Intégration

1 Intégration de fonctions en escalier

Définition 1. Soit [a, b] un segment de \mathbb{R} (avec a < b). Une **subdivision** de [a, b] est une suite finie $\sigma = (a_0, a_1, \ldots, a_n)$ telle que

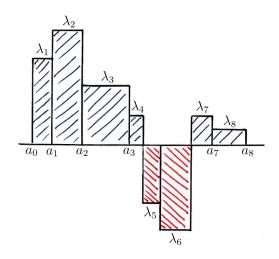
$$a = a_0 < a_1 < a_2 < \ldots < a_n = b.$$

Définition 2. Une fonction en escalier sur [a, b] est une fonction $\phi : [a, b] \to \mathbb{R}$ pour laquelle il existe une subdivision $\sigma = (a_0, \ldots, a_n)$ telle que ϕ est constante sur chaque intervalle $]a_{k-1}, a_k[$.

Autrement dit, $\forall k \in [1, n], \exists \lambda_k \in \mathbb{R} \text{ tq } \forall x \in]a_{k-1}, a_k[, \phi(x) = \lambda_k.$

Définition 3. Dans la situation précédente, on définit l'intégrale sur [a,b] de la fonction en escalier ϕ par :

$$\int_{a}^{b} \phi(t) dt = \sum_{k=1}^{n} \lambda_{k} (a_{k} - a_{k-1})$$



Dans cette formule, on remarque que la quantité $\lambda_k(a_k-a_{k-1})$ est l'aire d'un rectangle élémentaire de hauteur λ_k , aire comptée positivement si $\lambda_k \geqslant 0$, et négativement sinon. Donc $\int_a^b \phi(t) \, \mathrm{d}t$ est bien l'aire (comptée de cette manière) de la région délimitée par le graphe de ϕ et l'axe des abscisses.

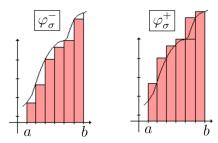
2 Intégrale d'une fonction continue sur un segment

2.1 construction

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment [a,b].

Notations: Pour toute subdivision $\sigma = (a_0, \ldots, a_n)$ de [a, b], on note ϕ_{σ}^+ et ϕ_{σ}^- les deux fonctions en escalier définies par : $\forall k \in [1, n], \forall x \in [a_{k-1}, a_k],$

$$\phi_{\sigma}^{+}(x) = \max_{t \in [a_{k-1}, a_k]} f(t)$$
 $\phi_{\sigma}^{-}(x) = \min_{t \in [a_{k-1}, a_k]} f(t)$



Remarque : $\forall k \in [1, n]$, les nombres $\max_{t \in [a_{k-1}, a_k]} f(t)$ et $\min_{t \in [a_{k-1}, a_k]} f(t)$ sont bien définis car une fonction continue sur un segment est bornée, et atteint ses bornes.

Théorème 1.

Avec les notations précédentes, on a l'égalité suivante :

$$\inf \left(\int_a^b \phi_\sigma^+(t) \, \mathrm{d}t \ , \ \sigma \ \mathrm{subdivision} \ \mathrm{d}e \ [a,b] \right) \ = \ \sup \left(\int_a^b \phi_\sigma^-(t) \, \mathrm{d}t \ , \ \sigma \ \mathrm{subdivision} \ \mathrm{d}e \ [a,b] \right)$$

La valeur commune de ces bornes inférieure et supérieure (prises sur **toutes** les subdivisions possibles de [a, b]) est appelée intégrale de a à b de f, et est notée :

$$\int_{a}^{b} f(t) dt$$
 ou $\int_{a}^{b} f$ ou $\int_{[a,b]} f$

Définition 4. Si f est une fonction continue sur [a,b], on définit sa somme de Riemman:

$$S_n(f) = \frac{(b-a)}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k)$$

en posant $a_k = a + \frac{k(b-a)}{n}$.

On remarque que cette somme est égale à l'intégrale de la fonction en escalier :

$$\phi^{-}: \left\{ \begin{array}{ccc} [a,b[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & f\left(a+\frac{k(b-a)}{n}\right) \text{ si } x \in \left[a+\frac{k(b-a)}{n},a+\frac{(k+1)(b-a)}{n}\right] \end{array} \right.$$

et que cette fonction en escalier correspond à l'approximation de f sur la subdivision $(a_k)_{k\in [\![0,n]\!]}$ définie par $a_k=a+\frac{k(b-a)}{n}$

Proposition 2.

Soit f une fonction continue, alors $\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right) = \int_a^b f$.

Exemples 1.

1. Calcular
$$\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{1}{k+n}$$
.

2. Calcular
$$\lim_{n\to+\infty} \sum_{k=n}^{2n-1} \frac{1}{k+n}$$
.

Remarque. Quitte à poser $g: x \mapsto f(a + (b - a)x)$, on peut toujours identifier une somme de Riemann à une intégrale entre 0 et 1.

Exemple 2. Calcular
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln \left(1 + \frac{2k}{n} \right)$$
.

$$\textbf{Remarque.} \ \ On \ a \ aussi \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) = \int_0^1 f \ \ et \ \ m \\ \hat{e}me \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^n f\left(\frac{k}{n}\right) = \int_0^1 f.$$

2.2 Propriétés

Interprétation géométrique: Si f est à valeur dans \mathbb{R}^+ , l'intégrale de f sur [a,b] est l'aire comprise entre le graphe de f, les droites d'équation x=a et x=b et l'axe des abscisses.

Lorsque f est négative, on peut encore avoir une interprétation géométrique en parlant d'aire algébrique (qui est donc négative lorsque le graphe de f est en dessous de l'axe des abscisses).

