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DU PROGRAMME PRÉCÉDENT :  
 

∙ Systèmes linéaires – Méthode du pivot  
 

Rq pour les interrogateurs : le but de ce chapitre est de savoir appliquer l’algorithme de Gauss sur des systèmes 
de taille raisonnable, avec ou sans paramètre.  
 

I – Généralités 
 Équation linéaire, systèmes linéaires, système homogène, compatible/incompatible, système de Cramer. 
 Forme de l’ensemble des solutions 
 Interprétation géométrique dans le cas de systèmes à deux ou trois équations ou deux ou trois inconnues. 

 

II – Méthode du pivot 
 Définition des opérations élémentaires sur les lignes d’un système linéaire  
 Si on applique à un système linéaire (S) une suite d’opérations élémentaires sur les lignes, on obtient un autre 

système linéaire (S') équivalent à (S), c’est-à-dire ayant le même ensemble de solutions. 

 Systèmes échelonnés : définition, pivot, rang du système, relations de compatibilité 
Algorithme de Gauss  

 
∙ Calcul matriciel 

I – Matrices à coefficients dans K 
 Définition, opérations : somme, multiplication par un scalaire, propriétés de calcul, combinaison linéaire. 
 Décomposition comme combinaison linéaire des matrices élémentaires. 
 Transposition, notation AT. 

 

II – Produit de matrices  
 Définition, propriétés de calcul. Le produit matriciel N’EST PAS COMMUTATIF. 
 Lignes et colonnes d’une matrice :  

• Si X est une matrice colonne alors AX est une combinaison linéaire des colonnes de A.  
• Cj(AB) = A × Cj(B) et Li(AB) = Li(A) × B. 

 Écriture matricielle d’un système linéaire  
 
III - Les matrices carrées 

 Définition de Mn (K), le produit matriciel est une loi interne dans Mn (K). 

 Définition d’une puissance entière de matrice, propriétés. 
 Si A et B commutent, on peut utiliser :  Le binôme de Newton et la formule de Bernoulli An – Bn = … 

Exemples : Calcul de Jk où J = (1) 1 ≤ i, j ≤ n ∈ Mn(ℝ)  (*)    Calcul de Ak où A = 
2 (5)

(5) 2

 
 
 
 
 

⋱  ∈ Mn(ℝ) (*) 

 Matrices carrées particulières : diagonales, scalaires, triangulaires, symétriques et antisymétriques  
Le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure et expression des 
coefficients diagonaux.  (*) 
 
  

NOUVEAU COURS :  
IV - Matrices carrées inversibles 

 Définition, cas des matrices ayant une ligne/colonne nulle, cas des matrices diagonales. 
 Inverse d’un produit, d’une transposée, d’une puissance entière 

 

V – Opérations élémentaires sur les matrices 
 Opérations élémentaires sur les lignes : permutation, dilatation, transvection. 
 Matrices des O.E.L, interprétation en termes de produits matriciels. 
 Matrices des O.E.L sont inversibles, les O.E.L. préservent l’inversibilité 
 Cas des matrices ayant deux lignes/colonnes proportionnelles 
 Opérations élémentaires sur les colonnes 

 

VI – Algorithme du pivot de Gauss et caractérisations des matrices inversibles 
 Si A est inversible, l’algorithme du pivot de Gauss permet, par une suite finie d’O.E.L., de transformer A en une 

matrice ayant n pivots / en In. 
 Caractérisation des matrices inversibles : 

 

Soit A ∈ Mn(K). Il y a équivalence entre les propositions suivantes :  

   1. A est inversible.  

   2. ∃ B ∈ Mn(K), BA = In 

   3. Le système AX = 0n,1 admet une unique solution (c’est la solution nulle). 

   4. Il existe une suite finie O.E.L. permettant de transformer A en une matrice ayant n pivots. 

   5. Il existe une suite finie O.E.L permettant de transformer A en In. 

 Inversibilité à droite et à gauche  
 Calcul pratique de l’inverse en utilisant l’algorithme de Gauss : 

Si A est inversible, il existe une suite finie d’O.E.L. qui transforme A en In. La même suite d’O.E.L. transforme In 
en A– 1.  Idem avec OEL mais on ne mélange pas les deux. 

 Calcul pratique de l’inverse par résolution de système linéaire :  
A est inversible ⇔ Pour tout B ∈ Mn,1(K), le système AX = B a une unique solution (qui est alors X = A– 1B ) 

 

∙ Limites et continuité 
I – Limite d’une fonction et continuité  

 Notion de voisinage 
 Définition limite (finie ou infinie) en un point (fini ou infini)   
 Unicité de la limite. 
 Toute fonction admettant une limite finie en un point est bornée au voisinage de ce point.   
 Continuité en un point. 

