Indications

1 Montrer que pour tout $(x,y) \in E^2$, $\lambda_x = \lambda_y$, que (x,y) soit libre ou non.

2 Poser une CL nulle et appliquer f^{n-1} .

5 Montrer que $f(\lambda P_1 + P_2) = \lambda P_1 + P_2$, résoudre f(P) = 0 puis déterminer la forme générale d'un élément de l'image.

6 Montrer que $f(\lambda P + Q) = \lambda f(P) + f(Q)$ puis exprimer $f\left(\sum_{k=0}^{n} a_k X^k\right)$ comme unique somme.

7 Poser $P = a_2X^2 + a_1X + a_0$ et calculer son intégrale.

 $\boldsymbol{\mathcal{S}}$ Pour le noyau, utiliser les matrices élémentaires, pour l'image raisonner avec inclusion

9 Prendre Q = P - P' et exprimer les coefficients de P en fonction de deux de Q.

10 Montrer que $\varphi(\lambda P_1 + P_2) = \lambda P_1 + P_2$ puis chercher à exprimer les coefficients de P tel que P + P' = Q en fonction de ceux de Q.

11 Résoudre les équations différentielles f + f' = 0 et f + f' = g avec $g \in E$.

12 Exhiber l'inverse de g en utilisant le quotient de $X^n - 1$ par X - 1.

13 1. exhiber sa réciproque.

2. à la main.

3. montrer que les images d'une base de G_a appartiennent à G_a .

4. Montrer que F est un ssev contenant une base de G_a .

5. Pensez simple!

14 1. à la main.

2. raisonner par équivalence.

3. Déterminer un antécédent.

15 Raisonner par double implication sachant qu'on a toujours une inclusion.

 ${\it 16}$ Prendre un élément du ssev et montrer que son image par ${\it g}$ appartient encore à ce ssev.

17 il faut juste trouver quelle inclusion est la bonne!

18 Raisonner par analyse/synthèse puis utiliser la phase d'analyse pour déterminer le projeté.

19 1. Calculer $r \circ r$ et utiliser tout ce que l'on sait de p et q.

2. On a une inclusion claire, on montre l'inclusion réciproque

21 Déterminer le noyau puis trouver un élément qui n'a pas d'antécédent.

22 1. faire une disjonction de cas lorsque deg(P) = a ou non.

2. déterminer le noyau, trouver un élément qui n'a pas d'antécédent.

23 1. Raisonner par analyse/synthèse.

2. Utiliser le résultat de la phase d'analyse.

24 1. Montrer que $Ker(f) = \{0_E\}$ puis, par analyse/synthèse, que f est surjective.

2. Appliquer la formule du binôme de Newton.

25 1. Raisonner par double implication.

2. Prendre $x \in \text{Im}(p) \cap \text{Im}(q)$ et montrer que $x = 0_E$ en utilisant la question 1.

3. Montrer que $\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$ et $\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

26 Raisonner par double implication (et analyse synthèse)

27 Utiliser l'inclusion des noyau/image d'une composée et raisonner par double inclusion.

 $\boldsymbol{28}$ raisonner par analyse synthèse