Programme de colles: semaine 4. semaine démarrant le 6 octobre.

Attention: le cours sur les fonctions usuelles arrive après, nous n'avons pas encore rappelé les propriétés des fonctions vues en terminale

Question de cours:

- Montrer que si $f: E \to F$ et qu'il existe $g: F \to E$ telle que $g \circ f = id_E$ et $f \circ g = id_F$, alors f est bijective.
- La composée de deux fonctions injectives est injective.
- La composée de deux fonctions surjectives est surjective.
- Si $f \circ g$ est injective, alors g est injective.
- Si $f \circ g$ est surjective, alors f est surjective.

Ce que contient le cours :

Ensemble et applications

- Définition d'ensembles, sous-ensemble.
- Définition de la réunion/l'intersection/le complémentaire.
- Égalite de deux ensembles.
- Définition de la fonction caractéristique $\mathbb{1}_A$ d'un sous-ensemble A de E.
- Définition de fonction/image d'un point/antécédent.
- Définition de l'image d'une fonction notée Im(f) et de l'image directe d'un ensemble f(A).
- Définition de l'image réciproque d'un ensemble noté $f^{-1}(B)$.
- $\bullet\,$ Définition de restriction/corestriction d'une fonction
- Définition de fonction surjective, caractérisation par son image. Traduction géométrique dans le cas d'une fonction de la variable réelle définie dans \mathbb{R} .
- Définition de fonction injective, cas des fonctions strictement monotones.
- Définition de fonction bijective, définition de la bijection réciproque.
- S'il existe g telle que $g \circ f = id$ et $f \circ g = id$ alors f bijective et $g = f^{-1}$.
- Si f est bijective, alors f^{-1} aussi et $(f^{-1})^{-1} = f$.
- Définition de bijection induite.
- Monotonie de la réciproque d'une bijection strictement monotone, graphe de f^{-1} .

Attention: continue+ injective implique strictement monotone n'est pas un résultat au programme.