TD 4: Ensembles et applications.

🗸 classique 🕻 demande réflexion

1 Relations entre ensembles

Exercice 1.

Montrer les égalités suivantes :

$$]-1,1[=\bigcup_{n\in\mathbb{N}^{\star}}\left[-1+\frac{1}{n},1-\frac{1}{n}\right] \text{ et } [-1,1]=\bigcap_{n\in\mathbb{N}^{\star}}\left]-1-\frac{1}{n},1+\frac{1}{n}\right[$$

Exercice 2.

Soit E un ensemble. Montrer par un raisonnement direct puis par contraposée l'assertion suivante :

$$\forall (A, B) \in \mathscr{P}(E)^2, \quad (A \cap B = A \cup B) \Leftrightarrow A = B,$$

Exercice 3.

Montrer que $\{z \in \mathbb{C}, |z+i| = |z-i|\} = \mathbb{R}$.

2 Images directe et réciproque par une application

Exercice 4.

Soit l'application de \mathbb{R} dans \mathbb{R} , $f: x \mapsto x^2$.

- 1. Déterminer les ensembles suivants : $f([-3,-1]), f([-2,1]), f([-3,-1] \cup [-2,1])$ et $f([-3,-1] \cap [-2,1])$.
- 2. Déterminer les ensembles suivants : $f^{-1}(]-\infty,2]),\, f^{-1}([1,+\infty[),\,f^{-1}(]-\infty,2]\cap [1,+\infty[) \text{ et } f^{-1}(]-\infty,1]\cup [2,+\infty[).$

3 Détermination des propriétés d'une fonction

Exercice 5.

 $D\'{e}terminer\ si\ les\ applications\ suivantes\ sont\ injectives,\ surjectives,\ bijectives:$

1.
$$f_1: \left\{ \begin{array}{cccc}]0, +\infty[& \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & x+\frac{1}{x} \end{array} \right.$$
2. $f_2: \left\{ \begin{array}{cccc} [1, +\infty[& \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & x+\frac{1}{x} \end{array} \right.$
3. $f_3: \left\{ \begin{array}{cccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x, y) & \longmapsto & (x-y, -2x+2y) \end{array} \right.$

Exercice 6.

Soit $f:]-1, 1[\to \mathbb{R}, x \mapsto \ln\left(\frac{1-x}{1+x}\right)]$. Est-elle injective? surjective?

Exercice 7.

Soit $f:[0,1] \to [0,1]$ telle que $f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q}, \\ 1-x & \text{sinon.} \end{cases}$ Démontrer que $f \circ f = id$. Que peut-on en déduire sur f?

4 Bijection induite et réciproque

Exercice 8.

On considère l'application $f: \left\{ \begin{array}{ccc} [2,+\infty[& \to & \mathbb{R} \\ x & \mapsto & \sqrt{x^2-4x+8} \end{array} \right.$ Montrer que f est injective.

En déduire que f induit une bijection \tilde{f} sur un intervalle qu'on précisera et préciser la bijection réciproque de \tilde{f} .

Exercice 9

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{2x}{1+x^2}$.

- 1. *f* est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g: \left\{ \begin{array}{ccc} [-1,1] & \longrightarrow & [-1,1] \\ x & \longmapsto & f(x) \end{array} \right.$ est une bijection.
- 4. Retrouver le résultat des deux questions précédentes en étudiant les variations de f.

Exercice 10. 🚓

1

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{x}{1 + |x|}$

- 1. Montrer que f induit une bijection \tilde{f} de \mathbb{R} vers] 1,1[.
- 2. Déterminer l'expression de $(\tilde{f})^{-1}(y)$.

5 Exercices théoriques

Exercice 11. Q_8^8

Soit $f: \mathbb{N} \to \mathbb{N}$ surjective telle que $\forall n \in \mathbb{N}, f(n) \ge n$, montrer que f(0) = 0.

Exercice 12.

Soient E un ensemble et $h: E \to E$ une application. Montrer que h^2 bijective implique h bijective puis montrer que s'il existe $n \in \mathbb{N}^*$ tel que h^n est bijective, alors h est bijective.

Exercice 13. $\mathbf{Q}_{\mathbf{a}}^{\mathbf{a}}$

Soit E un ensemble et $f: E \to E$ une application telle que $f = f \circ f \circ f$. Montrer que f injective $\Leftrightarrow f$ surjective .

Exercice 14.

Soit $f: X \to Y$. Montrer que pour tout $B \in \mathcal{P}(Y)$, $f(f^{-1}(B)) = B \cap f(X)$.

6 Si besoin d'encore un peu d'entraînement

Exercice 15.

Soit E un ensemble. Montrer par un raisonnement direct et par contraposée l'assertion suivante :

$$\forall (A, B, C) \in \mathscr{P}(E)^3 \quad (A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Leftrightarrow B = C.$$

Exercice 16.

Soit $(A, B) \in \mathcal{P}(E)^2$, montrer que $E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$ et $E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$.

Exercice 17.

Montrer que $i\mathbb{R} = \{z \in \mathbb{C}, |z-1| = |z+1|\}$.

Exercice 18.

Soit $z \in \mathbb{C}$, montrer que $\{z \in \mathbb{C}, \mathcal{R}e(z) = \mathcal{I}m(z)\} = \{z \in \mathbb{C}, |z-1| = |z-i|\}$

Exercice 19.

Soit $f : \mathbb{R} \to \mathbb{R}, x \mapsto 2x^2 + 3$. Déterminer $f^{-1}([0, +\infty[), f^{-1}(] - \infty, -3])$ et f([-2, 4]).

Exercice 20.

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{1+x^2} \end{array} \right.$$

Déterminer f([0,1]), $f([-3,1[) \text{ et } f^{-1}(]\frac{1}{4},1])$.

Exercice 21.

Déterminer si les applications suivantes sont injectives, surjectives, bijectives.

1.
$$f_1: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x+2y,x-y) \end{array} \right.$$

$$2. \ f_2: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x-y^2 \end{array} \right.$$

3.
$$f_3: \begin{cases} \mathbb{N} & \longrightarrow & \mathbb{Z} \\ n & \longmapsto & \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{sinon} \end{cases}$$

Exercice 22.

