Correction du TD n 20

Correction 1 1. $u_n = \frac{1}{n^2+n}$

On a $u_n \sim \frac{1}{n^2}$ donc $\sum u_n$ converge.

- 2. $u_n = \frac{e^n}{n^5 + e^{-n}}$ On remarque que $\lim_{n \to +\infty} u_n = +\infty$ par le théorème de croissances comparées donc la série diverge grossièrement.
- 3. $u_n = \frac{\cos(n)}{n^2}$ On a $n\sqrt{n}u_n = \frac{\cos(n)}{\sqrt{n}}$ et $\lim_{n \to +\infty} n\sqrt{n}u_n = 0$ car cos est bornée. On en déduit, par comparaison à une série de Riemann, que $\sum u_n$ converge.
- 4. $u_n = \frac{1}{n + \ln(n)}$ On a $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$ par le théorème de croissances comparées donc $u_n \sim \frac{1}{n}$. Par comparaison à la série harmonique, la série diverge.
- 5. $u_n = (-1)^n \cos \frac{n}{n+1}$ La suite $(u_n)_{n \in \mathbb{N}}$ diverge donc la série $\sum u_n$ diverge grossièrement.
- 6. $u_n = \frac{1}{\sqrt{n}} \sin \frac{\pi}{2n}$ On a $\lim_{n \to +\infty} \frac{\pi}{2n} = 0$ donc $\sin \frac{\pi}{2n} \sim \frac{\pi}{2n}$. On en déduit que $u_n \sim \frac{\pi}{2n\sqrt{n}}$. Par comparaison à une série de Riemann, la série converge.
- 7. $u_n = \ln\left(1 \frac{1}{n+2}\right)$ On a $\lim_{n \to +\infty} \frac{1}{n+2} = 0$ donc $u_n \sim -\frac{1}{n+2} \sim \frac{1}{n}$. Par comparaison à la série harmonique, la série diverge.
- 8. $u_n = \ln(\cos(1/2n))$ On a $\lim_{n \to +\infty} \cos \frac{1}{2n} = 1$ donc $u_n \sim \cos \frac{1}{2n} - 1 \sim \frac{1}{2n^2}$. Par comparaison à une série de Riemann, la série converge.

9. $u_n = \frac{1}{n\sqrt[n]{n}}$ On a $\sqrt[n]{n} = exp\left(\frac{\ln(n)}{n}\right)$. Par le théorème de croissances comparées, on a

 $\lim_{\substack{n \to +\infty \\ \text{ison à la série harmonique, la série diverge.}}} \frac{\ln(n)}{n} = 0 \text{ donc } \lim_{\substack{n \to +\infty \\ \text{ison à la série harmonique, la série diverge.}}} \sqrt[n]{n} = 1. \text{ On en déduit que } u_n \sim \frac{1}{n}. \text{ Par comparaison à la série harmonique, la série diverge.}}$

10. $u_n = (\sqrt{n+1} - \sqrt{n})^{\alpha}$. On écrit

$$u_n = (\sqrt{n+1} - \sqrt{n})^{\alpha}$$
$$= \left(\frac{1}{\sqrt{n+1} + \sqrt{n}}\right)^{\alpha}$$

On a $\frac{1}{\sqrt{n+1}+\sqrt{n}} \sim \frac{1}{2\sqrt{n}}$ donc $u_n \sim \frac{1}{2^{\alpha}\sqrt{n^{\alpha}}}$. On sait que $\sqrt{n^{\alpha}} = n^{\alpha/2}$ donc, par comparaison à une série de Riemann :

- Si $\alpha > 2$, la série converge.
- Si $\alpha \leq 2$, la série diverge.
- 11. $u_n = n \ln n \ e^{-\sqrt{n}}$ Par le théorème de croissances comparées, on sait que $\lim_{n \to +\infty} n^2 u_n = 0$. Par comparaison à une série de Riemann, la série converge.
- 12. $u_n = \left(\frac{1}{\ln 3n}\right)^n$ On écrit $u_n = exp\left(n\ln\frac{1}{\ln(3n)}\right) = exp\left(-n\ln\ln(3n)\right)$. On va montrer que $\lim_{n\to+\infty} n^2 u_n = 0$. On écrit :

$$n^{2}u_{n} = n^{2}exp(-n\ln\ln(3n))$$

$$= \underbrace{\frac{n^{2}}{(-n\ln\ln(3n))^{2}}}_{\to 0} \cdot \underbrace{(-n\ln\ln(3n))^{2}exp(-n\ln\ln(3n))}_{\to 0}$$

la deuxième limite étant 0 grâce au théorème de croissances comparées. On en déduit que $u_n=o\left(\frac{1}{n^2}\right)$. Par comparaison à une série de Riemann, la série converge.

