Année 2024-2025

TD 18: Applications linéaires.

Exercice 1.

Soient E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ telle que, $\forall x \in E, \exists \lambda_x \in \mathbb{R}$ tel que $f(x) = \lambda_x x$. Montrer que f est une homothétie.

Exercice 2.

Soit $f \in \mathcal{L}(E)$ telle que $f^n = 0_{\mathcal{L}(E)}$ et x_0 tel que $f^{n-1}(x_0) \neq 0_E$. Montrer que la famille $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ est libre.

1 Détermination linéarité/noyau/image

Exercice 3.

Les applications suivantes sont-elles linéaires?

$$\varphi_{1}: \left\{ \begin{array}{ccc} \mathbb{K}^{2} & \to & \mathbb{K} \\ (x,y) & \mapsto & xy \end{array} \right. \qquad \varphi_{2}: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x+1 \end{array} \right.$$

$$\varphi_{3} \left\{ \begin{array}{ccc} C(\mathbb{R},\mathbb{C}) & \to & \mathbb{R}^{2} \\ f & \mapsto & (\mathcal{R}e(f(0)),|f(1)|) \end{array} \right. \qquad \varphi_{4}: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K} \\ P & \mapsto & P(0)+P'(1) \end{array} \right.$$

$$\varphi_{5}: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^{2} \end{array} \right. \qquad \qquad \varphi_{6}: \left\{ \begin{array}{ccc} C(\mathbb{R},\mathbb{R}) \to \mathbb{R} \\ f \mapsto f(1/4) - \int_{1}^{2} f(t) dt \end{array} \right.$$

$$\varphi_{7}: \left\{ \begin{array}{ccc} C(\mathbb{R},\mathbb{R}) \to \mathbb{R} \\ f \mapsto f(3/4) + f(5) \end{array} \right. \qquad \qquad \varphi_{8}: \left\{ \begin{array}{ccc} C(\mathbb{R},\mathbb{R}) \to C(\mathbb{R},\mathbb{R}) \\ f \mapsto \left(t \mapsto \frac{f(t)}{t^{2}+1} \right) \end{array} \right.$$

Exercice 4.

Dire si les applications suivantes sont des applications linéaires et déterminer leur noyau et leur image quand elles le sont.

1.
$$\mathbb{R} \to \mathbb{R} : x \mapsto 2x^2$$
.

$$2. \ \mathbb{R} \to \mathbb{R} : x \mapsto 4x - 3.$$

3.
$$\mathbb{R} \to \mathbb{R} : x \mapsto \sqrt{x^2}$$
.

$$4. \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto 3x + 5y.$$

5.
$$\mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto \sqrt{3x^2 + 5y^2}$$
. 10. $\mathbb{R} \to \mathbb{R} : x \mapsto \ln(3^{x\sqrt{2}})$.

6.
$$\mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto \sin(3x+5y)$$
.

7.
$$\mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (-x, y)$$
.

8.
$$\mathcal{C}^1(\mathbb{R}) \to \mathcal{C}^0(\mathbb{R}) : f \mapsto f'$$
.

9.
$$\mathbb{R} \to \mathbb{R}^3 : x \mapsto (2x, x/\pi, x\sqrt{2}).$$

10.
$$\mathbb{R} \to \mathbb{R} : x \mapsto \ln(3^{x\sqrt{2}})$$
.

Exercice 5.

Soit $f: \left\{ \begin{array}{l} \mathbb{R}[X] \to \mathbb{R}[X] \\ P \mapsto P - X P' \end{array} \right.$ Montrer que l'application est linéaire et déterminer son noyau et son image

Exercice 6.

Montrer que l'application $f: \left\{ \begin{array}{ll} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & P - XP' - P(0) \end{array} \right.$ est linéaire. Déterminer son noyau et son image

Exercice 7.

Montrer que l'application $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R} \\ P & \mapsto & \int_0^1 P(t)dt \end{array} \right.$ est linéaire et déterminer son noyau et son image.

Exercice 8.

On considère la trace $\mathrm{Tr}:\mathcal{M}_n(\mathbb{K})\to\mathbb{K}$. Déterminer son noyau et son image. On donnera une base de ces ensembles et leur dimension.

Injectivité/surjectivité/bijectivité

Exercice 9.

Soient $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$. On considère l'application $P \mapsto P - P'$. Montrer que c'est un automorphisme et déterminer son inverse.

Exercice 10.