Soit $f:[1,+\infty[\to[0,+\infty[$ telle que $x\mapsto x^2-1$. f est-elle bijective?

Exercice 23.

Soit $n \in \mathbb{N}^*$. Déterminer l'image de $f_n : \begin{cases} \mathbb{R}^{+*} \to \mathbb{R} \\ x \mapsto x^n \ln(x) \end{cases}$.

Exercice 24.

Soit
$$f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ x \mapsto x+1 \end{cases}$$
 et $g: \begin{cases} \mathbb{N} \to \mathbb{N} \\ x \mapsto \begin{cases} 0 \text{ si } x=0 \\ x-1 \text{ si } x \ge 1 \end{cases} \end{cases}$

- 1. Ces fonctions sont-elles injectives? surjectives?
- 2. Préciser $g \circ f$ et $f \circ g$.

Exercice 25.

L'application $f: \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{Z} \\ (n,m) & \longmapsto & (n+m,n-m) \end{array} \right.$ est-elle injective? surjective?

Evercice 26

Soit la fonction
$$f: \left\{ \begin{array}{ccc} \mathbb{R} \setminus \{2\} & \to & \mathbb{R} \\ x & \mapsto & \frac{3x+5}{x-2} \end{array} \right.$$

Montrer que f induit une bijection d'une partie A de \mathbb{R} dans une partie B de \mathbb{R} . On note h la fonction induite, donner une expression de sa bijection réciproque.

Exercice 27.

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^{+*} \times \mathbb{R}^{+*} & \longrightarrow & \mathbb{R}^{+*} \times \mathbb{R}^{+*} \\ (u, v) & \longmapsto & \left(uv, \frac{u}{v} \right) \end{array} \right.$$
 Montrer que f est bijective et déterminer f^{-1} .

Exercice 28.

Soit $f: \mathbb{C}^2 \to \mathbb{C}^2$, $(z,z') \mapsto (2z+z',3z-z')$. Vérifier que f est bijective et donner l'expression de f^{-1} .

Exercice 29.

2

Soient $f, g: \mathbb{R} \to \mathbb{R}$ deux applications et $h: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R}^2 \\ x \mapsto (f(x), g(x)) \end{array} \right.$

- 1. Montrer que si f et g sont injectives, alors h est injective.
- 2. On suppose f et g surjectives. h est-elle surjective?

7 une fois qu'on est à l'aise

Exercice 30. 🗫

Soient E et F deux ensembles et $f: E \to F$ une application. Soient A et B deux sousensembles de E.

- 1. Montrer que $f(A \cap B) \subset f(A) \cap f(B)$ et donner un exemple où il n'y a pas égalité.
- 2. Montrer que $f(A \cup B) = f(A) \cup f(B)$.

Exercice 31. 🗫

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x-2y,2x+3y) \end{array} \right.$$

- 1. Montrer que *f* est bijective.
- 2. Soit $\Delta = \{(x, y) \in \mathbb{R}^2, 2x + y = 1\}$. Déterminer $f(\Delta)$ et $f^{-1}(\Delta)$.

Exercice 32.

Soit E un ensemble.

- 1. Montrer qu'il existe une injection $E \to \mathcal{P}(E)$.
- 2. Soient $f: E \to P(E)$ et $A := \{x \in E, x \notin f(x)\}$. Montrer que $A \notin Im(f)$. En déduire qu'il n'existe pas de bijection $E \to \mathcal{P}(E)$.

Exercice 33.

Soient X et Y deux ensembles et $f: X \to Y$ une application. Montrer l'équivalence : f surjective $\Leftrightarrow \forall B \in \mathcal{P}(Y), f(f^{-1}(B)) = B$.

Memo

- Comment montrer une inclusion $E \subset F$? Prendre un élément de E et montrer qu'il appartient à F.
- Comment montrer que deux ensembles sont égaux?
 - Procéder par double inclusion
 - Raisonner par équivalence.
- Comment déterminer l'image réciproque d'un ensemble? Appliquer la définition : déterminer les antécédents des éléments de l'ensemble.
- Comment déterminer l'image d'une fonction/ d'un ensemble?
 - Chercher pour quel(s) Y l'équation f(X) = Y admet des solutions
 - Dresser son tableau de variations (dans le cas d'une fonction de $\mathbb R$ dans $\mathbb R$)
- Comment déterminer si une fonction est surjective?
- Déterminer si l'équation f(X) = Y admet des solutions
- Exhiber un élément qui ne possède pas d'antécédent
- Dresser le tableau de variations
- Comment déterminer si une fonction est injective?
 - Prendre deux éléments ayant même image et déterminer s'ils sont nécessairement égaux.
 - Trouver deux éléments distincts ayant même image
 - Déterminer ses variations (si c'est une fonction de \mathbb{R} dans \mathbb{R})
- Comment savoir si une fonction est bijective?
 - Étudier l'équation f(X) = Y
 - Exhiber l'inverse de la fonction
 - Étudier l'injectivité et la surjectivité
- Comment déterminer la bijection réciproque d'une fonction? Résoudre f(X) = Y c'est-à-dire exprimer Y en fonction de X.
- Comment montrer qu'une fonction induit une bijection?
 - Étudier l'équation f(X) = Y
 - Dresser le tableau de variations

Correction du TD n 4

Correction 1 Pour tout $n \in \mathbb{N}^*$, on a $-1 < -1 + \frac{1}{n} \le 1 - \frac{1}{n} < 1$ donc $\left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] \subset$]-1,1[. On en déduit que

$$\bigcup_{n\in\mathbb{N}^{\star}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] \subset]-1,1[$$

Pour l'inclusion réciproque, on se donne $x \in]-1,1[$. On a x < 1 et $\lim_{n \to +\infty} 1 - \frac{1}{n} = 1$ donc il existe $n_1 \in \mathbb{N}$ tel que $x \le 1 - \frac{1}{n} < 1$. De même, on a -1 < x et $\lim_{n \to +\infty} -1 + \frac{1}{n} = -1$ donc il existe $n_2 \in \mathbb{N}$ tel que $-1 \le -1 + \frac{1}{n} < x$. En prenant $n = \max(n_1, n_2)$, on a $x \in \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right]$ donc $x \in \bigcup_{n \in \mathbb{N}^*} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right].$

On a montré l'égalité par double inclusion.

