Correction du DM n 6

Exercice 1 1. Soit $f : \mathbb{N} \to \mathbb{N}$ une application croissante. Soit x < y, alors $f(x) \le f(y)$. Cela implique $f(x) + x \le f(y) + xf(y) + y$ donc f + id est strictement croissante.

- 2. On considère les applications croissantes de [1, p] dans [1, n] pour $(p, n) \in [1, 2]$.
 - Lorsque p = 1, toutes les applications de [|1,1|] dans [|1,n|] sont strictement croissantes.
 - Lorsque p = 2 et n = 1, il n'y en a aucune.
 - ullet Lorsque p=2=n, il n'y en a qu'une qui est l'identité.
- 3. On remarque qu'une application strictement croissante est injective donc son image est de même cardinal que l'ensemble de départ. Par ailleurs, étant donnée une fonction f strictement croissante, elle est déterminée par son image. En effet, le plus petit élément de son image est nécessairement l'image de 1, le deuxième plus petit est l'image de 2 etc. Le nombre d'applications strictement croissantes est donc égale au nombre d'images possibles c'est-à-dire au nombre de parties à p éléments de [|1,n|]. On a donc $\#C_{n,p}^s = \binom{n}{p}$.
- 4. On considère l'application

$$\varphi \left\{ \begin{array}{lcl} C_{p,n} & \to & C_{p,n+p-1}^s \\ f & \mapsto & f+id-1 \end{array} \right.$$

On sait que si f est croissante, f+id est strictement croissante donc f+id-1 aussi. Par ailleurs, pour tout $k \in [\![1,p]\!]$, on a $f(k) \in [\![1,n]\!]$ donc $f(k)+k-1 \in [\![1,n+p-1]\!]$, ce qui montre que φ est bien définie. Pour la bijectivité, on remarque qu'un antécédent d'une fonction g est la fonction g-id+1. Reste à montrer que cet antécédent appartient bien à l'espace de départ. Tout d'abord, on remarque que g(2) > 1 donc $g(2) \geqslant 2$ par stricte croissance de g puis, par récurrence sur k, $g(k) \geqslant k$ pour tout k. De même, $g(p) \leqslant n+p-1$ donc $g(p-1) \leqslant n+p-2$ puis, par récurrence sur k, $g(p-k) \leqslant n+p-k-1$. Autrement dit, $g(k) \leqslant n+k-1$. On a donc $g(k)-k+1 \leqslant n$. On a montré que g-id+1 va de $[\![1,p]\!]$ dans $[\![1,n]\!]$.

Reste à montrer que c'est une application croissante. Soit donc $x \leq y$, alors $g(x) < g(x+1) < \dots < g(y)$ et, comme x et y sont des entiers on montre facilement que $g(x) \leq g(y) + (x-y)$. On a donc $g(x) - x \leq g(y) - y$ puis $g(x) - x + 1 \leq g(y) - y + 1$ donc g - id + 1 est croissante.

On a montré que toute fonction $g \in C^s_{p,n+p-1}$ admettait un antécédent unique dans $C_{p,n}$, φ est bien bijective. On a donc $\#C_{p,n} = \#C^s_{n,n+p-1}$. Reste à calculer le cardinal de l'ensemble des applications strictement croissantes entre deux ensembles finis.

Pour cela, on remarque qu'une application f strictement croissante de $\llbracket 1,p \rrbracket$ dans $\llbracket 1,n \rrbracket$ est déterminée par son image, qui est une partie à p éléments de $\llbracket 1,n \rrbracket$. En effet, une telle application f est injective donc $\operatorname{Im}(f)$ est bien de cardinal p. Par ailleurs, étant donnée une partie A à p éléments de $\llbracket 1,n \rrbracket$, c'est l'image d'une unique fonction strictement croissante de $\llbracket 1,p \rrbracket$ dans $\llbracket 1,n \rrbracket$, à savoir la fonction qui à 1 associe $\min(A)$, à 2 associe $\min(A\setminus\{\min(A)\})$ et ainsi de suite jusqu'à p qui s'envoie sur $\max(A)$. Il y a donc $\binom{n}{p}$ fonction strictement croissante de $\llbracket 1,p \rrbracket$ dans $\llbracket 1,n \rrbracket$.

- 5. En utilisant la question précédente et le fait que deux ensembles finis en bijection ont même cardinal, on a $\#C_{n,p} = \#C_{p,n+p-1}^s = \binom{n+p-1}{p}$.
- 6. On suit l'indication et on pose $S_k = \sum_{k=1}^k a_i$. On remarque que si (a_1, \ldots, a_p) est un p-uplet tel que $\sum_{i=1}^p a_i \leqslant n$, alors $k \mapsto S_k$ est une application croissante de [|1, p|] dans [|1, n|]. Réciproquement, étant donné une application f croissante, le p-uplet

$$(a_1,\ldots,a_p)=(f(1),f(2)-f(1),\ldots,f(p)-f(p-1))$$

satisfait la condition demandée (la somme des coordonnées vaut f(p) et est donc inférieure ou égale à n) et de plus $f(k) = \sum_{i=1}^k a_i$ pour tout $k = 1 \dots p$ donc on a montré qu'il y a en bijection entre l'ensemble des p-uplets recherché et l'ensemble des applications croissantes de [|1,p|] dans [|1,n|]. Il y a donc $\binom{n+p-1}{p}$ tels p-uplets.

7. Utilisons un raisonnement analogue à celui de la question précédente. En considérant la même application, on montre que le nombre de p-uplets recherché est égal au cardinal de l'ensemble des applications croissantes de [|1,p|] dans [|1,n|] telles que f(p)=n. Reste à déterminer ce cardinal. On remarque qu'une telle application est déterminée par les images de $1 \dots p-1$ (puisque l'image de p est imposée égale à p). Le nombre de telles applications est donc égal au nombre d'applications croissantes de [|1,p-1|] dans [|1,n|] soit $\binom{n+p-2}{p-1}$.

On peut aussi écrire

$$\{(a_1, \dots, a_p) \in [0, n], \sum_{i=1}^p a_i \le n\}$$

$$= \{(a_1, \dots, a_p) \in [0, n], \sum_{i=1}^p a_i = n\} \cup \{(a_1, \dots, a_p) \in [0, n], \sum_{i=1}^p a_i \le n - 1\}$$

et la réunion est disjointe. On a donc

$$\#\{(a_1, \dots, a_p) \in [0, n], \sum_{i=1}^p a_i = n\}$$

$$= \#\{(a_1, \dots, a_p) \in [0, n], \sum_{i=1}^p a_i \leq n\} - \#\{(a_1, \dots, a_p) \in [0, n], \sum_{i=1}^p a_i \leq n - 1\}$$

$$= \binom{n+p-1}{p} - \binom{n+p-2}{p-1}$$

$$= \binom{n+p-1}{p-1} \text{ par la formule du triangle de Pascal}$$