13. $u_n = \frac{e^{-2n} + n}{n^3 + 1}$ On a $u_n \sim \frac{1}{n^2}$. On en déduit, par comparaison à une série de Riemann, que la série de terme général $\frac{e^{-2n}}{n^3}$ converge. Par le théorème de comparaison entre séries à termes positifs, on en déduit que $\sum u_n$ converge.

14.
$$u_n = \frac{\cos(n^2) + n\sin(n)}{n^2\sqrt{n}}$$

On a $|u_n| \leq \frac{1+n}{n^2\sqrt{n}}$ et $\frac{n+1}{n\sqrt{n}} \sim \frac{1}{n\sqrt{n}}$. Par comparaison à une série de Riemann, la série de terme général $\frac{n+1}{n\sqrt{n}}$ est convergente. Par le théorème de comparaison des séries à termes positifs, on en déduit que la série $\sum |u_n|$ converge. La série de terme général u_n est donc absolument convergente donc convergente.

15.
$$u_n = \frac{1 + n\cos(n\pi)}{n^2}$$

On écrit $u_n = \frac{1}{n^2} + \frac{(-1)^n}{n}$. Ainsi, on a écrit u_n comme la somme de deux termes généraux de séries convergentes. On en déduit que $\sum u_n$ converge.

16. On va chercher un équivalent du terme général. On écrit :

$$\sqrt[n]{n+1} - \sqrt[n]{n} = \exp\left(\frac{1}{n}\ln(n+1)\right) - \exp\left(\frac{1}{n}\ln(n)\right)
= \exp\left(\frac{1}{n}\left(\ln(n) + \ln\left(1 + \frac{1}{n}\right)\right)\right) - \exp\left(\frac{1}{n}\ln(n)\right)
= \exp\left(\frac{\ln n}{n}\right)\left(\exp\left(\frac{1}{n}\ln\left(1 + \frac{1}{n}\right)\right) - 1\right)
= \exp\left(\frac{\ln n}{n}\right)\left(\exp\left(\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) - 1\right)
= \exp\left(\frac{\ln n}{n}\right)\left(\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right)$$

Par le théorème de croissances comparées, on a $\lim_{n\to+\infty} \exp\left(\frac{\ln n}{n}\right) = 1$ donc $\sqrt[n]{n+1} - \sqrt[n]{n} \sim \frac{1}{n^2}$.

Le terme général de la série est positif, par croissance de $x \mapsto \sqrt[n]{x}$ et équivalent à $\frac{1}{n^2}$ qui est le terme général d'une série convergente. On peut donc affirmer que la série $\sum (\sqrt[n]{n+1} - \sqrt[n]{n})$ converge.

17. On cherche un équivalent du terme général. On écrit :

$$\ln ((n+1)(n+2)) = \ln(n^2) + \ln \left(1 + \frac{3}{n} + \frac{2}{n^2}\right)$$
$$= \ln(n^2) \left(1 + \frac{\ln \left(1 + \frac{3}{n} + \frac{2}{n^2}\right)}{\ln(n^2)}\right)$$

Or
$$\lim_{n \to +\infty} \frac{\ln\left(1 + \frac{3}{n} + \frac{2}{n^2}\right)}{\ln(n^2)} = 0 \text{ donc } \ln\left((n+1)(n+2)\right) \sim \ln(n^2).$$

On en déduit que :

$$\frac{\ln((n+1)(n+2))}{n(n+3)} \sim \frac{\ln(n^2)}{n^2}.$$

En multipliant cet équivalent par $n\sqrt{n}$, on trouve une limite nulle par croissances comparées. On en déduit que :

$$\frac{\ln\left((n+1)(n+2)\right)}{n(n+3)} = o\left(\frac{1}{n\sqrt{n}}\right).$$

Par comparaison à une série de Riemann, la série $\sum \frac{\ln ((n+1)(n+2))}{n(n+3)}$ est donc convergente.