Soit maintenant $n \in \mathbb{N}^*$, on a $[-1,1] \subset \left[-1-\frac{1}{n},1+\frac{1}{n}\right]$. Ceci étant valable pour tout entier non nul n, on a

$$[-1,1] \subset \bigcap_{n \in \mathbb{N}^*} \left] -1 - \frac{1}{n}, 1 + \frac{1}{n} \right[$$

Soit maintenant $x \in \bigcap_{n \in \mathbb{N}^*} \left| -1 - \frac{1}{n}, 1 + \frac{1}{n} \right|$. On a donc

$$\forall n \in \mathbb{N}^{\star}, -1 - \frac{1}{n} < x < 1 + \frac{1}{n}$$

En faisant tendre n vers $+\infty$, on obtient $x \in [-1,1]$.

On a montré l'égalité par double inclusion.

Correction 2 Montrons l'assertion par un raisonnement direct.

Si A = B, on a $A \cap B = A \cup B$. On suppose maintenant que A et B sont tels que $A \cap B =$ $A \cup B$. Montrons que A = B. On le montre par double inclusion. Soit $x \in A$ montrons qu'il est aussi dans B. Comme $x \in A$ alors $x \in A \cup B$ donc $x \in A \cap B$ (car $A \cup B = A \cap B$). Ainsi $x \in B$ ce qui montre l'inclusion $A \subset B$.

Soit maintenant $x \in B$, par le même raisonnement on montre que $x \in A$. Par double inclusion, on a montré A = B.

Ensuite, comme demandé, nous le montrons par contraposée. On suppose $A \neq B$, montrons que $A \cap B \neq A \cup B$.

Si $A \neq B$ cela veut dire qu'il existe un élément $x \in A \setminus (A \cap B)$ ou alors un élément $x \in A$ $B \setminus (A \cap B)$. Quitte à échanger les rôles de A et B, nous supposons qu'il existe $x \in A \setminus (A \cap B)$. Alors $x \in A \cup B$ mais $x \notin A \cap B$. Donc $A \cap B \neq A \cup B$.

Supposons maintenant $A \cap B \neq A \cup B$ et montrons que $A \neq B$. On sait que $A \cap B \subseteq A \cup B$ donc $A \cap B \neq A \cup B$ s'il existe $x \in (A \cup B) \setminus (A \cap B)$. On a alors $x \in A$ ou $x \in B$.

- Si $x \in A$, alors $x \notin B$ puisque $x \notin A \cap B$. On a donc $A \neq B$.
- Si $x \in B$, alors $x \notin A$ puisque $x \notin A \cap B$. On a donc $A \neq B$.

On a montré, par disjonction de cas, que $A \neq B$. On a donc montré l'équivalence par contraposée.

Correction 3 On raisonne par équivalence :

$$|z+i| = |z-i|$$

- \Leftrightarrow $|z+i|^2 = |z-i|^2$ par positivité des quantités
- ssi $z\overline{z} iz + i\overline{z} + 1 = z\overline{z} + iz i\overline{z} + 1$
- \Leftrightarrow $4\Re e(iz) = 0$
- \Leftrightarrow $\mathcal{I}m(z) = 0 \operatorname{car} \mathcal{R}e(iz) = -\mathcal{I}m(z)$
- $\Leftrightarrow z \in \mathbb{R}$

On a montré que :

$$z \in \{z \in \mathbb{C}, |z+i| = |z-i|\} \Leftrightarrow z \in \mathbb{R},$$

les deux ensembles sont donc égaux.

On peut aussi raisonner géométriquement. On note M, A et B les images de z, i et -i. On a

 $|z+i| = |z-i| \Leftrightarrow AM = BM \Leftrightarrow M$ appartient à la médiatrice de [AB] $\Leftrightarrow M$ appartient à $O_x \Leftrightarrow z \in \mathbb{R}$

On a donc l'égalité entre les deux ensembles.

Correction 4

- 1. On a
 - f([-3,-1]) = [1,9],
 - f([-2,1]) = [0,4],
 - $f([-3,-1] \cup [-2,1]) = f([-3,1]) = [0,9] = f([-3,-1]) \cup f([-2,1])$ et
 - $f([-3,-1] \cap [-2,1]) = f([-2,-1]) = [1,4] = f([-3,-1]) \cap f([-2,1]).$
- 2. On a

$$- f^{-1}(]-\infty,2]) = [-\sqrt{2},\sqrt{2}]$$

$$- f^{-1}([1, +\infty) =] - \infty, -1] \cup [1, +\infty[,$$

$$- \text{ et } f^{-1}(] - \infty, 2] \cap [1, +\infty[) = f^{-1}([1, 2]) = [-\sqrt{2}, -1] \cup [1, \sqrt{2}].$$

 $- f^{-1}(]-\infty,1] \cup [2,+\infty[) = f^{-1}(\mathbb{R} \setminus]1,2[) =]-\infty,-\sqrt{2}] \cup [-1,1] \cup [\sqrt{2},+\infty[=\mathbb{R} \setminus f^{-1}(]1,2[).$

Correction 5

- 1. f_1 n'est pas surjective car 0 n'a pas d'antécédent, elle n'est pas injective car $f_1(2) = f_1(1/2)$
- 2. f_2 n'est pas surjective car 0 n'a pas d'antécédent, elle est injective car un élément admet au plus 2 antécédents par f_2 qui sont inverses l'un de l'autre et un seul peut appartenir à $[[1, +\infty[[$.
- 3. f_3 n'est pas surjective car (1,1) n'a pas d'antécédent, elle n'est pas injective car $f_3(1,1) = f_3(0,0)$.

