Réponses du TD n 22

Réponse 1

$$Mat_B(f) = \begin{pmatrix} 2 & 1 & 7 \\ 0 & 1 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

 $R\'{e}ponse \ 3 \quad 1. \ \begin{pmatrix} -1 & -1 & -6 \\ 0 & 0 & -4 \\ 0 & 0 & 1 \end{pmatrix}.$

2.
$$Mat_{B'}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
.

3. $Mat_{B^n}(f) = \frac{1}{5} \begin{pmatrix} 0 & 0 & 26 \\ 0 & 5 & -6 \\ 0 & 0 & 11 \end{pmatrix}$.

Réponse 4 1. f(x,y,z) = (x+2y-z,2x+y+z,2y+2z).

- 2. Soit $P = aX^2 + bX + c$, $g(P) = (c + 2b a) + (2c + b + a)X + (2b + 2a)X^2$.
- 3. Soit $P = aX^2 + bX + c$, h(P) = (c + 2b a, 2c + b + a, 2b + 2a)

Réponse 6 1. $u(F) \subset F$. Autrement dit, F est stable par u et G est stable par u.

- 2. $u(F) \subset G$ et $u(G) \subset F$.
- 3. $u(F) \subset F$ et $u(G) \subset F$ donc $\mathrm{Im}(u) \subset F$.

Réponse 7 1. Ker(A) = Vect $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$. Ker(f) Vect ((2,2,1),(-1,-2,-2)) = Vect((2,2,1),(1,2,2)). Im(f) = Vect ((0,-1,1)).

2.
$$\operatorname{Ker}(u) = \operatorname{Vect}(2X^2 + 2, -X^2 + 4X - 3) = \operatorname{Vect}(X^2 + 1, 2X - 1), \operatorname{Im}(u) = \operatorname{Vect}(-6X - 2) = \operatorname{Vect}(3X + 1).$$

- 2. $u(3X^2 2X 1) = (11, 14, 6)$.
- 3. la matrice n'est donc pas inversible.

4.

$$Mat_{B'C}(u) = \begin{pmatrix} 0 & 1 & 0 \\ 3 & -5 & 0 \\ 2 & -3 & 0 \end{pmatrix}$$

Réponse 9 1. de rang 2 si $\alpha = 0$, de rang 3 sinon.

2. $\underline{\text{Si } \alpha = 0}$: $\text{Ker}(f) = \text{Vect}(e_1 - e_3, e_2 - e_4)$. (e_1, e_2) est une base de Im(f). $\underline{\text{Si } \alpha \neq 0}$. $\overline{\text{Ker}(f)} = \text{Vect}(e_1 - e_3) \ (f(e_1), f(e_2), f(e_3), f(e_4))$ base de Im(f).

Réponse 10 1. 1 et 4

- 2. $\operatorname{Ker}(u id) = \operatorname{vect}((1, -1, 0), (0, 1, -1))$ et $\operatorname{Ker}(u 4id) = \operatorname{Vect}((1, 1, 1))$.
- 3. concaténation des bases est une base

4. pour
$$Q = P_{BB'} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
,

5. A inversible.

Réponse 12 $E = \{(x, y, z) \in \mathbb{R}^3, 2x - z + y = 0\}$

Réponse 14 oui

 $R\'{e}ponse$ 15 pour m=0,2 et -1, la matrice est non inversible

Réponse 16 La matrice M est inversible si et seulement si $1+2a+2b \neq 0$ et $1+2a-2b \neq 0$.

Réponse 18 1. $\det(M - \lambda I_3) = (2 - \lambda)(1 - \lambda)^2$. $\det(M - \lambda I_3) = 0$ si et seulement si $\lambda = 2$ ou $\lambda = 1$.