18. On a $\sqrt[n]{n} = \exp\left(\frac{1}{n}\ln(n)\right) \to 1$ car $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$ par le théorème de croissances comparées. La série diverge donc grossièrement.

Correction 2 On écrit $\frac{u_n}{1+n^2u_n} \leqslant \frac{u_n}{n^2u_n}$ ainsi, la série à termes positifs $\sum \frac{u_n}{1+n^2u_n}$ a son terme général majoré par $\frac{1}{n^2}$ donc, par comparaison à une série de Riemann, elle converge.

Correction 3 Comme la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, on a :

$$\forall n \in \mathbb{N}^*, \ \sqrt{u_n u_n} \leqslant \sqrt{u_n} \sqrt{u_{n-1}}$$

donc:

$$\forall n \in \mathbb{N}^*, \ \sqrt{u_n u_{n-1}} \geqslant u_n.$$

Le terme général est positif et majoré par le terme général d'une série convergente donc la série $\sum u_n$ converge.

Correction 4 1. A partir d'un certain rang, $u_n \leq 1$ car $u_n \to 0$, on a donc $u_n^2 \leq u_n$. Par le thm de majoration des séries à termes positifs, on en déduit que $\sum u_n^2$ converge.

- 2. On peut dire que $u_n \ge 0$ donc $\frac{u_n}{1+u_n} \le u_n$ et par le thm de majoration des $u_n = -u_n + \frac{1}{n-1}$. On écrit séries à termes positifs, $\sum \frac{u_n}{1+u_n}$ converge. On peut aussi dire que $u_n \to 0$ donc $\frac{1}{1+u_n} \sim u_n$ et par le thm de comparaison des séries à termes positifs, $\sum \frac{u_n}{1+u_n}$ converge.
- 3. On sait que $u_n \to 0$ donc il existe un rang à partir duquel $u_n \leqslant \frac{1}{2}$, on a alors $1-u_n \geqslant \frac{1}{2}$ donc $\frac{u_n}{1-u_n} \leqslant 2u_n$. Par le thm de majoration des séries à termes positifs, on en déduit que $\sum \frac{1}{1-u_n}$ converge. On peut aussi dire que $u_n \to 0$ donc $\frac{1}{1-u_n} \sim u_n$ et par le thm de comparaison des séries à termes positifs, $\sum \frac{u_n}{1-u_n}$ converge.
- 4. On sait que pour tout $a,b,ab \leqslant \frac{a^2+b^2}{2}$, on a donc $\frac{\sqrt{u_n}}{n} \leqslant \frac{u_n}{2} + \frac{1}{2n^2}$. Les deux séries $\sum \frac{u_n}{2}$ et $\sum \frac{1}{2n^2}$ convergent donc par le thm de majoration des séries à terms positifs, $\sum \frac{\sqrt{u_n}}{n}$ converge.

Correction 5 Pas grand chose, $\sum \frac{1}{n^2}$ converge et $\sum \frac{1}{n}$ diverge mais $\sum \frac{1}{n^4}$ converge et $\sum \frac{1}{n^2}$ aussi.

De même, $\sum \frac{1}{n^2}$ converge et $\sum \frac{(-1)^n}{n}$ converge. En revanche, $\sum \frac{(1+(-1)^n)^2}{n^2}$ converge mais $\sum (-1)^n \frac{1+(-1)^n}{n}$ diverge car c'est la somme d'une série convergente et d'une série divergente.

Correction 6 1. Pour tout $n \ge 2$, $u_n \ge 0$ donc $e^{-u_n} \le 1$. Ainsi, pour tout $n \geqslant 2, 0 \leqslant u_{n+1} \leqslant \frac{1}{n} \operatorname{donc} \lim_{n \to +\infty} u_{n+1} = 0 \operatorname{puis} \lim_{n \to +\infty} u_n = 0.$

- 2. On a $u_{n+1} = \frac{1}{n}e^{-u_n} \sim \frac{1}{n}$ donc pour tout $n \ge 2$, $u_n \sim \frac{1}{n-1}$ puis $u_n \sim \frac{1}{n}$.
- 3. Par le thm de comparaison des séries à termes positifs, on a $\sum u_n$ divergente.