Correction 6 Soit $a \in \mathbb{R}$, on cherche à résoudre l'équation f(x) = a. On raisonne par équivalence :

$$f(x) = a \Leftrightarrow \ln\left(\frac{1-x}{1+x}\right) = a \Leftrightarrow 1-x = e^a(1+x) \Leftrightarrow 1-e^a = x(1+e^a).$$

On a $e^a \neq -1$, donc $x = \frac{1 - e^a}{1 + e^a}$. On veut $x \in]-1,1[$, on raisonne par équivalence :

$$-1 < \frac{1 - e^a}{1 + e^a} < 1 \Leftrightarrow -1 - e^a < 1 - e^a < 1 + e^a$$

Le dernier encadrement est vrai donc, par équivalence, l'unique solution trouvée appartient bien à]-1,1[. L'équation a une unique solution donc f est bijective.

Correction 7 Soit $x \in \mathbb{Q}$ alors f(x) = x donc $f \circ f(x) = f(x) = x$. Soit $x \notin \mathbb{Q}$ alors f(x) = 1 - x donc $f \circ f(x) = f(1 - x)$. Or $1 - x \notin \mathbb{Q}$. En effet, si on suppose, par l'absurde, que c'est le cas, alors $1 - (1 - x) \in \mathbb{Q}$ ce qui est une contradiction. On a donc $f \circ f(x) = f(1 - x) = 1 - (1 - x) = x$. Donc pour tout $x \in [0, 1]$ on a $f \circ f(x) = x$. Et donc $f \circ f = id$.

On en déduit que f est bijective et que $f^{-1} = f$.

Correction 8 L'application $x \mapsto x^2 - 4x + 8$ est strictement croissante sur $[2, +\infty[$, la racine carrée aussi. En tant que composée de fonctions strictement croissantes, l'application f est strictement croissante donc injective.

On sait qu'elle est surjective si on la corestreint à son image, on va donc déterminer celle-ci. Comme *f* est croissante, on sait que

$$\operatorname{Im}(f) = f([2, +\infty[) = \left[f(2), \lim_{x \to +\infty} f(x) \right] = [2, +\infty[.$$

L'application f induit donc une bijection de $[2, +\infty[$ sur lui-même.

Pour déterminer la bijection réciproque, on se donne $a \in [2, +\infty[$ et on résout f(x) = a (en cherchant x dans $[2, +\infty[$).

On raisonne par équivalence :

$$f(x) = a \Leftrightarrow \sqrt{x^2 - 4x + 8} = a$$

$$\Leftrightarrow x^2 - 4x + 8 = a^2 \text{ par positivit\'e des quantit\'es}$$

$$\Leftrightarrow x^2 - 4x + (8 - a^2) = 0$$

Le discriminant vaut $4(a^2-4)$, il est donc positif et les racines réelles sont

$$\begin{cases} \frac{4 \pm \sqrt{4(a^2 - 4)}}{2} = 2 \pm \sqrt{a^2 - 4} \text{ si } a \neq 2\\ 2 \text{ sinon.} \end{cases}$$

Si a > 2, on a $2 - \sqrt{a^2 - 4} < 2$ donc l'unique solution appartenant à $[2, +\infty[$ est $2 + \sqrt{a^2 - 4}.$ Si a = 2, on retrouve l'unique solution 2. On en déduit que

$$\tilde{f}^{-1}: \left\{ \begin{array}{ccc} [2,+\infty[& \longrightarrow & [2,+\infty[\\ x & \longmapsto & 2+\sqrt{x^2-4} \end{array}. \right. \right.$$

Correction 9

1. L'équation f(x) = y est équivalente à l'équation

$$yx^2 - 2x + y = 0.$$

Si $y \neq 0$ et le discriminant et strictement négatif, (par exemple pour y = 2), alors l'équation n'a pas de solution réelle donc f n'est pas surjective. Si le discriminant est strictement positif, l'équation a deux racines réelles distinctes donc f n'est pas injective.

2. Si y = 0, l'unique solution est x = 0, si $y \ne 0$, cette équation d'ordre 2 en x admet des solutions si et seulement si son discriminant $\Delta = 4 - 4y^2$ est positif ou nul donc il y a des solutions si et seulement si $y \in [-1,1] \setminus \{0\}$. Ainsi, l'équation f(x) = y admet au moins une solution si et seulement si $y \in [-1,1]$, nous venons de montrer que $f(\mathbb{R})$ est exactement [-1,1].

3. Soit $y \in [-1,1] \setminus \{0\}$ alors les solutions possibles de l'équation g(x) = y sont :

$$x = \frac{1 \pm \sqrt{1 - y^2}}{y},$$

pour $y \neq 0$ et 0 si y = 0. Montrons que la seule solution dans [-1,1] est $\frac{1-\sqrt{1-y^2}}{y}$. On $a^{\frac{1-\sqrt{1-y^2}}{y}} = \frac{y}{1+\sqrt{1-y^2}} \in [-1,1].$

En effet, $0 < \sqrt{1+y^2} < 1$ donc $\frac{1}{2} < \frac{|y|}{1+\sqrt{y^2}} < 1$ puis $\frac{y}{1+\sqrt{1-y^2}} \in [-1,1]$. Montrons que l'autre solution n'appartient pas à [-1,1]. Il faut éliminer le cas où $y = \pm 1$ car les deux solutions sont alors égales. Si $y \in]0,1[$, on a

$$\frac{1+\sqrt{1-y^2}}{v} > 1 \Leftrightarrow \sqrt{1-y^2} > y-1$$

et la deuxième inégalité est vraie donc $\frac{1+\sqrt{1-y^2}}{v} > 1$.

Si $y \in]-1,0[$, on a

$$\frac{1+\sqrt{1-y^2}}{y} < -1 \Leftrightarrow \sqrt{1-y^2} > -y+1$$

et la deuxième inégalité est vraie donc $\frac{1+\sqrt{1-y^2}}{y} < -1$

On a montré que pour tout $y \in [-1,1]$, l'équation g(x) = y admettait une unique solution dans [-1,1] donc g est bijective.

4. On a $f'(x) = \frac{2-2x^2}{1+x^2}$, donc f' est strictement positive sur]-1,1[et f est strictement croissante sur [-1,1]. On en déduit que f est injective et f([-1,1]) = [-1,1] donc la restriction de $f, g: [-1, 1] \longrightarrow [-1, 1]$, est une bijection.