Soit $\varphi: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & P+P' \end{array} \right.$ Montrer que φ est linéaire. Est-elle bijective?

Exercice 11.

Soient $E = \mathcal{C}^{\infty}(\mathbb{R})$ et $\varphi : \begin{cases} E \longrightarrow E \\ f \longmapsto f + f' \end{cases}$. L'application est-elle injective? surjective?

Exercice 12.

Soit E un K-espace vectoriel, $f \in (E)$ tel que $f^n = 0_{(E)}$ et $g = id_E - f$. Montrer que q est bijective et donner son inverse.

Exercice 13.

Soit E un \mathbb{R} -ev de dimension $n \geq 2$. On considère $f \in \mathcal{L}(E)$ tel que $f \circ f = -\mathrm{Id}_{E}$. Soit a un vecteur non nul de E.

- 1. Montrer que f est un automorphisme.
- 2. Montrer que la famille (a, f(a)) est libre. On pose $G_a = \text{Vect}(a, f(a))$.

- 3. Montrer que G_a est stable par f (c-à-d que $\forall x \in G_a, f(x) \in G_a$).
- 4. Montrer que si un sev F stable par f contient a, alors $G_a \subset F$.
- 5. Si $E=\mathbb{R}^2,$ donner un exemple d'endomorphisme f qui vérifie l'hypothèse de l'énoncé.

Exercice 14.

On considère l'application $\varphi: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$ $(u_n)_{n \in \mathbb{N}} \mapsto (u_{n+1} - u_n)_{n \in \mathbb{N}}$

- 1. Démontrer que l'application φ est \mathbb{C} -linéaire.
- 2. Déterminer $Ker(\varphi)$.
- 3. Démontrer que φ est surjective. L'application φ est-elle un automorphisme ?

3 Relations entre noyau et image

Exercice 15.

Soit $f \in \mathcal{L}(E)$. Montrer que

$$E = \operatorname{Im}(f) + \operatorname{Ker}(f) \Leftrightarrow \operatorname{Im}(f) = \operatorname{Im}(f \circ f)$$
$$\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0_E\} \Leftrightarrow \operatorname{Ker}(f) = \operatorname{Ker}(f \circ f)$$

Exercice 16.

Soit E un \mathbb{K} -ev, $f, g \in \mathcal{L}(E)$ tel que $f \circ g = g \circ f$. Montrer que $\mathrm{Im}(f)$ et $\mathrm{Ker}(f)$ sont stables par g.

Exercice 17.

E et F sont des \mathbb{K} -ev, $(u,v) \in \mathcal{L}(E,F)^2$. Comparer (au sens de l'inclusion) :

- 1. $\ker(u) \cap \ker(v)$ et $\ker(u+v)$.
- 2. $\operatorname{Im}(u) + \operatorname{Im}(v)$ et $\operatorname{Im}(u+v)$.

4 Projection

Exercice 18.

On pose $F = \{P \in \mathbb{R}[X], P(0) = P(1) = 0\}$ et $G = \text{Vect}(X^2 + X, X^3 + 1)$. Montrer que F et G sont supplémentaires dans $\mathbb{R}[X]$ et déterminer le projeté de $X^5 - X^3 + 1$ sur F parallèlement à G.

Exercice 19.

Soit E un \mathbb{K} -ev, p et q des projecteurs de E tels que $p \circ q = 0_{\mathcal{L}(\mathcal{E})}$.

- 1. Montrer que $r = p + q q \circ p$ est un projecteur.
- 2. Montrer que

$$\operatorname{Ker}(r) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$$
 et $\operatorname{Im}(r) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$

5 Si besoin d'encore un peu d'entrainement

Exercice 20.

Dire si les applications suivantes sont des applications linéaires et déterminer leur noyau et leur image quand elles le sont.

- 1. $\mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto \frac{x^2y}{x^2+y^2}$ si $x^2+y^2 \neq 0$ et 0 sinon.
- 2. $\mathcal{C}(\mathbb{R}) \to \mathcal{C}^1(\mathbb{R}) : f \mapsto \{x \mapsto e^{-x} \int_0^1 f(t) dt \}.$

3.
$$\mathbb{R}^2 \to \mathbb{R}^2 : (x,y) \mapsto \begin{cases} \frac{1}{\sqrt{x^2 + y^2}}(x,y) & \text{si } x \neq 0\\ 0 & \text{sinon} \end{cases}$$

- 4. $\mathcal{C}(\mathbb{R}) \to \mathbb{R} : f \mapsto \max_{t \in [0,1]} f(t)$.
- 5. $\mathbb{R}^2 \to \mathbb{R}^2 : (x,y) \mapsto \text{la solution du système:} \begin{cases} 3u-v = x \\ 6u+2v = y. \end{cases}$
- 6. $\mathcal{C}(\mathbb{R}) \to \mathbb{R} : f \mapsto \int_0^1 \ln(1+|f(t)|) dt$.
- 7. $\mathcal{D}(\mathbb{R}) \to \mathbb{R} : f \mapsto f'(1/2) + \int_0^1 f(t) dt$.

