Lycée du Parc PCSI 842

Programme de colles de Physique Semaine 11 du 9 au 13 Décembre 2024

Chapitre 7 : Circuits linéaires en RSF

Chapitre 8 : Oscillateurs forcés - Phénomène de résonance

Ce qu'il faut connaître

Rien.... la résonance en intensité du circuit RLC-série et en position du pendule élastique amorti par frottement visqueux ont été étudiés en détail mais ce ne sont QUE des exemples d'un phénomène qu'il faut savoir définir.

Ce qu'il faut savoir faire

Etudier une résonance à partir d'une amplitude complexe : a-t-elle lieu systématiquement ? pour quelle fréquence ? la méthode de Lissajou s'applique-t-elle pour la déterminer expérimentalement ? quelles sont la/les fréquences de coupures ?

Définir une bande passante. Relier le facteur de qualité à la largeur de la bande passante.

Déterminer des paramètres physiques à partir d'un relevé expérimental d'amplitude et de phase.

Chapitre 9 : Filtrage linéaire (ordre 1 et 2)

Ce qu'il faut connaître

Fonction de transfert. Les différents types de filtres, diagramme de Bode.

Décomposition en série de Fourier d'un signal périodique : cas des signaux carrés et triangulaires

Valeur moyenne et efficace d'un signal périodique ; égalité de Parseval

Filtrage du premier ordre passe-bas ; caractère intégrateur à haute fréquence

Filtrage du premier ordre passe-haut ; caractère dérivateur à basse fréquence

Intérêt de passer à des filtres ayant un ordre plus élevé.

Filtrage passe-bande. Formes canoniques. Comportement dérivateur et integrateur. Sélecteur de fréquence.

Mise en cascade de deux filtres : condition sur les impédances d'entrée /sortie

Savoir que l'apparition d'un phénomène non linéaire se traduit par un enrichissement spectrale (exemples)

Ce qu'il faut savoir faire

Etablir la fonction de transfert d'un filtre et déterminer ses caractéristiques par identification à une forme canonique. Retrouver, après simplification de la fonction de transfert, l'équation d'une portion rectiligne dans le diagramme de Bode. Exploiter un diagramme de Bode fourni.

Etudier un filtre : diagramme de Bode et prévision de la réponse à un signal périodique après décomposition en série de Fourier (qualitatif et quantitatif) : composante continue, fréquence fondamentale, harmoniques. Savoir exploiter quantitativement une configuration "carré-triangle".

Questions de cours suggérées :

- Le phénomène de résonance sur un exemple électrique
- Le phénomène de résonance sur un exemple mécanique
- Filtre passe-bas du premier ordre : exemple, fonction de transfert, diagramme de Bode, effet sur un signal périodique.
- Filtre passe-haut du premier ordre : idem
- Filtre passe-bande : idem +relation entre facteur de qualité et largeur de la bande passante.