Correction 10

- 1. Soit $a \in \mathbb{R}$. On étudie l'équation f(x) = a. On remarque que |f(x)| < 1, $\forall x \in \mathbb{R}$, il n'y a donc pas de solution si a n'appartient pas à]-1,1[. Soit maintenant $a \in]-1,1[$ et cherchons $x \in \mathbb{R}$ tel que $\frac{x}{1+|x|} = a$. On remarque que x et a sont de même signe.
 - Si a > 0, on cherche une solution x > 0 et $f(x) = a \Leftrightarrow \frac{x}{1+x} = a \Leftrightarrow x = \frac{a}{1-a}$.

 Si a < 0, on cherche une solution x < 0 et $f(x) = a \Leftrightarrow \frac{x}{1-x} = a \Leftrightarrow x = \frac{a}{1+a}$.

 - Si a = 0, alors x = 0.

On a montré que pour tout $a \in]-1,1[$, l'équation f(x) = a admet une unique solution, f induit donc une bijection de \mathbb{R} sur]-1,1[.

2. D'après le travail fait à la question précédente, si $y \in]-1,1[$, l'unique antécédent de y par f est $\frac{y}{1-|y|}$.

Correction 11 On note k un antécédent de 0. On a alors f(k) = 0. Or, par hypothèse, $f(k) \ge k \text{ donc } 0 \ge k$. Comme k est un entier naturel, on a k = 0.

Correction 12 On suppose h^2 bijective alors $h^2 = h \circ h$ est injective et surjective ce qui implique, d'après le résultat vu en cours, que h est injective et surjective donc bijective.

On suppose maintenant h^n bijective alors $h^n = h \circ h^{n-1}$ est surjective donc h l'est et $h^n = h^{n-1} \circ h$ est injective donc h l'est. On en déduit que h est bijective.

Correction 13 Montrons-le par double implication. Supposons tout d'abord f injective. Montrons que f est surjective. Soit $x \in E$, alors $f(x) = f(f \circ f(x))$ donc, par injectivité de f, $f \circ f(x) = x$. Ainsi, f(x) est un antécédent de x par f. Ceci étant valable pour tout $x \in E$, f est surjective.

Supposons maintenant f surjective. Montrons que f est injective. On suppose donc qu'il existe (a, b) tel que f(a) = f(b), montrons que a = b. La fonction f étant surjective, il existe $(a',b') \in E^2$ tel que f(a') = a et f(b') = b. On a alors $f(a') = f \circ f \circ f(a') = f \circ f(a)$ et $f(b') = f \circ f(b)$. Comme f(a) = f(b), on a $f \circ f(a) = f \circ f(b)$ donc f(a') = f(b') c'est-àdire a = b, par définition de a' et b' donc f est injective.

Par double implication, on a montré l'équivalence.

Correction 14 Soit $B \in \mathcal{P}(Y)$, alors $f(f^{-1}(B)) \subset f(X)$ et $\forall c \in f(f^{-1}(B))$, il existe $a \in \mathcal{P}(Y)$ $f^{-1}(B)$, f(a) = c et $f(a) \in B$ puisque $a \in f^{-1}(B)$. On a donc $c \in B$ ce qui montre l'inclusion $f(f^{-1}(B)) \subset B \cap f(X)$.

Soit maintenant $y \in B \cap f(X)$, alors $y \in f(X)$ donc il existe $x \in X$ tel que f(x) = y. Or, $y \in B$ donc $f(x) \in B$ ce qui est équivalent à $x \in f^{-1}(B)$. On a donc $y \in f(f^{-1}(B))$ ce qui montre l'autre inclusion.

Correction 15 On commence par le raisonnement direct. Si B = C, on a bien $A \cup B = C$ $A \cup C$ et $A \cap B = A \cap C$. Soient maintenant A, B, C tels que $A \cap B = A \cap C$ et $A \cup B = A \cup C$. Montrons que B = C. On le montre par double inclusion. Soit $x \in B$, alors $x \in A \cup B$. Or $A \cup B = A \cup C$ donc $x \in A$ ou $x \in C$. Si $x \in C$, c'est gagné. Si $x \in A$, alors $x \in B \cap A$. Or $A \cap B = A \cap C$, on a donc $x \in C$. Ainsi, on a montré que pour tout $x \in B$, on a $x \in C$ d'où l'inclusion. L'autre inclusion se montre en inversant les rôles de *B* et *C*.

Montrons maintenant l'équivalence par contraposée. Supposons $B \neq C$ montrons que $A \cap B \neq A \cap C$ ou $A \cup B \neq A \cup C$. Comme $B \neq C$, il existe $b \in B \setminus (B \cap C)$ ou $c \in C \setminus (B \cap C)$. S'il existe $b \in B \setminus (B \cap C)$, on a $b \notin c$ et on a deux cas possibles :

- $b \in A$: dans ce cas $b \in A \cap B$ mais $b \notin A \cap C$ puisque $b \notin C$, ce qui montre que $A \cap C \neq A \cap B$.
- $b \notin A$: dans ce cas $b \in A \cup B$ mais $b \notin A \cup C$ puisque $b \notin C$ ce qui montre que $A \cup C \neq A \cup B$.

S'il existe $c \in C \setminus (B \cap C)$, le raisonnement est identique.

Correction 16 On raisonne par équivalence :

$$x \in E \setminus (A \cup B) \Leftrightarrow x \notin A \cup B$$
$$\Leftrightarrow x \notin A \text{ et } x \notin B$$
$$\Leftrightarrow x \in E \setminus A \text{ et } x \in E \setminus B$$
$$\Leftrightarrow x \in (E \setminus A) \cap (E \setminus B).$$

À nouveau, on raisonne par équivalence :

$$x \in E \setminus (A \cap B) \Leftrightarrow x \notin A \cap B$$
$$\Leftrightarrow x \notin A \text{ ou } x \notin B$$
$$\Leftrightarrow x \in E \setminus A \text{ ou } x \in E \setminus B$$
$$\Leftrightarrow x \in (E \setminus A) \cup (E \setminus B).$$

Correction 17 On peut raisonner par équivalence. Soit $z = x + iy \in \mathbb{C}$ avec $(x, y) \in \mathbb{R}^2$. Alors:

$$|z-1| = |z+1|$$

$$\Rightarrow |z-1|^2 = |z+1|^2 \text{ par positivit\'e du module}$$

$$\Rightarrow (x-1)^2 + y^2 = (x+1)^2 + y^2$$

$$\Rightarrow -2x = 2x$$

$$\Rightarrow x = 0$$

$$\Rightarrow z \in i\mathbb{R}$$

On a bien l'équivalence entre $z \in i\mathbb{R}$ et |z-1|=|z+1| donc les deux ensembles sont égaux.

