

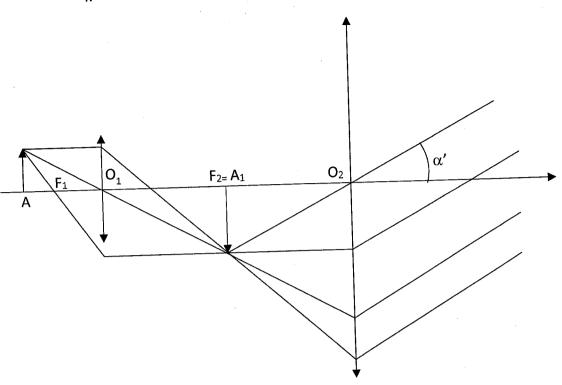
Microscope. 114

В

On choisit le deuxième cas, car dans un microscope l'œil en se place contre l'oculaire et observe une image virtuelle.

2. Relation de conjugaison pour l'objectif :

$$\overline{O_1 A_1} = \frac{\overline{O_1 A} f'_1}{\overline{O_1 A} + f'_1}$$
 A.N. = $\overline{O_1 A_1} = 16.4 \ cm$ (A₁ est bien entre F₂ et O₂)


Idem pour l'oculaire : $\overline{O_2A'}$ = -36 cm, l'image est virtuelle.

3. A'B' à l' ∞ et pour cela il faut A_1 sur F_2 donc $\overline{O_1A_1}$ =16 cm. La relation de conjugaison donne la position de l'objet : $\overline{O_1A}$ =-4,102 mm (il faut garder suffisamment de décimales).

Sans accommoder on vient de montrer que $\overline{O_1A}$ =-4,102 mm. Lorsque l'œil accommode au maximum, et qu'il est placé en F'₂, il faut $\overline{A'F'_2} = PP = 25~cm$ On peut utiliser la relation de Newton : $\overline{F_2A_1}$. $\overline{F'_2A'} = -f_2{'2}$ d'où $\overline{F_2A_1} = 0,64~cm$ On en déduit la position de l'objet : avec la relation de conjugaison de Descartes pour l'objectif : $\overline{O_1A} = -4,098~mm$.

Donc Δx = 0,004 mm, c'est très faible d'où la vis et la crémaillère de précision montées sur les microscopes pour contrôler de si petits déplacements.

4.

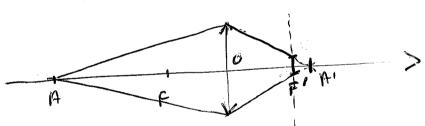
$$P_i = \frac{\alpha'}{AB}$$
 avec $\alpha' = \tan(\alpha') = \frac{A_1 B_1}{f'_2}$ donc $P_i = \frac{|\gamma_1|}{f_{2'}}$ $\gamma = 16/0,41 = 39$ $P_i = 9,8$ 10^2 m⁻¹

5.
$$G = \frac{\alpha r}{\alpha}$$
 avec $\alpha = \frac{AB}{PP}$ et $\alpha' = \frac{A_1B_1}{f_{2}}$

D'où G= $P_i PP$ A.N. : G=2,4 10^2

II)
$$f'=85$$
 mm.

1) $f'=85$ mm.


 $f(\alpha/1)=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$
 $f'=\frac{\beta'\beta'}{\beta'}$

$$tom(d/r) = \frac{A'B'/2}{g'}$$

7)
$$\overline{OA} = -3m$$
 $\frac{1}{\overline{OA}}, -\frac{1}{\overline{OA}} = \frac{1}{p}, \quad \overline{OA}' = \frac{f'\overline{OA}}{\overline{OA} + f'} = \frac{A \cdot N}{\overline{OA} + f'} = \frac{85 \times 3000}{(-3000 + 85)}$

il fant realler la pellialise 87,47-85 = 87,42 mm.

3) 1.
$$d = \frac{f'}{N} = \frac{85}{5.6} = 15,18 \text{ mm}.$$

La profondeur de champ ost la zone le long de l'asce oplique par la quelle l'unicge pent-être considérace

La taille du grain (du pissel) influe sur la préfaction

in
$$0 = -\overline{o}A > 0$$
. and $\overline{o}A = \frac{f'\overline{o}A'}{\delta / 2}$ of $\frac{d/2}{\delta / 2} = \frac{\overline{o}A'}{f'}$ (Thatei).

In $0 = -\overline{o}A > 0$. and $\overline{o}A = \frac{f'\overline{o}A'}{\delta / 2}$ of $\frac{d/2}{\delta / 2} = \frac{\overline{o}A'}{f'}$ (Thatei).

In $0 = -\overline{o}A > 0$. and $\overline{o}A = \frac{f'\overline{o}A'}{\delta / 2} = \frac{f'\overline$

il faut la taille des pisels > 5=0,05 mm.

3.31 Pour anaporates la profondeux de champ il faut d'uniment le derante du d'aphregne par d'uniment la taille de la tache d'on l'augmentes H

3.4.) La quantité de leurière est proportie elle à d² dans

à 1/2 si N.park d'He=5,6 à N2=11.

(N2) = 4. la leurière est d'inimée

d'on factor 2 4 il faut augmentes la durée de la pase du nême factor si 12-50 => 1= 4 2 6.5.