Devoir maison 2.

à rendre pour tous le 3 novembre

Exercice 1.

Soit $f: \mathbb{C}^* \to \mathbb{C}$ la fonction définie par $f(z) = z + \frac{1}{z}$.

- 1. f est-elle injective ?
- 2. Selon la valeur de $\omega \in \mathbb{C}$, déterminer le nombre de solutions de l'équation $f(z) = \omega$ d'inconnue $z \in \mathbb{C}^*$.

 f est-elle surjective ?
- 3. Déterminer l'image directe $f(\mathbb{U})$, où \mathbb{U} désigne l'ensemble des complexes de module 1.
- 4. Montrer que $f^{-1}[-2,2]\subset \mathbb{U}$. A-t-on l'égalité ?
- 5. Déterminer $f^{-1}\mathbb{R}$.
- 6. On note g la restriction de f à $I = [1, +\infty[$. Montrer que g est bijective de I sur J un ensemble à préciser.
- 7. Expliciter g^{-1} .

Exercice 2.

- 1. Résoudre $z = 1 \overline{z} + 2i$.
- 2. Déterminer l'image de la fonction $f: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & |z|+z \end{array} \right.$

Exercice 3.

Soit $n \in \mathbb{N}$. On considère la somme double $S_n = \sum_{k=0}^n \sum_{j=k}^n 2^j$.

- 1. Vérifier que $S_n = n2^{n+1} + 1$.
- 2. Démontrer que $S_n = \sum_{j=0}^{n} (j+1)2^{j}$.
- 3. En déduire que $\sum_{k=1}^{n} k2^{k-1} = (n-1)2^n + 1$.
- 4. Déterminer la valeur de la somme double $T_n = \sum_{i=1}^n \sum_{k=1}^{i+1} k 2^{k-1}$.