On peut aussi raisonner par double inclusion. Si $z \in i\mathbb{R}$, alors $z = ib, b \in \mathbb{R}$ donc

$$|z-1| = \sqrt{(-1)^2 + b^2}$$

 $\sqrt{1+b^2}$
 $= |z+1|$

On a donc l'inclusion $i\mathbb{R} \subset \{z \in \mathbb{C}, |z+1| = |z-1|\}.$

Montrons l'inclusion réciproque. Soit $z \in \mathbb{C}$ tel que |z+1| = |z-1|. On pose z = a+ib avec a,b réels.

On a

$$\sqrt{(a+1)^2 + b^2} = \sqrt{(a-1)^2 + b^2}$$

donc, en élevant au carré

$$a^2 + 2a + 1 + b^2 = a^2 - 2a + 1 + b^2$$

ce qui impose a = 0. Ainsi, z = ib donc $z \in i\mathbb{R}$.

Par double inclusion, on a montré l'égalité des deux ensembles.

On peut également raisonner de manière géométrique en notant M,A et B les images de z,-1 et 1. On a alors

 $|z+1| = |z-1| \Leftrightarrow AM = BM \Leftrightarrow M$ appartient à la médiatrice de [AB] $\Leftrightarrow M$ appartient à $O_V \Leftrightarrow z \in i\mathbb{R}$

Correction 18 On peut raisonner par équivalence. Soit $z = x + iy \in \mathbb{C}$ avec $(x, y) \in \mathbb{R}^2$. Alors

$$|z-1| = |z-i|$$

$$\Rightarrow |z-1|^2 = |z-i|^2 \text{ par positivit\'e du module}$$

$$\Rightarrow (x-1)^2 + y^2 = x^2 + (y-1)^2$$

$$\Rightarrow -2x = -2y$$

$$\Rightarrow x = y$$

$$\Rightarrow \Re e(z) = \Im m(z)$$

On a montré qu'un complexe appartient au premier ensemble si et seulement s'il appartient au deuxième, les deux ensembles sont donc égaux.

On peut aussi raisonner par double inclusion.

Soit donc $z \in \{z \in \mathbb{C}, \Re e(z) = \Im m(z)\}$, alors z = a + ia. On a alors

$$|z-1| = \sqrt{(a-1)^2 + a^2}$$

et

$$|z-i| = \sqrt{a^2 + (a-1)^2}$$

donc |z-i| = |z-1| et le premier ensemble est inclus dans le deuxième.

Soit maintenant $z \in \mathbb{C}$ tel que |z-1| = |z-i|, montrons que z vérifie $\mathcal{R}e(z) = \mathcal{I}m(z)$.

On pose z = a + ib avec a, b réels. On a

$$|z-1| = \sqrt{(a-1)^2 + b^2}$$
 et $|z-i| = \sqrt{a^2 + (b-1)^2}$.

On élève au carré, on obtient

$$a^2 - 2a + 1 + b^2 = a^2 + b^2 - 2b + 1$$

d'où, après simplification, a = b. On a donc bien $\Re e(z) = \Im m(z)$ ce qui montre l'inclusion réciproque. Les deux ensembles sont bien égaux.

On peut également raisonner de manière géométrique en notant M, A et B les images de z, 1 et i. On a alors

 $|z-1| = |z-i| \Leftrightarrow AM = BM \Leftrightarrow M$ appartient à la médiatrice de [AB] $\Leftrightarrow M$ appartient à la droite $y = x \Leftrightarrow \Re e(z) = \Im m(z)$

Correction 19 On a
$$f^{-1}([0, +\infty[) = \mathbb{R}, f^{-1}(] - \infty, -3]) = \emptyset$$
 et $f^{-1}([-2, 4]) = \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$.

Correction 20 Le plus simple est de tracer le tableau de variations de la fonction. La fonction f est dérivable, on a $f': x \mapsto -\frac{2x}{(x^2+1)^2}$. On a donc :

x	0	1
f	1	$\frac{1}{2}$

On a donc:

$$f([0,1]) = \left[\frac{1}{2}, 1\right].$$

De même, on a:

x	-3	0	1
f	$\frac{1}{10}$	1	$\frac{1}{2}$

On en déduit que :

$$f([-3,1[) = \left[\frac{1}{10},1\right].$$

Enfin, pour déterminer l'image réciproque, on se donne $x \in \mathbb{R}$ et on raisonne par équivalence :

$$\frac{1}{4} < f(x) \le 1 \Leftrightarrow 1 \le 1 + x^2 < 4 \Leftrightarrow 0 \le x^2 \le 3 \Leftrightarrow -\sqrt{3} < x < \sqrt{3}.$$

On a donc l'égalité:

$$f^{-1}\left(\left[\frac{1}{4},1\right]\right) =]-\sqrt{3},\sqrt{3}[.$$

Correction 21

1. Soit $(a, b) \in \mathbb{R}^2$,

$$f_1(x,y) = (a,b) \Leftrightarrow \begin{cases} x+2y = a \\ x-y = b \end{cases} \Leftrightarrow \begin{cases} 3x = a+b \\ 3y = a-b \end{cases}$$

Ainsi (a, b) admet un unique antécédent par f_1 , on en déduit que f_1 est bijective.

- 2. Soit $a \in \mathbb{R}$, alors $f_2(a,0) = a$ donc f_2 est surjective. En revanche, $f_2(0,1) = f_2(0,-1)$ donc elle n'est pas injective.
- 3. Soit $k \in \mathbb{Z}$.
 - Si $k \ge 0$, alors $f_3(2k) = k$.
 - Si k < 0, alors $f_3(-2k-1) = k$

On a montré que f_3 était surjective. Montrons que f_3 est injective. Soit donc $(a, b) \in \mathbb{N}^2$ tel que $f_3(a) = f_3(b)$.

