Lycée du Parc PCSI 842 Feuille 9

Année 2024-2025

TD 9: Suites.

Comparaison des suites

Exercice 1.

Comparer (à l'aide de o et \sim) les suites suivantes:

- 1. $u_n = n + 1$, $v_n = n$ 2. $u_n = n^2$, $v_n = n$ 3. $u_n = \ln n$, $v_n = n$ 4. $u_n = \sin(\frac{1}{n})$, $v_n = \frac{1}{n}$

Exercice 2.

Donner des équivalents simples (sans somme) des termes généraux suivants :

1. $cos\left(\frac{1}{n}\right)$.

3. $(n+\sqrt{n})^a - n^a$ où a est un réel non nul

2. $2^n + n^{10^4}$

Vrai/Faux

Exercice 3.

Vrai/Faux? On donnera une justification lorsque c'est juste, un contre-exemple lorsque c'est faux.

- 1. Si une suite converge vers 0 et est de premier terme strictement positif, alors elle est strictement décroissante.
- 2. Si une suite est strictement décroissante et positive, alors elle converge vers 0.
- 3. Si une suite diverge vers $+\infty$, alors elle est croissante à partir d'un certain rang.
- 4. Si $(u_n)_{n\in\mathbb{N}}$ converge vers 0 et ne s'annule pas, alors $\frac{1}{u_n}\to +\infty$ ou $\frac{1}{u_n}\to -\infty$ quand n tend vers $+\infty$.
- 5. $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$ ssi : $(\forall \epsilon>0)(\exists N)(\forall n\geqslant N)(|u_n-l|\leqslant\epsilon)$.
- 6. $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$ ssi : $(\forall \epsilon \geqslant 0)(\exists N)(\forall n \geqslant N)(|u_n-l|\leqslant \epsilon)$.
- 7. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ des suites réelles. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers l et l' et que $l \leq l'$, alors à partir d'un certain rang $u_n \leq v_n$.

Convergence et calcul de limites

Exercice 4.

Les suites suivantes sont-elles convergentes?

1. $u_n = 1 + (-1)^n$. 2. $u_n = \frac{(-1)^n}{n}$.

3. $u_n = \cos\left(\frac{n\pi}{2}\right)$. 4. $u_n = (1 + \frac{1}{n})^{2n}$.

Exercice 5.

Calculer, lorsqu'elle existe, la limite des suites définies par :

$$u_n = n - \sqrt{n^2 - n} \quad v_n = \frac{\sin n^2 - \cos n^3}{n} w_n = \sqrt[n]{3 - \sin n^2}$$
$$a_n = \frac{n^3 + 2^n}{3^n} \quad b_n = (\cos n) \sin \frac{(-1)^n}{\sqrt{n}}$$

Exercice 6.

Soit $x \in \mathbb{R}$. Montrez que la suite de terme général $u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$ est convergente et calculez sa limite.

Exercice 7.

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et $\forall n\in\mathbb{N}, u_{n+1}=\sqrt{2u_n+35}$

- 1. Montrer que $\forall n \in \mathbb{N}, u_n \leq 7$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est convergente.

Exercice 8.

Pour tout entier n, on pose $I_n = \int_1^e (\ln x)^n dx$. Montrer que la suite $(I_n)_{n \in \mathbb{N}}$ converge.

Exercice 9.

Montrer que la suite définie par $u_0 \in \mathbb{R}^+$ et $u_{n+1} = u_n + \frac{n}{n+1}u_n^2$ admet une limite qu'on déterminera.

Expression du terme général

Exercice 10.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et $\forall n\geqslant 0, u_{n+1}=u_n+2n+3$. Montrer que

$$\forall n \in \mathbb{N}, u_n = (n+1)^2.$$

Exercice 11.

Déterminer la limite de toute suite réelle vérifiant $2(v_{n+1} - v_{n+2}) = v_n$.

Exercice 12.

Soit la suite définie par $u_0 = 1$, $u_1 = 1$ et $u_{n+2} = u_{n+1} + 2u_n - 4$. Trouver $\gamma \in \mathbb{R}$ tel que la suite définie par $v_n = u_n + \gamma$ vérifie $v_{n+2} = v_{n+1} + 2v_n$. En déduire une expression de u_n pour tout n.