 
 (*) Démonstrations / Méthodes à connaître et TOUT le cours est à connaître ! 
 
Prévisions semaine n° 16 : Continuité (fin) 
 

Déroulement d’une colle 
 
 

1. Donner un cas parmi les 9 possibles de définition de f(x) →  L quand x →  a. 
2. Une ou deux questions parmi :  

• Une question de cours parmi celles signalées par (*) 
• Résolution d’un système linéaire (avec ou sans paramètre, de taille raisonnable) en utilisant l’algorithme 

de Gauss 
• Calcul de l’inverse d’une matrice carrée d’ordre 3 

3. Exercice(s)  
 

Un cours non connu entraine une note < 10. 
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Exercices Chap. 15 
 

 

Méthodes à connaitre :   

 

Comment calculer les puissances d’une matrice A ?  

• A connaitre : Si J = (1)1 ≤ i, j ≤ n  alors on a : ∀ k ∈ ℕ, 
1 *

I        si  0
J

J  si 

nk

k

k

n k−

== 
∈ ℕ

   

           Si A = diag(α1, …, αn)  alors on a :  ∀ p ∈ ℕ*,  Ap  = diag(α1
p, …, αn

 p)   

 

• Utilisation d’un raisonnement par récurrence :  Calcul des 1ieres puissances, conjecture, démonstration par récurrence 

 

• Utilisation de suites récurrentes 
 

Mth :  SI A2 s’écrit comme combinaison linéaire de A et I3, on peut : 

1) Montrer qu’il existe deux suites (un) et (vn) vérifiant : ∀ n ∈ ℕ, An = un A + vn I3 

2) Calculer un et vn en fonction n et en déduire une expression de An, pour n ∈ ℕ. 

 

• Utilisation du binôme de Newton 
 

Mth :  A = M + N avec M et N qui COMMUTENT et on sait calculer leurs puissances 

Une des deux matrices est souvent α In  avec α ∈ K car α In commute avec toutes matrices de Mn(K).  

 

 Comment montrer que A est inversible (sans calculer son inverse) ? 
 

Rq. Une matrice de Mn(K) comportant une ligne ou une colonne nulle n’est pas inversible.   

        Une matrice de Mn(K) ayant deux lignes ou deux colonnes proportionnelles n’est pas inversible. 
 

 

Mth :  Dans la pratique, pour montrer que A∈ Mn(K), est inversible, il suffit de montrer qu’il existe une suite finie O.E.L. 

permettant de transformer A en une matrice ayant n pivots. 

 
 

Mth :  Pour montrer que A∈ Mn(K), est inversible, il suffit de montrer que le système AX = 0n,1 admet une unique solution 

(qui est la solution nulle) 

 

 Comment montrer que A est inversible et calculer A – 1  ?  

 

• Utilisation d’une relation en I, A, A2 : On se ramène à une égalité de la forme : 
�

1A

A ( ... ) In

−

× =  

• Utilisation d’OEL (ou O.E.C) pour montrer qu’il existe une suite finie O.E.L permettant de transformer A en In. La même suite 

d’O.E.L. transforme In en A– 1 

 

• Résolution d’un système linéaire : A est inversible ⇔ Pour tout B ∈ Mn,1(K), le système AX = B a une unique solution. 

Cette solution est alors : X = A– 1B 

 
 

  

Exercice 2 :  

Soit J = (1) 1 ≤ i, j ≤ n ∈ Mn(ℝ) la matrice de terme général égal à 1. 

Montrer que : ∀ A ∈ Mn(ℝ), J A J  = s(A) J où s(A) = 
1 1

n n

ij

i j

a
= =
  est la somme de tous les termes de A. 

 

Exercice 12 :  

Soit (xn), (yn) et (zn) trois suites réelles définies par leurs premiers termes x0, y0 et z0 et les relations de récurrence :     

 

 

Déterminer xn , yn et zn en fonction de n, x0, y0 et z0, puis étudier la convergence de ces trois suites. 

 
Exercice 20 :   

Soit A ∈ Mn(ℝ), nilpotente (∃ p ∈ ℕ, Ap = 0n). Montrer que In – A est inversible et préciser son inverse. 

 
Exercice 24 :  

Soit U et V deux matrices de Mn,1(ℝ). On pose : A = U.VT + In. 

1. Calculer A2 en fonction de A. 

2. En déduire une condition nécessaire et suffisante pour que la matrice A soit inversible. Quand elle existe, calculer A – 1. 

 

Exercice 29 :  

Soit A = …  et P = … . 

1. Montrer que la matrice P est inversible et calculer P – 1. 

2. On pose : D = P – 1A P. Déterminer Dn pour n ∈ ℕ. 

3. En déduire An en fonction de n ∈ ℕ. 

4. Application à un système de suites récurrentes. 
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