Formulaire Rentrée en PCSI

PRIMITIVES USUELLES

f(x) =	Expression d'une primitive $F(x) =$	Définie sur l'intervalle I =
x^{α} avec $\alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1}$	\mathbb{R} si $\alpha \in \mathbb{N}$ $] - \infty, 0 \text{ [ou] } 0, + \infty \text{ [si } \alpha \in \mathbb{Z}^-$ $] 0, + \infty \text{ [si } \alpha \in \mathbb{R} \setminus \mathbb{Z}$
$\frac{1}{x^n} \operatorname{avec} n \in \mathbb{N} \setminus \{0, 1\}$	$\frac{1}{1-n} \times \frac{1}{x^{n-1}}$] – ∞, 0 [ou] 0, + ∞ [
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$] 0, +∞[
$\frac{1}{x}$	ln(x)] – ∞, 0 [ou] 0, + ∞ [
e^x	e^{x}	\mathbb{R}
$e^{\alpha x}, \alpha \in \mathbb{R}^*$	$\frac{1}{lpha}e^{lpha x}$	R
cos x	sin x	\mathbb{R}
sin x	- cos x	R

Si f est de la forme	Avec <i>u</i> dérivable sur I telle que	Une primitive F est de la forme
$u' u^n (n \in \mathbb{Z} \setminus \{-1\})$	u ne s'annulant pas sur I et $n \neq -1$	$\frac{1}{n+1} \times u^{n+1}$
$\frac{u'}{\sqrt{u}}$	<i>u</i> > 0 sur I	$2\sqrt{u}$
$\frac{u'}{u}$	u ne s'annulant pas sur I	ln(u)
$\frac{u'}{u^n} \operatorname{avec} n \in \mathbb{N} \setminus \{0, 1\}$	u ne s'annulant pas sur I	$\frac{1}{1-n} \times \frac{1}{u^{n-1}}$
u' e ^u		e^u
$x \longmapsto u(ax+b) a \neq 0$	U une primitive de <i>u</i> sur I	$x \longmapsto \frac{1}{a} \times U(ax + b)$

★ Primitive s'annulant en un point

Th.

Si f est une fonction **continue** sur un **intervalle** I de \mathbb{R} et si a est un réel de I, alors f admet des primitives sur I et on a :

La fonction définie sur I par F : $x \longmapsto \int_a^x f(t)dt$ est l'**unique** primitive de f sur I qui s'annule en a.

L'ensemble des primitives de f, sur I, est alors : $\{F + \lambda, \lambda \in \mathbb{R}\}$.

★ Intégrale d'une fonction continue.

Théorème fondamental liant intégrales et primitives.

Si f est une fonction **continue** sur un intervalle I de \mathbb{R} et a et b deux réels de I, alors on a :

$$\int_a^b f(x) dx = F(b) - F(a) = \left[F(x) \right]_a^b \text{ , où } F \text{ est une primitive quelconque de } f \text{ sur I.}$$

★ Formule d'intégration par parties

Soit u et v deux fonctions dérivables et de dérivées continues sur un intervalle I de \mathbb{R} . Th.

Si a et b sont deux réels de I alors on a : $\int_a^b u(x)v'(x)dx = \left[u(x)v(x)\right]_a^b - \int_a^b u'(x)v(x)dx$

\star Résolution de l'équation différentielle y' = ay + b

Prop.

Soit $a \in \mathbb{R}$. Les solutions de l'équation différentielle y' = ay sont les fonctions de la forme : $x \longmapsto \lambda e^{ax}$, $\lambda \in \mathbb{R}$.

Prop.

Soit $(a, b) \in \mathbb{R}^2$ avec $a \neq 0$. Les solutions de l'équation différentielle y' = ay + b sont les fonctions de la forme :

$$x \longmapsto \lambda e^{ax} - \frac{b}{a}$$
, $\lambda \in \mathbb{R}$.