4. On pose
$$v_n = -u_n + \frac{1}{n-1}$$
. On écrit

$$v_n = -\frac{1}{n-1}e^{-u_{n-1}} + \frac{1}{n-1}$$

$$= \frac{1}{n-1}(1 - e^{-u_{n-1}})$$

$$\sim \frac{u_{n-1}}{n-1}$$

$$\sim \frac{1}{(n-1)^2}$$

$$\sim \frac{1}{n^2}$$

On a bien l'équivalent souhaité.

5. D'après la question précédente, on a $\frac{1}{n-1} - u_n = \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$ donc

$$u_n = \frac{1}{n-1} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right).$$

On a donc

$$u_{2n} - u_{2n-1} = \frac{1}{2n-1} - \frac{1}{4n^2} - \frac{1}{2n-2} + \frac{1}{(2n-1)^2} + o\left(\frac{1}{n^2}\right),$$

donc

$$u_{2n} - u_{2n-1} = \frac{1}{(2n-1)(2n-2)} - \frac{1}{4n^2} + \frac{1}{(2n-1)^2} + o\left(\frac{1}{n^2}\right).$$

On en déduit que $\lim_{n \to +\infty} n^2(u_{2n} - u_{2n-1})$ existe et est finie. Ainsi, $u_{2n} - u_{2n-1} =$ $0\left(\frac{1}{n^2}\right)$.

6. Pour tout $n \ge 1$, on pose $S_n = \sum_{i=1}^n (-1)^k u_i$. Soit $N \in \mathbb{N}$, alors

$$S_{2N} = \sum_{\substack{k=1\\1\leqslant k\leqslant 2n\\k \text{ pair}}}^{2N} (-1)^k u_k$$

$$= \sum_{\substack{1\leqslant k\leqslant 2n\\k \text{ pair}}}^{N} (-1)^k u_k + \sum_{\substack{1\leqslant k\leqslant 2n\\k \text{ impair}}}^{N} (-1)^k u_k$$

$$= \sum_{j=1}^{N} u_{2j} - \sum_{j=1}^{N} u_{2j-1}$$

$$= \sum_{j=1}^{N} (u_{2j} - u_{2j-1})$$

D'après la question précédente, et par le thm de comparaison des séries à termes positifs, la série de terme général $u_{2j}-u_{2j-1}$ est convergente donc $(S_{2N})_{N\geqslant 1}$ converge vers une limite S. On sait que $S_{2N+1}=S_{2N}+u_{2N+1}$ donc la suite $(S_{2N+1})_{N\geqslant 0}$ est également convergente, de même limite que $(S_{2N})_{N\geqslant 1}$. On en déduit que la suite des sommes partielles de $\sum (-1)^n u_n$ converge donc la série est convergente.

Correction 7 Soit $N \in \mathbb{N}$, on a

$$\sum_{n=1}^{N} v_n = \sum_{n=1}^{N} \frac{1}{n^2} \sum_{k=1}^{n} k u_k$$
$$= \sum_{k=1}^{N} \sum_{n=k}^{N} \frac{k u_k}{n^2}$$
$$= \sum_{k=1}^{N} k u_k \sum_{n=k}^{N} \frac{1}{n^2}$$

Soit $k \ge 1$, alors

$$k\sum_{n=k}^{N} \frac{1}{n^2} = \frac{1}{k} + k\sum_{n=k+1}^{N} \frac{1}{n^2}.$$

Or, pour tout $n \in [k+1, N], \frac{1}{n^2} \leqslant \frac{1}{n-1} - \frac{1}{n}$ donc

$$\sum_{n=k+1}^{N} \frac{1}{n^2} \le \sum_{n=k+1}^{N} \left(\frac{1}{n-1} - \frac{1}{n} \right) \le \frac{1}{k}.$$

On a donc

$$k \sum_{n=k}^{N} \frac{1}{n^2} \leqslant \frac{1}{k} + 1 \leqslant 2.$$

On en déduit que

$$\sum_{n=1}^{N} v_n \leqslant 2 \sum_{k=1}^{N} u_k.$$

On sait que la suite $\left(\sum_{k=1}^N u_k\right)_{N\geqslant 1}$ converge donc elle est majorée. La suite des

sommes partielles de $\sum v_n$ est donc majorée et comme la série est de terme général positif, on en déduit qu'elle est convergente.