Exercice 13.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in\mathbb{R}$ et $u_{n+1}=2u_n-1$. Montrer que la suite de terme général $v_n=u_n-1$ est une suite géométrique. En déduire une expression de u_n pour tout n.

5 Suites récurrentes

Exercice 14.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et $u_{n+1}=\frac{1}{2}\left(u_n+\frac{2}{u_n}\right)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geqslant \sqrt{2}$.
- 2. Puis montrer que pour tout $n \in \mathbb{N}$, $\left|u_{n+1} \sqrt{2}\right| \leqslant \frac{\left|u_n \sqrt{2}\right|^2}{2}$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $\left|u_n \sqrt{2}\right| \leqslant \frac{1}{2^{2^n-1}}$ et donner la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 15.

Étudier la nature de la suite définie par $u_0 \in \mathbb{R} \setminus \{-1\}$ et $u_{n+1} = \frac{u_n^2}{(1+u_n)^4}$ en fonction de la valeur de u_0 .

Exercice 16.

Étudier la suite définie par $u_0 \ge 1$, $u_{n+1} = 1 + \ln(u_n)$ en fonction de la valeur de u_0 .

6 Exercices plus théoriques

Exercice 17.

Soit $(x_n)_{n\in\mathbb{N}}$ la suite définie par $\forall n\in\mathbb{N}, \ln(x_n)+x_n=n$. Montrer que la suite est bien définie et déterminer la nature de la suite.

- Exercice 18.

 1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique $x_n \in [0,1]$ tel que $\sum_{k=1}^n x_n^k = 1$.
 - 2. Étudier la monotonie de la suite $(x_n)_{n\in\mathbb{N}}$
 - 3. Montrer qu'elle est minorée par 1/2.

4. Montrer qu'elle converge vers 1/2.

Exercice 19.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que les suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{5n})_{n\in\mathbb{N}}$ convergent. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 20.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite dont les coefficients sont entiers. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge. Montrer qu'elle est stationnaire.

Exercice 21.

Pour *n* un entier naturel non nul, on note $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Vérifiez que $\forall n \geqslant 1, H_{2n} H_n \geqslant \frac{1}{2}$ et que H est croissante.
- 2. Déduisez-en simplement que $H_n \to +\infty$
- 3. On admet que $(H_n \ln n)_{n \in \mathbb{N}^*}$ converge vers γ . Déterminer la limite de $(H_{2n}-H_n)_{n\in\mathbb{N}^{\star}}$.

Exercice 22.

2

Pour tout entier r supérieur ou égal à 2 et tout entier naturel non nul n, on note :

$$S_n(r) = \sum_{k=1}^n \frac{1}{k^r}$$

- 1. En remarquant que, $k^{-r} \leq (k-1)^{-1} k^{-1}$ (pour r et k à préciser), montrez que la suite $(S_n(r))_n$ converge, pour tout entier $r \ge 2$.
- 2. On note σ_r la limite de la suite précédente. Montrez que la suite $(\sigma_r)_r$ est décroissante.
- 3. (a) Vérifiez que $\forall k \geq 2, \frac{1}{k^r} \leq \int_{k-1}^k \frac{dx}{x^r}$. Déduisez-en : $\forall n \geqslant 2, 1 \leqslant S_n(r) \leqslant 1 + \int_1^n \frac{dx}{dr}$
 - (b) Montrez que : $\forall r \geq 2, 1 \leq \sigma_r \leq 1 + \frac{1}{r-1}$ Déduisez-en la limite de σ .

Si besoin d'encore un peu d'entrainement

Exercice 23.

Donner des équivalents simples (sans somme) des termes généraux suivants :

1.
$$n^2 - ln(n) + e^{1/n}$$

3.
$$\cos\left(\frac{1}{n}\right) - 1$$
.

1.
$$n^2 - \ln(n) + e^{1/n}$$

2. $2^n - e^n + \ln(n) - \cos(3n^2)$

Exercice 24.

Les suites suivantes sont-elles convergentes?