Exercice 21.

Soit $E = \mathcal{C}^0(\mathbb{R})$, on définit l'application φ par

$$\forall f \in E, \varphi(f) = g \text{ avec } g: x \mapsto \int_0^x tf(t) dt.$$

Montrer que φ est un endomorphisme de E. Est-il injectif? surjectif?

Exercice 22.

Soient $a \in \mathbb{R}^*$ et $\varphi_a : \left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & (X^2 - 1)P' - aXP \end{array} \right.$

- 1. Montrer que φ_a est un endomorphisme et étudier le degré de $\varphi_a(P)$ en fonction du degré de P.
- 2. Lorsque $a \notin \mathbb{N}$, montrer que φ_a est injective. Est-ce un isomorphisme?

Exercice 23.

2

Soient $F = \{P \in \mathbb{R}[X], P(1) = 0\}$ et G = Vect(X).

- 1. Montrer que F et G sont supplémentaires dans $\mathbb{R}[X]$.
- 2. Déterminer l'image par la projection f sur F parallèlement à G de X^2-3X+1 et $X^i-1,\ i\in\mathbb{N}^\star$.

6 Une fois qu'on est à l'aise

Exercice 24. 😂 😂

Soient p un projecteur de E et $f = p + id_E$.

- 1. Montrer que f est bijective.
- 2. Soit $n \in \mathbb{N}^*$. Exprimer f^n en fonction de p et n

Exercice 25. 😂

Soient E un \mathbb{R} -espace vectoriel et p,q deux projecteurs de E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0_{\mathcal{L}(\mathcal{E})}$.
- 2. Supposons dorénavant que p+q est un projecteur, montrer que $\mathrm{Im}(p)$ et $\mathrm{Im}(q)$ sont en somme directe.
- 3. Montrer ensuite que p+q est la projection de E sur ${\rm Im}p\oplus {\rm Im}q$ parallèlement à ${\rm Ker}(p)\cap {\rm Ker}(q)$.

Exercice 26.

Soit $K = \mathbb{R}$ ou \mathbb{C} . Soit E un K-espace vectoriel, soient f et g deux endomorphismes de (E, +, .). Montrer l'équivalence des deux assertions suivantes :

- (i) $f \circ g$ est un automorphisme
- (ii) f est surjective, g est injective et $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g)$

Exercice 27. 😋 😋

Soient E un \mathbb{K} -espace vectoriel et $(f,g) \in (E)^2$ tel que $f \circ g = id_E$. Déterminer $\operatorname{Ker}(g \circ f)$ et $\operatorname{Im}(g \circ f)$.

Exercice 28. 🗫 🗫

Soit E un espace vectoriel et $u \in \mathcal{L}(\mathcal{E})$ tel que $u^3 - u^2 + u - id_E = 0_{\mathcal{L}(\mathcal{E})}$. Montrer que $\operatorname{Ker}(u - id_E) \oplus \operatorname{Ker}(u^2 + id_E) = E$.

Memo

- Comment montrer qu'une application est linéaire?
 - Utiliser la linéarité de l'intégrale, la dérivation, la somme, le produit matriciel....
 - Revenir à la définition
- Comment déterminer l'image d'une application linéaire?
 - Prendre un élément de l'espace d'arrivée et raisonner par équivalence.
 - Trouver une inclusion puis montrer l'équivalence.
- Comment déterminer le noyau d'une application linéaire? Prendre un élément de l'espace de départ et raisonner par équivalence.
- Comment déterminer si une application linéaire f est un isomorphisme?
 - Résoudre l'équation f(X) = Y
 - Déterminer le noyau et l'image
- Comment montrer que p est un projecteur? Montrer que p est linéaire et $p \circ p = p$
- Comment déterminer les espaces caractéristiques d'un projecteur? Déterminer son noyau et son image