Correction 8 Soit $n \in \mathbb{N}^*$, alors

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} \frac{1}{k(k+1)} \sum_{i=1}^{k} i u_i$$

$$= \sum_{i=1}^{n} \sum_{k=i}^{n} \frac{i u_i}{k(k+1)}$$

$$= \sum_{i=1}^{n} i u_i \sum_{k=i}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \sum_{i=1}^{n} i u_i \left(\frac{1}{i} - \frac{1}{n+1}\right)$$

$$= \sum_{i=1}^{n} u_i - \frac{1}{n(n+1)} \sum_{i=1}^{n} i u_i$$

$$= \sum_{i=1}^{n} u_i - n v_n$$

Supposons tout d'abord que $\sum u_n$ converge, alors pour tout $n \ge 1$, $\sum_{k=1}^n v_k \le \sum_{k=1}^n u_k$ donc la suite des sommes partielles de $\sum v_k$ est majorée. Comme c'est une série à termes positifs, elle converge.

Par ailleurs, on a l'égalité $\sum_{k=1}^{n} v_k + nv_n = \sum_{k=1}^{n} u_k$. Comme les deux séries convergent, $(nv_n)_{n \in \mathbb{N}^*}$ admet une limite finie. Si elle vaut $l \neq 0$, on a $v_n \sim \frac{l}{n}$ ce qui est absurde puisque $\sum v_n$ converge. Ainsi l = 0 donc $\lim_{n \to +\infty} \sum_{k=1}^{n} v_k = \lim_{n \to +\infty} \sum_{k=1}^{n} u_k$ et les deux séries ont la même somme.

On suppose maintenant que $\sum u_n$ diverge et, par l'absurde, que $\sum v_n$ converge. D'après l'égalité $\sum_{k=1}^n v_k + nv_n = \sum_{k=1}^n u_k$, on obtient $\lim_{n \to +\infty} nv_n = +\infty$ donc, à partir d'un certain rang n_0 , on a $nv_n \geqslant 1$ ce qui implique $\sum v_n$ diverge. On a une contradiction donc $\sum v_n$ diverge et les séries ont bien même nature.

Correction 9 1. (a) On doit montrer que $(V_n)_{n\in\mathbb{N}^*}$ et $(W_n)_{n\in\mathbb{N}^*}$ sont de monotonies opposées et que leur différence tend vers 0. Soit $n\in\mathbb{N}^*$. Alors On

$$a S_n = \sum_{k=1}^{n} \frac{(-1)^k}{k}$$
donc

$$W_n = S_{2n} = \sum_{k=1}^{2n} \frac{(-1)^k}{k}$$
 et $V_n = S_{2n+1} = \sum_{k=1}^{2n-1} \frac{(-1)^k}{k}$

Commençons par la monotonie. Soit $n \in \mathbb{N}^*$. On a

$$W_{n+1} - W_n = S_{2n+2} - S_{2n}$$

$$= \sum_{k=1}^{2n+2} \frac{(-1)^k}{\sqrt{k}} - \sum_{k=1}^{2n} \frac{(-1)^k}{\sqrt{k}}$$

$$= \sum_{k=2n+1}^{2n+2} \frac{(-1)^k}{\sqrt{k}}$$

$$= -\frac{1}{\sqrt{2n+1}} + \frac{1}{\sqrt{2n+2}}$$

$$\leqslant 0$$

Ceci étant valable pour tout entier n, on en déduit que $(W_n)_{n\in\mathbb{N}^*}$ est décroissante.

On a aussi:

$$V_{n+1} - V_n = S_{2n+1} - S_{2n-1}$$

$$= \sum_{k=1}^{2n+1} \frac{(-1)^k}{\sqrt{k}} - \sum_{k=1}^{2n-1} \frac{(-1)^k}{\sqrt{k}}$$

$$= \sum_{k=2n}^{2n+1} \frac{(-1)^k}{\sqrt{k}}$$

$$= \frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{2n+1}}$$

$$\geqslant 0$$

Ceci étant valable pour tout entier n, on en déduit que $(V_n)_{n\in\mathbb{N}^*}$ est croissante.