1.
$$u_n = \frac{n+1}{n^2+3}$$
.

2.
$$u_n = \frac{e^n}{n}$$
.

Exercice 25.

Soit a > 0. Calculer, lorsqu'elle existe, la limite des suites définies par :

$$u_n = \sqrt{n(n+a)} - n$$
 $v_n = \frac{n}{2}\sin\frac{n\pi}{2}$ $w_n = \cos\left(\frac{2^n}{n!}\right)$ $z_n = \frac{n^2 + (-1)^n}{n^2 + \sqrt{n}}$

$$a_n = \frac{\sqrt{n+1}}{n+3}$$
 $b_n = \frac{n^3 \sin \frac{1}{n}}{n^2 + 3n - 1}$ $c_n = n^4 \ln(1 + e^{-n}).$

Exercice 26.

Déterminez les limites des suites $u_n = n^{1/n}$ et $v_n = (a^n + b^n)^{1/n}$, où a et b sont deux réels tels que 0 < a < b.

Exercice 27.

Déterminer la limite de la suite de terme général $u_n = \sqrt{n} \left| \frac{\lfloor n \sqrt{n} \rfloor}{n} \right|$.

Exercice 28.

Montrer que la suite de terme général $\frac{\sin n}{\sqrt{n}}$ converge.

Exercice 29.

Déterminer la limite de la suite de terme général $u_n = \int_0^1 \frac{t^n}{(1+t)^2} dx$.

Exercice 30.

Déterminer la nature de la suite de terme général $v_n = \frac{\left\lfloor \frac{\perp}{n} \, \left\lfloor \frac{n}{2} \, \right\rfloor \right\rfloor}{\sqrt{n}}$.

Exercice 31.

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{\sqrt{n+k}}$. Déterminer la limite de $(u_n)_{n \in \mathbb{N}^*}$.

Exercice 32.

Donner une expression en fonction de n de la suite définie par $u_{n+2} = 2u_n - u_{n+1}$, $u_0 = 0$ et $u_1 = 3$.

Exercice 33.

Donner une expression pour tout n de la suite définie par $u_{n+2} = u_{n+1} - u_n$, $u_0 = u_{n+1} - u_n$ $1, u_1 = 2.$

Exercice 34.

Déterminer une expression du terme général de la suite définie par $u_0 = 0$, $u_1 = 1$ et

$$\forall n \geqslant 1, u_{n+1} = u_n + 2u_{n-1}.$$

Exercice 35.

Déterminer une expression du terme général de la suite définie par $u_0 = 0$ et $\forall n \in$ $\mathbb{N}, u_{n+1} = -3u_n + 2.$

Exercice 36.

Déterminer une expression du terme général de la suite définie par $u_1=2$ et

$$\forall n \in \mathbb{N}^{\star}, u_{n+1} = n(n+1)u_n$$

Une fois qu'on est à l'aise

Exercice 37. 🗫

Soit $(u_n)_{n\in\mathbb{N}}$ une suite monotone. Montrer que la suite de terme général $v_n=$ $\frac{1}{n}\sum_{k=1}^{n}u_{k}$ est monotone, de même sens de monotonie que $(u_{n})_{n\in\mathbb{N}}$.

Exercice 38.

La suite de terme général $u_n = \lfloor \lfloor \sqrt{n} \rfloor - \sqrt{n} \rfloor$ admet-elle une limite?

Exercice 39. 🗫

Étudier la suite définie par $u_0 \in \mathbb{R}^+$, $u_{n+1} = \frac{1}{u_n + 1}$ en fonction de la valeur de u_0 .

Exercice 40.

Soit $n \in \mathbb{N}$ la suite définie par $e^{x_n} + x_n = \frac{1}{n+1}$.

- 1. Montrer que $(x_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Montrer qu'elle converge.

Exercice 41.

- 1. Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un unique $x_n \in \mathbb{R}$ tel que $x_n^3 + x_n = \frac{1}{n}$.
- 2. Montrer que $(x_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite

Exercice 42.

