2 = \sum_{k=0}^{n} \sin(kx)$. (*)

IV - Résolution d'équations dans ℂ

Rappel / complément: Si z_0 est solution d'une équation polynomiale alors elle se factorise par $(z - z_0)$.

- Racines carrées d'un complexe : Définition, méthode de calcul, tout complexe non nul admet 2 racines carrées opposées.
- Application à la résolution d'une équation de degré 2.
- Racine n-ième de l'unité, somme et produit.

Rq. Une question de cours pourra être de donner la définition et la justification des expressions des racines nième de l'unité. (*)

Racines cubiques de l'unité : 1, j et j̄ = j².

Relations: $j^3 = 1$, $1 + j + j^2 = 0$ et j et j^2 sont les solutions de $z^2 + z + 1 = 0$.

ightharpoonup Résolution de $z^n = a$, $a \in \mathbb{C}$.

V - Nombres complexes et géométrie plane

- Interprétation graphique des complexes, module, argument.
- Affixe d'un point, d'un vecteur, lieux de points usuels (cercles, disques, médiatrices)
- Caractérisation de points alignés, caractérisation de droites perpendiculaires.
- Transformations du plan (définitions + expressions complexes) : symétrie orthogonale d'axe (Ox)

Translation

Rotation de centre Ω et de rayon r Homothétie de centre Ω et de rapport k > 0.

PCST 3 - 2025/26

VI - Compléments sur les fonctions à valeurs complexes

- 🟓 La dérivée d'une fonction à valeurs dans C est définie par dérivation de ses parties réelle et imaginaire.
- ightharpoons Dérivation de $m x\longmapsto e^{ax}$ avec a $m \in \mathbb{C}$ et de t $m \longmapsto e^{\phi(t)}$ avec $m \phi: I\longrightarrow \mathbb{C}$ dérivable sur I intervalle de \mathbb{R} .

NOUVEAU COURS :

• Calcul de sommes et de produits

I - Le symbole Σ

- Notation ∑ pour les sommes
- Règles de calcul : termes constants, facteur constant, changement d'indice, symétrie, sommes télescopiques.
- Séparation des termes pairs et impairs
- ightharpoonup Sommes classiques : $\sum_{k=1}^n k$, $\sum_{k=1}^n k^2$ (*) et $\sum_{k=1}^n k^3$.
- Sommes de type géométrique. Soit $n \in \mathbb{N}^*$ et $p \in [0, n]$. On a : $\sum_{k=p}^{n} q^k = \begin{cases} q^p \frac{1 q^{n-p+1}}{1 q} & \text{si } q \neq 1 \\ n p + 1 & \text{si } q = 1 \end{cases}$
- Formule de Bernoulli : $\forall (x,y) \in \mathbb{C}^2$, $\forall n \in \mathbb{N}^*$, $x^n y^n = (x-y)\sum_{k=0}^{n-1} x^{n-1-k} y^k = (x-y)\sum_{k=0}^{n-1} x^k y^{n-1-k}$
- lacktriangleright Cas des sommes doubles, Sommes triangulaires : $\forall n \in \mathbb{N}^*, \ \sum_{i=1}^n \sum_{j=1}^i x_{i,j} = \sum_{1 \le j \le i \le n} x_{i,j} = \sum_{j=1}^n \sum_{i=j}^n x_{i,j}$

II - Le symbole Π

- ▶ Notation ∏ pour les produits
- Règles de calcul, produits télescopiques.

III - Formule du binôme de Newton et applications à la trigonométrie

- \blacktriangleright Définition de n !, de $\binom{n}{k}$, valeurs particulières, symétrie et Si $1 \le k \le n$, on a : $k \binom{n}{k} = n \binom{n-1}{k-1}$.
- Formule du triangle de Pascal et formule du binôme de Newton.
- → Application à la trigonométrie : (*) Un exercice utilisant une des deux méthodes ci-dessous.

Pour transformer des produits de $\cos^p x$ et $\sin^q x$, avec $(p, q) \in \mathbb{N}^2$, en somme de $\cos(kx)$ et $\sin(lx)$ où $(k, l) \in \mathbb{N}^2$:

Utiliser les formules d'Euler puis appliquer la formule du binôme de Newton.

Pour exprimer cos(nx) et sin(nx), avec n entier, en fonction de sin x et cos x:

On a : $\cos(nx)$ = Re (e^{inx}) = Re $(\cos x + i \sin x)^n)$ et $\sin(nx)$ = Im (e^{inx}) = .. d'après la formule de De Moivre Ensuite, on utilise la formule du binôme de Newton.

Rq. pour les interrogateurs : Nous n'avons pour le moment, pas traités d'exercices sur le calcul de produit.

(*) <u>Démonstrations / Méthodes à connaître</u> et TOUT le cours est à connaître!

Prévisions semaine n° 6 : Calculs de primitives et d'intégrales

Déroulement d'une colle

- 1. Une formule de trigonométrie A CONNAITRE SANS HESITATION! cf. formulaire
- 2. Résolution d'une équation de la forme : $e^z = a$ ou de degré 2 à coefficients dans $\mathbb C$ ou $z^n = a$.