Enfin, pour tout $n \in \mathbb{N}^*$, on a

$$W_n - V_n = \sum_{k=1}^{2n} \frac{(-1)^k}{\sqrt{k}} - \sum_{k=1}^{2n-1} \frac{(-1)^k}{\sqrt{k}}$$
$$= \frac{1}{\sqrt{2n}}$$

On a donc bien $\lim_{n\to+\infty} (W_n - V_n) = 0$.

Ainsi, les suites $(W_n)_{n\in\mathbb{N}^*}$ et $(V_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

(b) D'après la question précédente, les suites $(W_n)_{n\in\mathbb{N}^*}$ et $(V_n)_{n\in\mathbb{N}^*}$ sont adjacentes donc elles convergent vers la même limite. On sait que $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}^*}$ convergent vers la même limite donc $(S_n)_{n\in\mathbb{N}^*}$ converge également vers cette limite.

Ainsi, la série de terme général $\frac{(-1)^k}{\sqrt{k}}$ converge.

2. (a) On a $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + o(x^3)$ donc, comme $\frac{(-1)^n}{\sqrt{n}} \to 0$:

$$\sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1 = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{8n} + \frac{(-1)^n}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right).$$

(b) D'après la question précédente, on sait que $\frac{(-1)^n}{\sqrt{n}}$ est le terme général d'une série convergente. On sait aussi, par divergence de la série harmonique, que $-\frac{1}{8n}$ est le terme général d'un série divergente. Enfin, par comparaison à une série de Riemann, $o\left(\frac{1}{n\sqrt{n}}\right)$ est le terme général d'une série convergente et la série de terme général $\frac{(-1)^n}{n\sqrt{n}}$ est absolument convergente donc convergente.

On en déduit que la série de terme général $\sqrt{1+\frac{(-1)^n}{\sqrt{n}}}-1$ est divergente (comme somme de trois séries convergentes et d'une série divergente). Il est très intéressant de remarquer que le terme général de la série est équivalent à $\frac{(-1)^n}{\sqrt{n}}$ qui est le terme général d'une série convergente !! Le théorème de comparaison des séries à termes positifs ne peut s'appliquer car l'équivalent n'est pas de signe constant.

Correction 10

Correction 11 On a $\lim_{n\to+\infty} \frac{(-1)^n}{\sqrt{n(n+1)}} = 0$ donc on peut faire un DL:

$$\ln\left(1 + \frac{(-1)^n}{\sqrt{n(n+1)}}\right) = \frac{(-1)^n}{\sqrt{n(n+1)}} - \frac{1}{2n(n+1)} + o\left(\frac{1}{n^2}\right)$$
$$= \frac{(-1)^n}{n}\left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right) - \frac{1}{2n(n+1)}\right)$$

Correction 12 On suppose que $\sum u_n$ converge et, par l'absurde, que $\sum v_n$ converge. On a $\lim_{n\to+\infty}v_n=0$ donc $n^2u_n\to+\infty$. On en déduit que $u_nv_n\sim\frac{1}{n^2}$ donc $\sqrt{u_nv_n}\sim\frac{1}{n}$. Or $\sqrt{u_nv_n}\leqslant\frac{u_n+v_n}{2}$ donc c'est le terme général d'une série convergente alors que $\sum\frac{1}{n}$ diverge. On a une contradiction donc $\sum v_n$ diverge.

Si $\sum u_n$ diverge, on ne peut rien dire. Pour $u_n = 1$, $\sum v_n$ converge, pour $u_n = \frac{1}{n}$, la somme de la série est égale à son premier terme, c'est-à-dire $\ln\left(\frac{1}{2}\right) = -\ln 2$. $\sum u_n$ diverge.