- Si a est pair, alors $f_3(a) = \frac{a}{2}$ donc $f_3(b) \ge 0$ ce qui impose b pair et $\frac{b}{2} = \frac{a}{2}$ donc a = b.
- De même, si a est impair, alors $f_3(a)$ est strictement négatif donc $f_3(b)$ aussi, on a donc a et b impairs d'où $\frac{a+1}{2} = \frac{b+1}{2}$ et a = b

La fonction f_3 est bien injective, elle est donc bijective.

Correction 22

- Montrons que f est injective : Soit $(x, y) \in [1, +\infty[^2 \text{ tel que } f(x) = f(y)]$. Alors $x^2 1 = y^2 1$ d'où $x = \pm y$. Or, x et y sont positifs, on a donc x = y et f est injective.
- Montrons que f est surjective : soit $y \in [0, +\infty[$. Montrons qu'il existe un réel $x \in [1, +\infty[$ tel que $y = f(x) = x^2 1$. On remarque que le réel $x = \sqrt{y+1}$ convient, on a donc bien f surjective.

On a montré que f est bijective.

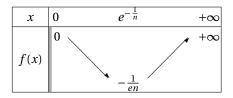
Correction 23 On va déterminer son tableau de variations. Pour cela, on remarque que f_n est dérivable sur \mathbb{R}_+^* et, pour tout $x \in \mathbb{R}_+^*$:

$$f'_n(x) = nx^{n-1}\ln(x) + x^{n-1} = x^{n-1}(n\ln(x) + 1).$$

On a donc:

$$f'_n(x) \ge 0 \Leftrightarrow n \ln(x) + 1 \ge 0 \Leftrightarrow x \ge e^{-\frac{1}{n}}$$
.

On a le tableau de variations suivant :



On en déduit que l'image de f_n est $\left[-\frac{1}{en}, +\infty\right[$.

Correction 24 La fonction f n'est pas surjective car 0 n'a pas d'antécédent dans \mathbb{N} , elle est injective car $f(n) = f(n') \Rightarrow n = n'$. La fonction g est surjective car pour tout $x \in \mathbb{N}$, x+1 est un antécédent par g. En revanche, elle n'est pas injective car g(0) = g(1) = 0. Soit $x \in \mathbb{N}^*$, on a $f \circ g(x) = f(x-1) = (x-1) + 1 = x$ et $f \circ g(0) = f(0) = 1$ donc

$$f \circ g(x) = \begin{cases} x & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

Soit maintenant $x \in \mathbb{N}$, alors $g \circ f(x) = g(x+1) = (x+1) - 1 = x$ donc $g \circ f = id_{\mathbb{N}}$.

Remarque. On a $g \circ f = id_{\mathbb{N}}$ mais $f \circ g \neq id_{\mathbb{N}}$ et ni f ni g n'est bijective.

Correction 25 Soit $(a,b) \in \mathbb{Z}^2$, résolvons le système f(n,m) = (a,b). On trouve $n = \frac{a+b}{2}$ et $m = \frac{a-b}{2}$. Si a et b ne sont pas de même parité, il n'existe pas de solution dans \mathbb{Z} donc f n'est pas surjective.

En revanche, si un antécédent existe (dans \mathbb{Z}^2), il est unique, égal à $\left(\frac{a+b}{2}, \frac{a-b}{2}\right)$ donc f est injective.

Correction 26 On se donne un élément $a \in \mathbb{R}$ et on cherche à résoudre l'équation f(x) = a avec $x \neq 2$. On raisonne par équivalence :

$$f(x) = a \Leftrightarrow \frac{3x+5}{x-2} = a \Leftrightarrow 3x+5 = a(x-2) \Leftrightarrow (a-3)x = 5+2a.$$

On voit, ici, que pour a=3, l'équation n'a pas de solution. De plus, si $a\neq 3$, l'équation a une unique solution : $x=\frac{5+2a}{a-3}$. On en déduit que f induit une bijection h de $\mathbb{R}\setminus\{2\}$ dans $\mathbb{R}\setminus\{3\}$ et l'expression de la bijection réciproque est

$$h^{-1}(x) = \frac{5+2x}{x-3}.$$

Correction 27

Soit $(a,b) \in (\mathbb{R}^{+*})^2$, on étudie l'équation f(x,y) = (a,b). On a donc

$$f(x,y) = (a,b) \Leftrightarrow \begin{cases} xy = a \\ \frac{x}{y} = b \end{cases} \Leftrightarrow \begin{cases} x^2 = ab \\ xy = a \end{cases} \Leftrightarrow \begin{cases} x = \sqrt{ab} \\ y = \sqrt{\frac{a}{b}} \end{cases}$$

On cherche (x, y) dans $(\mathbb{R}_+^*)^2$ donc (a, b) admet un unique antécédent dans $(\mathbb{R}_+^*)^2$ qui est $\left(\sqrt{ab}, \sqrt{\frac{a}{b}}\right)$. L'application réciproque est donc $f^{-1}: (x, y) \mapsto \left(\sqrt{xy}, \sqrt{\frac{x}{y}}\right)$.

Correction 28 Comme on demande l'application réciproque, on va chercher à résoudre l'équation f(z,z')=(a,b) pour un couple $(a,b)\in\mathbb{C}^2$ donné. On raisonne par équivalence :

$$\begin{cases} 2z + z' = a \\ 3z - z' = b \end{cases} \Leftrightarrow \begin{cases} 5z = a + b \\ 5z' = 3a - 2b \end{cases} \Leftrightarrow \begin{cases} z = \frac{a + b}{5} \\ z' = \frac{3a - 2b}{5} \end{cases}.$$

On a montré que l'équation possède une unique solution, l'application est donc bijective. De plus, l'unique antécédent de (a,b) est $\left(\frac{a+b}{5},\frac{3a-2b}{5}\right)$ donc

$$f^{-1}:(z,z')\mapsto \left(\frac{z+z'}{5},\frac{3z-2z'}{5}\right).$$

Correction 29

1. On suppose qu'il existe $a \in \mathbb{R}$ tel que h(a) = h(b). On a alors

$$(f(a),g(a)) = (f(b),g(b))$$

donc f(a) = f(b) et g(a) = g(b). Par injectivité de f, on a a = b donc h est injective. **Remarque.** l'injectivité d'une seule des deux fonctions suffit.