Vous devez être efficaces dans vos calculs.

- 1. Une question de cours parmi celles signalées par (*).
- 2. Exercice(s): On commencera par un exercice identique ou très proche d'un exercice « à savoir refaire » (cf. liste ci-dessous).

Un cours non connu entraine une note < 10.

Programme Colles PCSI 3 - 2025/26

Semaine de colles n°5 du 03/11/25 au 07/11/25 - Exercices à savoir refaire

Exercices Chap. 4

Exercice 25:

2. Trouver tous les complexes z tels que : $z^3 = -16 \frac{1}{z^3}$.

Exercice 29: Résoudre dans C les équations suivantes. On donnera les solutions sous forme algébrique.

a.
$$(z + 1)^n = (z - 1)^n$$
 avec $n \in \mathbb{N}^*$

Nous avons montré que n-1 solutions trouvées sont imaginaires pures et 2 à 2 distinctes.

Exercice 33:

- 1. Déterminer les racines carrées du complexe 5 12i.
- **2.** Déterminer la/les solution(s) imaginaire(s) pure(s) de l'équation (E): $z^3 (1+2i)z^2 + 3(1+i)z 10(1+i) = 0$.
- 3. Résoudre l'équation de la question précédente.

Exercice 36: A savoir retrouver très rapidement!

Soit A, B et M trois points du plan complexe, distincts deux à deux, d'affixes respectives a, b et z. On pose : $Z = \frac{z-a}{z-b}$.

Montrer que l'on a : 1. A, B, M alignés $\Leftrightarrow Z \in \mathbb{R}^*$

4. ABM rectangle isocèle en M \Leftrightarrow Z = i ou Z = -i

2. ABM rectangle en M \Leftrightarrow Z \in $i\mathbb{R}^*$

5. ABM équilatéral $\Leftrightarrow Z = e^{i\frac{\pi}{3}}$ ou $Z = e^{-i\frac{\pi}{3}}$

3. ABM isocèle en M \Leftrightarrow |Z| = 1

Exercice 39:

a. Trouver l'ensemble des points M d'affixe z vérifiant : M, P point d'affixe iz et I point d'affixe i sont alignés.

b. Trouver l'ensemble des points M d'affixe z vérifiant : [z-(1+i)][z-(1-i)]=8

Exercices Chap. 5

Exercice 4 : Calculer les sommes suivantes (suivant les cas n appartient à \mathbb{N} ou \mathbb{N}^*):

1.
$$S_1 = \sum_{k=1}^{n} k(n+1-k)$$
 2. $S_2 = \sum_{k=1}^{n} \frac{k}{(k+1)!}$ **3.** $S_3 = \sum_{k=1}^{n} \frac{1}{k(k+1)}$

2.
$$S_2 = \sum_{k=1}^n \frac{k}{(k+1)!}$$

3.
$$S_3 = \sum_{k=1}^n \frac{1}{k(k+1)}$$

5.
$$S_5 = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2} \right)$$
 7. $S_7 = \sum_{k=1}^{2n} (-1)^k k^2$

7.
$$S_7 = \sum_{k=1}^{2n} (-1)^k k$$

Exercice 5: Sommes doubles.

Calculer les sommes suivantes (suivant les cas n appartient à \mathbb{N} ou \mathbb{N}^*):

1.
$$S_1 = \sum_{i=0}^n \sum_{k=i}^n \frac{i}{k+1}$$

2.
$$S_2 = \sum_{1 \le i, j \le n} a_j$$

1.
$$S_1 = \sum_{i=0}^{n} \sum_{k=i}^{n} \frac{i}{k+1}$$
 2. $S_2 = \sum_{1 \le i, j \le n} ij$ **3.** $S_3 = \sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j)$ **4.** $S_4 = \sum_{1 \le i \le j \le n} (i+j)$

$$S_4 = \sum_{1 \le i \le j \le n} (i+j)$$

Exercice 6:

Pour $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose : $S_n = \sum_{k=0}^n ka^k$

- **1.** Calculer S_n lorsque a = 1.
- **2.** Lorsque $a \ne 1$, calculer $a S_n S_n$ et en déduire la valeur de S_n .
- 3. Lorsque $a \ne 1$, retrouver le résultat précédent en remarquant que $S_n = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a^k$.

Exercice 14:

Calculer les sommes suivantes (n appartient à \mathbb{N})

1.
$$S_1' = \sum_{0 \le 2k \le n} \binom{n}{2k}$$
 et $S_1'' = \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1}$

2.
$$S_2' = \sum_{0 \le 2k \le n} (-1)^k \binom{n}{2k}$$
 et $S_2'' = \sum_{0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1}$

3.
$$S_3 = \sum_{k=0}^{n} {n \choose k} \sin(k\theta)$$
 avec $\theta \in \mathbb{R}$