Correction 13 On pose $u_n = \frac{(-1)^n}{\sqrt{n^{\alpha} + (-1)^n}}$ On fait un DL, on obtient

$$\frac{(-1)^n}{\sqrt{n^{\alpha} + (-1)^n}} = \frac{(-1)^n}{n^{\alpha/2}} \frac{1}{\sqrt{1 + (-1)^n/n^{\alpha}}} = \frac{(-1)^n}{n^{\alpha/2}} - \frac{1}{2n^{3\alpha/2}} + o\left(\frac{1}{n^{3\alpha/2}}\right)$$

Le premier terme du DL est le terme général d'une série convergente (série alternée). On pose $v_n = u_n - \frac{(-1)^n}{n^{\alpha/2}}$. On a alors $\sum u_n$ et $\sum v_n$ de même nature. Or $v_n \sim \frac{1}{n^{3\alpha/2}}$. Ainsi, $\sum u_n$ converge si et seulement si $3\alpha/2 > 1$ soit $\alpha > \frac{2}{3}$.

Correction 14 On écrit :

$$2^{n+1}3^{2-n} = \frac{2^{n+1}}{3^{n-2}} = 18\left(\frac{2}{3}\right)^n.$$

On reconnaît, à un facteur près, une suite géométrique de raison $\frac{2}{3}$ avec $\left|\frac{2}{3}\right| < 1$. La série converge et sa somme est :

$$18 \times \frac{1}{1 - 2/3} = 54.$$

Correction 15 On écrit :

$$\frac{3^{n-1}}{5^{n+1}} = \frac{1}{15} \left(\frac{3}{5}\right)^n.$$

La série est donc convergente car c'est un multiple d'une série géométrique de raison $\frac{3}{5}$. Sa somme vaut :

$$\frac{1}{15} \times \frac{1}{1 - 3/5} = \frac{1}{6}.$$

Correction 16 Son terme général est de signe constant négatif et il est équivalent à $-\frac{1}{n^2}$, elle est donc convergente par comparaison à une série de Riemann. On écrit :

$$\ln\left(1 - \frac{1}{n^2}\right) = \ln\left(\frac{n^2 - 1}{n^2}\right) = \ln\left(\frac{n - 1}{n}\right) - \ln\left(\frac{n}{n + 1}\right).$$

On reconnaît une somme télescopique. Comme on a :

$$\lim_{n \to +\infty} \ln \left(\frac{n-1}{n} \right) = 0,$$

Correction 17 On multiplie le terme général par k^2 afin de savoir si c'est un $o\left(\frac{1}{k^2}\right)$. On a:

$$\frac{k^3}{(k+1)!} = \frac{1}{(k-2)!} \frac{k}{k-1} \frac{k}{k+1}$$

ce qui tend vers 0. On a donc :

$$\frac{k}{(k+1)!} = o\left(\frac{1}{k^2}\right),\,$$

donc la série converge. Pour faire apparaître une somme télescopique, on écrit :

$$\frac{k}{(k+1)!} = \frac{k+1-1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!}.$$

Comme $\lim_{n\to+\infty}\frac{1}{k!}=0$, la somme de la série est alors égale à $\frac{1}{0!}=1$.

Correction 18 On peut réécrire cette série $\sum_{k>1} k \cdot \left(\frac{1}{3}\right)^{k-1}$. On reconnaît alors la série dérivée. On peut donc affirmer qu'elle converge d'après le cours puisque $\left|\frac{1}{3}\right| < 1$. De plus, on sait que sa somme est

$$\sum_{k=0}^{+\infty} \frac{n+1}{3^n} = \frac{1}{\left(1 - \frac{1}{3}\right)^2} = \frac{9}{4}.$$

Correction 19 On pose $a_n = \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}$. La série est alors de la forme $\sum a_k - \frac{1}{\sqrt{n}}$ a_{k+1} . Elle converge donc si et seulement si la suite (a_k) converge ce qui est le cas (vers 0) et on a:

$$\sum_{k \ge 2} (a_k - a_{k+1}) = a_2 - \lim_{n \to +\infty} a_n = 1 - \frac{1}{\sqrt{2}}$$

Correction 20 Soit $n \in \mathbb{N}$, pour tout $k \in [1, n]$, $1 = (k+1-k)^2 = (k+1)^2 - (k+1)^2 = (k+1)^2 - (k+1)^2 = (k+$

 $2k(k+1) + k^2$ donc

$$\sum_{k=1}^{n} \frac{1}{k^{2}(k+1)^{2}} = \sum_{k=1}^{n} \frac{1}{k^{2}} - 2\sum_{k=1}^{n} \frac{1}{k(k+1)} + \sum_{k=1}^{n} \frac{1}{(k+1)^{2}}$$

$$= \sum_{k=1}^{n} \frac{1}{k^{2}} - 2\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) + \sum_{k=2}^{n+1} \frac{1}{k^{2}}$$

$$= 2\sum_{k=1}^{n} \frac{1}{k^{2}} + \frac{1}{(n+1)^{2}} - 1 - 2\left(1 - \frac{1}{n+1}\right)$$

On a donc $\lim_{n \to +\infty} S_n = 2\frac{\pi^2}{6} - 3 = \frac{\pi^2}{3} - 3$.

