Lycée du Parc PCSI 842

Programme de colles de Physique Semaine 13 du 6 au 10 Janvier 2025

Chapitre 9 : Filtrage linéaire (ordre 1 et 2)

Ce qu'il faut connaître

Fonction de transfert. Les différents types de filtres, diagramme de Bode.

Décomposition en série de Fourier d'un signal périodique : cas des signaux carrés et triangulaires

Valeur moyenne et efficace d'un signal périodique ; égalité de Parseval

Filtrage du premier ordre passe-bas ; caractère intégrateur à haute fréquence

Filtrage du premier ordre passe-haut ; caractère dérivateur à basse fréquence

Intérêt de passer à des filtres ayant un ordre plus élevé.

Filtrage passe-bande. Formes canoniques. Comportement dérivateur et integrateur. Sélecteur de fréquence.

Mise en cascade de deux filtres : condition sur les impédances d'entrée /sortie

Savoir que l'apparition d'un phénomène non linéaire se traduit par un enrichissement spectrale (exemples)

Ce qu'il faut savoir faire

Etablir la fonction de transfert d'un filtre et déterminer ses caractéristiques par identification à une forme canonique. Retrouver, après simplification de la fonction de transfert, l'équation d'une portion rectiligne dans le diagramme de Bode. Exploiter un diagramme de Bode fourni.

Etudier un filtre : diagramme de Bode et prévision de la réponse à un signal périodique après décomposition en série de Fourier (qualitatif et quantitatif) : composante continue, fréquence fondamentale, harmoniques. Savoir exploiter quantitativement une configuration "carré-triangle".

Chapitre 10 : Un peu de Physique des ondes

Ce qu'il faut connaître

Les grands types d'ondes et la nature du signal propagé;

Formes mathématiques d'une onde progressive se propageant selon les x croissant ou décroissant;

Forme mathématique d'une onde progressive harmonique (OPH);

Notion de milieu dispersif et conséquence qualitative sur la propagation d'un signal

Existence du phénomène de battements ; Conditions d'obtention

Notion de sources cohérentes; Phénomène d'interférences entre deux ondes mécaniques ou acoustique;

Conditions d'obtention ; Expérience des trous d'Young

Notion d'onde stationnaire : exemple par réflexion d'une OPH sur un obstacle.

Expérience de la corde de Melde et interprétation du phénomène de résonance.

Mouvement général d'une corde fixée à ses deux extrémités = superposition des modes propres de vibration Notion de spectre - Lien avec le vocabulaire de la musique

Ce qu'il faut savoir faire

Etablir et utiliser la relation liant fréquence, longueur d'onde et célérité d'une OPH;

Savoir calculer les différentes grandeur relative à la propagation d'une OPH;

Savoir évaluer le déphasage entre deux points atteints par une OPH;

Savoir passer, pour une onde progressive (pas forcément harmonique !), d'une évolution temporelle à position fixée (« chronogramme ») à une forme à un instant fixé (« photo »)... et inversement.

Utiliser la représentation de Fresnel pour déterminer l'amplitude de l'onde résultante en un point en fonction du déphasage; Savoir retrouver et utiliser les conditions d'interférences constructives ou destructives;

Additionner deux signaux sinusoïdaux de fréquences voisines; Savoir analyser un enregistrement de battements pour remonter aux fréquences et amplitudes des signaux source;

Savoir décrire qualitativement quelques expériences mettant en évidence le phénomène d'interférences;

Savoir établir l'expression de l'interfrange i dans l'expérience des Trous d'Young ;

Lycée du Parc PCSI 842

Caractériser l'onde stationnaire par l'existence de nœuds et de ventres de vibration et calculer leurs positions ; Retrouver rapidement les fréquences des modes propres de vibration d'une corde de longueur L tendue et fixée à ses deux extrémités.

Questions de cours suggérées :

- L'onde progressive harmonique (forme math, double-périodicité, intérêt)
- Le phénomène de battements : description interprétation
- L'expérience des trous d'Young : dispositif interfrange
- Onde stationnaire : définition exemple
- L'expérience de la corde de Melde : dispositif fréquences de résonance
- Modes propres de vibration d'une corde fixée à ses deux extrémités