2.
$$\operatorname{Ker}(M - I_3) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, x - y + z = 0 \right\} = \operatorname{vect} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right)$$

$$\operatorname{Ker}(M - 2I_3) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, x = y = z \right\} = \operatorname{vect} \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right)$$

- 3. (v_1, v_2, v_3) est une base de \mathbb{R}^3 et dans cette base, la matrice de u est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- 4. La matrice de passage $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ convient.

Réponse 19 $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$

Réponse 20 On note $B = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

1.
$$Mat_B(p) = \begin{pmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} \end{pmatrix}$$

2.
$$Mat_B(s) = \begin{pmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

3. Par calcul matriciel, on trouve $p(1,2,3)=(0,2,4),\ p(1,1,1)=(0,1,2)$ et $s(1,2,3)=(-1,2,5),\ s(1,1,1)=(-1,1,3).$

Réponse 21

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix}$$

Réponse 22 $M_a^{-1} = M_{-a} = \begin{pmatrix} 1 & -a & a^2 \\ 0 & 1 & -2a \\ 0 & 0 & 1 \end{pmatrix}.$

Réponse 23 1. Il suffit de montrer que cette famille est libre.

2.
$$Mat_{B'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

3. Une base de l'image est (ϵ_1, ϵ_2) . ϵ_3 forme une base du noyau.

Réponse 24 Ker(f) = Vect((1, 1, -1, 0), (1, 0, -1, 1)). Im(f) = Vect((1, 2, -1), (1, -1, -1)).

Réponse 25 1. Ker f = vect(1, 1, 1) Im f = vect((2, -1, -1), (-1, 2, -1)).

- 2. il suffit de montrer que ces deux espaces sont en somme directe.
- 3. On note $e_1 = (1, 1, 1)$, $e_2 = (2, -1, -1)$, et $e_3 = (-1, 2, -1)$, la matrice de f dans cette base est :

 $\begin{pmatrix}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{pmatrix}$

Réponse 26 1. il suffit de montrer que c'est une famille libre . $Mat_{B'}(f) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

 $2. \ \forall n \in \mathbb{N}$

$$A^{n} = \begin{pmatrix} -n+1 & n & n \\ 0 & 1 & 0 \\ -n & n & n+1 \end{pmatrix}$$

Réponse 27 oui

Réponse 31 1.

2. On a $P(-a) = \prod_{i=1}^{n} (r_i - a)$ et $P(-b) = \prod_{i=1}^{n} (r_i - b)$ car, dans ces deux cas-là, la matrice est triangulaire.

3.
$$P(X) = \frac{1}{a-b} \left(\prod_{i=1}^{n} (r_i - b) - \prod_{i=1}^{n} (r_i - a) \right) X + \frac{1}{a-b} \left(a \prod_{i=1}^{n} (r_i - b) - b \prod_{i=1}^{n} (r_i - a) \right). \quad \Delta_1 = P(0) = \frac{1}{a-b} \left(a \prod_{i=1}^{n} (r_i - b) - b \prod_{i=1}^{n} (r_i - a) \right).$$

$$\Delta_2 = \frac{(-b)^n - (-a)^n}{a-b} = (-1)^n \frac{b^n - a^n}{a-b}.$$

4.
$$P(X) = \prod_{i=1}^{n} (r_i - a) + \sum_{i=1}^{n} \prod_{i \neq j=(i-1)}^{r} (r_i - a) + \sum_{i=1}^{n} \prod_{j=(i-1)}^{r} (r_i - a) + \sum_{i=(i-1)}^{n} (r$$

Réponse 32 1. il est nul.

2. On a
$$\forall i \in [1, n], a_i = \frac{\prod_{j=1}^{n} (y_j - x_i)}{\prod_{j \neq i} (x_j - x_i)} \neq 0.$$

3.
$$D_n = \frac{\sum_{i < j} (x_j - x_i)(y_j - y_i)}{\prod_{i,j} (x_i + y_j)}$$

Réponse 13 la matrice est inversible pour tout x tel que $x \neq 1 - a$.