Propriétés:

Soient f et g deux fonctions continues sur un segment [a, b] avec a < b et $\lambda \in \mathbb{R}$, alors :

- linéarité: $\int_a^b (\lambda f + g)(t) \, \mathrm{d}t = \lambda \int_a^b f(t) \, \mathrm{d}t + \int_a^b g(t) \, \mathrm{d}t.$
- positivité: $\int_a^b f(t) dt \ge 0$ si $f \ge 0$.
- croissance: si $f \geqslant g$, $\int_a^b f(t) dt \geqslant \int_a^b g(t) dt$.

Proposition 3 (inégalité triangulaire). Soit f une fonction continue sur [a,b], alors $\left| \int_a^b f(t) dt \right| \leq \int_a^b |f(t)| dt$

Exemple 3. Majorer $\int_0^{2\pi} t \cos(t) dt$.

Corollaire 4.

Soient f et g deux fonctions continues sur [a, b], alors

$$\left| \int_{a}^{b} f(t)g(t) dt \right| \leq \max_{[a,b]} |f(t)| \int_{a}^{b} |g(t)| dt$$

En particulier $\left|\int_a^b f(t) \, \mathrm{d}t\right| \leqslant (b-a) \cdot \max_{[a,b]} |f(t)|$ (inégalité de la moyenne)

Exemple 4. Soit $I_n = \int_0^1 \frac{\cos(10t)t^n}{1+t^2} dt$, montrer que $(I_n)_{n\in\mathbb{N}}$ converge vers 0.

Définition 5. On appelle valeur moyenne de f le réel $\frac{1}{b-a} \int_a^b f$. L'inégalité de la moyenne dit simplement que la moyenne de f est inférieure à sa valeur maximale.

Proposition 5 (relation de Chasles).

Soient $a \le b \le c$ trois réels et f continue sur [a, c], alors

$$\int_{a}^{c} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{c} f(t) dt$$

Définition 6. Si $b \le a$ et f continue sur [b, a], on définit $\int_a^b f(t) dt := -\int_b^a f(t) dt$

La relation de Chasles est alors vraie pour des réels quelconques a, b et c.

Remarque. la linéarité de l'intégrale reste, bien entendu, vraie pour $a \ge b$. En revanche la positivité, la croissance et l'inégalité triangulaire ne sont valables que pour des bornes croissantes.

Théorème 6.

[stricte positivité]

Soit f une fonction positive ou nulle, continue sur [a, b]. Alors

$$\int_{a}^{b} f(t) \, \mathrm{d}t = 0 \Rightarrow f = 0$$

fdoit être de signe constant (pensez à cos) et continue !!

Corollaire 7.

L'intégrale d'une fonction continue de signe constant est nulle si et seulement si la fonction est nulle.

Exemple 5. Pour tout $n \in \mathbb{N}$, on pose $W_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$, montrer que $(W_n)_{n \in \mathbb{N}}$ est strictement décroissante.

2.3 Intégrale et primitive

Théorème 8.

[thm fondamental de l'analyse] Soit I un intervalle, $f:I\to\mathbb{R}$ une fonction continue et $a\in I$.

La fonction
$$F: \begin{cases} I \longrightarrow \mathbb{R} \\ x \longmapsto \int_a^x f \text{ est } \mathcal{C}^1, \text{ et } \forall x \in I, F'(x) = f(x). \end{cases}$$

Remarque. La fonction $F: x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f s'annulant en a, on retrouve bien $\int_a^b f(t) dt = G(b) - G(a)$.

Exemples 6.

- 1. Montrer que $F: x \mapsto \int_1^x \frac{1}{1+t^2} dt$ est de classe C^1 et calculer sa dérivée.
- 2. Montrer que $F: x \mapsto \int_x^1 t \sin(t) dt$ est de classe C^1 sur [0,1] et calculer sa dérivée.

Corollaire 9.

Soit u et v deux fonctions dérivables et f continue. Alors

$$F: \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_{u(x)}^{v(x)} f(t) \, \mathrm{d}t \end{array} \right.$$

est dérivable et $F'(x) = v'(x) f \circ v(x) - u'(x) f \circ u(x)$.

Remarque. Si f est continue sur un intervalle J, F sera définie en tout point x tel que f est continue sur le segment d'extrémités u(x) et v(x).

Exemple 7. Montrer que $F: x \mapsto \int^{x^2} \ln(t) dt$ est dérivable sur [1,2] et calculer sa dérivée.

$\mathbf{3}$ Inégalité de Taylor-Lagrange.

Énoncé 3.1

Théorème 10.

Soit $p \in \mathbb{N}$.

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathcal{C}^{p+1} sur un intervalle I de \mathbb{R} .

Soient $a, b \in I$. On pose:

$$M = \max_{t \in [a,b]} \left(\left| f^{(p+1)}(t) \right| \right).$$

Alors:

$$\left| f(b) - \sum_{k=0}^{p} \frac{f^{(k)}(a)}{k!} (b-a)^k \right| \le M \frac{|b-a|^{p+1}}{(p+1)!}.$$

Remarque. L'inégalité de Taylor-Lagrange est souvent utilisée en pratique avec a = 0. En posant alors x = b, elle se réécrit :

$$\left| f(x) - \sum_{k=0}^{p} \frac{f^{(k)}(0)}{k!} x^{k} \right| \leqslant M \frac{|x|^{p+1}}{(p+1)!} \ avec \ M = \max_{t \in [0,x]} \left(\left| f^{(p+1)}(t) \right| \right)$$

En général, M dépend de p !

Exemple 8. Montrer que pour tout x > 0

$$x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x.$$

Application à la série exponentielle.

Théorème 11.

Pour tout $x \in \mathbb{R}$, la suite de terme général $\sum_{k=0}^{n} \frac{x^k}{k!}$ est convergente et sa limite vaut e^x .