Correction 21 On commence par remarquer que $\forall n \in \mathbb{N}, \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \in]0,1]$ donc

$$\lfloor \sqrt{n+1} \rfloor - \lfloor \sqrt{n} \rfloor \in \{0,1\}.$$

On aura $\lfloor \sqrt{n+1} \rfloor - \lfloor \sqrt{n} \rfloor = 1$ s'il existe un entier m tel que $\sqrt{n} < m \le \sqrt{n+1}$. En élevant au carré, on obtient $0 < m^2 - n \le 1$ donc $m^2 = n+1$.

Autrement dit, le terme général de la série est nul sauf lorsque n+1 est un carré. On en déduit que pour tout $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} \frac{\lfloor \sqrt{k+1} \rfloor - \lfloor \sqrt{k} \rfloor}{k} = \sum_{1 \leqslant j^2 - 1 \leqslant n} \frac{1}{j^2 - 1} = \sum_{j=2}^{\lfloor \sqrt{n+1} \rfloor} \frac{1}{j^2 - 1}$$

Pour $N \in \mathbb{N}$, on a:

$$\sum_{j=2}^{N} \frac{1}{j^2 - 1} = \sum_{j=2}^{N} \frac{1}{(j-1)(j+1)} = \frac{1}{2} \sum_{j=2}^{N} \left(\frac{1}{j-1} - \frac{1}{j+1} \right)$$

puis, après un changement d'indice dans les deux sommes, $\lim_{n\to+\infty}\sum_{j=2}^{\lfloor\sqrt{n+1}\rfloor}\frac{1}{j^2-1}=\frac{3}{4}$.

Correction 22 1. Pour $n \neq 0$, $\frac{nx^n}{n!} = \frac{x^n}{(n-1)!}$. Ainsi, pour $N \in \mathbb{N}^*$,

$$\sum_{n=0}^{N} \frac{nx^n}{n!} = \sum_{n=1}^{N} \frac{x^n}{(n-1)!}$$

$$= \sum_{n=0}^{N-1} \frac{x^{n+1}}{n!}$$

$$= x \sum_{n=0}^{N-1} \frac{x^n}{n!}$$

La série est donc convergente pour tout $x \in \mathbb{R}$, par convergence de la série exponentielle et sa somme vaut xe^x .

2. On procède de même, pour $n \ge 2$, on a $\frac{n(n-1)x^n}{n!} = \frac{x^n}{(n-2)!}$ donc pour tout $N \ge 2$, on a

$$\sum_{n=0}^{N} \frac{n(n-1)x^n}{n!} = \sum_{n=2}^{N} \frac{x^n}{(n-2)!}$$
$$= \sum_{n=0}^{N-2} \frac{x^{n+2}}{n!}$$
$$= x^2 \sum_{n=0}^{N-2} \frac{x^n}{n!}$$

La série est donc convergente pour tout $x \in \mathbb{R}$, par convergence de la série exponentielle et sa somme vaut x^2e^x .

- 3. Soit $P = aX^2 + bX + c$, alors P = aX(X 1) + (b + a)X + c donc la série de terme général $P(n)\frac{x^n}{n!}$ est convergente et sa somme vaut $(ax^2 + (b + a)x + c)e^x$.
- 4. Dans le cas général d'un polynôme $P \in \mathbb{R}_n[X]$, il faut déterminer ses coordonnées dans la base $(1, X, X(X-1), \dots, X(X-1), \dots (X-n+1))$ de $\mathbb{R}_n[X]$. Si on les note $(\lambda_0, \dots, \lambda_n)$, on a alors que la série de terme général $P(n)\frac{x^n}{n!}$ est convergente et a pour somme $\left(\sum_{k=0}^n \lambda_k x^k\right) e^x$.