Soit $n \in \mathbb{N}$, $I_n = \left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\text{ et } (E) \text{ l'équation } \tan(x) = x.$

- 1. Soit $n \in \mathbb{N}$. Montrer que l'équation (E) admet une unique solution x_n dans I_n
- 2. Déterminer la limite de $(x_n)_{n\in\mathbb{N}}$.
- 3. Montrer qu'il existe une suite $(v_n)_{n\in\mathbb{N}}$ qui converge vers 0 et telle que $\forall n\in\mathbb{N}, x_n=n\pi+\frac{\pi}{2}+v_n$.

Exercice 43.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $x^3 + nx = 1$ admet une unique solution réelle. On note u_n cette solution.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire qu'elle converge et donner sa limite.

Exercice 44. 😋 😋

On considère les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par $b_0 > a_0 > 0$ et, pour tout $n \in \mathbb{N}$,

$$a_{n+1} = \sqrt{a_n b_n}, b_{n+1} = \frac{a_n + b_n}{2}$$

Montrer que ces deux suites sont bien définies puis qu'elles convergent vers la même limite.

Exercice 45.

Soit $(u_n)_{n\in\mathbb{N}}$ et (v_n) des suites réelles.

- 1. On suppose : $u_n \to a$ avec a > 0. Montrer que $\lim_{n \to +\infty} \sum_{k=0}^n u_k = +\infty$.
- 2. On suppose $(v_n)_{n\in\mathbb{N}}$ vérifie $\lim_{n\to+\infty}v_{n+1}-v_n=a$ avec a>0. Montrer que $\lim_{n\to+\infty}v_n=+\infty$.

Memo

- Comment montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est monotone?
 - Déterminer le signe de $u_{n+1} u_n$.
 - Déterminer si le quotient u_{n+1}/u_n est inférieur ou non à 1 si la suite est à termes positifs.
 - Utiliser la définition implicite de la suite, c'est-à-dire la monotonie de la fonction si la suite est définie comme antécédent.
- Comment déterminer si une suite converge/admet une limite?
 - Utiliser le théorème d'encadrement (ou juste minoration ou majoration pour une limite infinie)
 - Étudier sa monotonie et son caractère bornée
 - Étudier des suites extraites (deux suites extraites ayant des limites différentes pour contredire la convergence, convergence même une même limite des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ pour conclure à la convergence.
- Comment déterminer la limite d'une suite?
 - Calculer sa limite
 - Utiliser l'unicité de la limite
 - Encadrer/majorer/minorer la suite
- Comment donner une expression en fonction de *n* d'une suite définie par récurrence?
 - Appliquer le cours si c'est une suite géométrique ou récurrente linéaire d'ordre 2.
 - Se ramener à une suite dont on connaît l'expression (c'est-à-dire une des deux précédentes)
 - Faire une récurrence (en "intuitant" la formule sur les premiers termes)
- Comment étudier une suite récurrente définie par $u_{n+1} = f(u_n)$ où f est une fonction continue?
 - On détermine les points fixes de f.
 - Si on peut déterminer la monotonie de la suite sans calcul (ou presque), on conclut.
 - Sinon, on dresse le tableau de variations de f, on en déduit des intervalles stables par f.

− Si f est croissante

- * On détermine le signe de la fonction $g: x \mapsto f(x) x$ pour connaître la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$. La monotonie de la suite peut dépendre de la valeur de u_0 .
- * On étudie le comportement de la suite selon la valeur de u_0 .

- Si f est décroissante

- * On étudie le signe de $g: x \mapsto f \circ f(x) x$ pour connaître la monotonie de la suite $(u_{2n})_{n \in \mathbb{N}}$ selon la valeur de u_0 .
- * On étudie le comportement de la suite $(u_{2n})_{n\in\mathbb{N}}$ selon la valeur de u_0 .
- * On étudie la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}} = (f(u_{2n}))_{n\in\mathbb{N}}$ en utilisant la continuité de f.
- * On en déduit la nature de $(u_n)_{n\in\mathbb{N}}$.

- Si f change de variations

On étudie le comportement de la suite selon la valeur de u_0 en travaillant sur des intervalles stables par f pour se ramener aux situations précédentes (f croissante ou f décroissante).