2. C'est faux. En effet, étant donné $(a,b) \in \mathbb{R}^2$, on sait qu'il existe $x \in \mathbb{R}$ tel que f(x) = a et $x' \in \mathbb{R}$ tel que g(x') = b mais il n'y a aucune raison pour que x = x'. Pour se convaincre, on peut considérer la fonction $h: x \mapsto (x,x)$. On a f = id = g et les deux fonctions sont surjectives (et même bijectives), pourtant l'élément (1,2) n'admet pas d'antécédent par h.

Correction 30

1. Soit $y \in f(A \cap B)$, alors il existe $x \in A \cap B$ tel que f(x) = y. On a $x \in A$ donc $y = f(x) \in f(A)$.

De même, $x \in B$ donc $y = f(x) \in f(B)$ d'où $y \in f(A) \cap f(B)$ ce qui montre l'inclusion

$$f(A \cap B) \subset f(A) \cap f(B)$$
.

L'inclusion réciproque est fausse en général.

Contre-exemple: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ et $A = \mathbb{R}_+^*, B = \mathbb{R}_-^*$. On a $A \cap B = \emptyset$ et $f(A) = f(B) = \mathbb{R}_+^*$ donc $f(A) \cap f(B) \neq f(A \cap B)$.

2. Soit $y \in f(A \cup B)$, alors il existe $x \in A \cup B$ tel que y = f(x). Si $x \in A$, alors $y = f(x) \in f(A)$. Si $x \in B$, alors $y = f(x) \in f(B)$. On a donc $y \in f(A) \cup f(B)$ d'où l'inclusion

$$f(A \cup B) \subset f(A) \cup f(B)$$
.

Soit maintenant $y \in f(A) \cup f(B)$, alors soit $y \in f(A)$, soit $y \in f(B)$. Si $y \in f(A)$, alors il existe $x \in A$ tel que y = f(x). Comme $A \subset A \cup B$, on a $x \in A \cup B$ donc $y \in f(A \cup B)$. De même, si $y \in f(B)$, alors il existe $x \in B$ tel que y = f(x) et comme $B \subset A \cup B$, on a $x \in A \cup B$ donc $y \in f(A \cup B)$. On a bien l'inclusion réciproque

$$f(A) \cup f(B) \subset f(A \cup B)$$

d'où l'égalité.

Correction 31

1. Soit $(a, b) \in \mathbb{R}^2$, résolvons le système f(x, y) = (a, b):

$$\begin{cases} x - 2y &= a \\ 2x + 3y &= b \end{cases} \Leftrightarrow \begin{cases} 7y &= b - 2a \\ 7x &= 3a + 2b \end{cases} \Leftrightarrow \begin{cases} x &= \frac{3a + 2b}{7} \\ y &= \frac{b - 2a}{7} \end{cases}.$$

Pour tout $(a, b) \in \mathbb{R}^2$, le système admet une unique solution dans \mathbb{R}^2 donc f est bijective.

2. On commence par remarquer que les éléments de Δ s'écrivent (x, 1-2x) pour $x \in \mathbb{R}$. Soit $(a, b) \in \mathbb{R}^2$. On raisonne par équivalence :

$$\begin{split} (a,b) \in f(\Delta) & \Leftrightarrow \exists (x,y) \in \Delta, f(x,y) = (a,b) \\ & \Leftrightarrow \exists (x,1-2x) \in \mathbb{R}^2, f(x,1-2x) = (a,b) \\ & \Leftrightarrow \exists x \in \mathbb{R}, (5x-2,3-4x) = (a,b) \end{split}$$

Le système

$$\begin{cases} 5x - 2 &= a \\ 3 - 4x &= b \end{cases}$$

est équivalent à

$$\begin{cases} 5x = a+2 \\ 4x = 3-b \end{cases}$$

Il admet une solution si et seulement si 4(a+2) = 5(3-b) ce qui se réécrit 4a+5b=7.

Par équivalence, on a montré:

$$f(\Delta) = \{(a, b) \in \mathbb{R}^2, 4a + 5b = 7\}.$$

Soit $(x, y) \in \mathbb{R}^2$. On raisonne par équivalence :

$$(x,y) \in f^{-1}(\Delta) \Leftrightarrow f(x,y) \in \Delta$$

$$\Leftrightarrow (x-2y,2x+3y) \in \Delta$$

$$\Leftrightarrow 2(x-2y) + (2x+3y) = 1$$

$$\Leftrightarrow 4x-y=1$$

Par équivalence, on a montré que :

$$f^{-1}(\Delta) = \{(x, y) \in \mathbb{R}^2, 4x - y = 1\}.$$

Correction 32

- 1. Il suffit de considérer l'application qui à x associe le singleton $\{x\}$. Elle est bien définie de E dans $\mathcal{P}(E)$ et $\{x\} = \{y\} \Leftrightarrow x = y$ donc elle est injective.
- 2. Si $A \in \text{Im}(f)$, alors, il existe $a \in E$ tel que f(a) = A. On a alors
 - Si $a \in A$, alors par définition de A, $a \notin f(a) = A$ ce qui est absurde.
 - Si $a \notin A$, alors, par définition de A, $a \in f(a)$. Or f(a) = A, on obtient, à nouveau, une contradiction.

Un tel élément a de E ne peut donc pas exister ce qui montre qu'une application de E dans $\mathcal{P}(E)$ ne peut pas être surjective, il n'existe donc pas de bijection entre E et $\mathcal{P}(E)$.

Correction 33 On raisonne par équivalence :

$$f$$
 surjective $\Leftrightarrow f(X) = Y$
 $\Leftrightarrow \forall B \subset Y, B \cap f(X) = B$
 $\Leftrightarrow \forall B \subset Y, f(f^{-1}(B)) = B \text{d'après l'exercice } 14$

On a donc bien l'équivalence souhaitée.