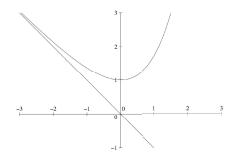
- 1. Donner une équivalent de h en $0, +\infty$ et $-\infty$.
 - On a $\lim_{x\to 0} = 1$ donc $h(x) \sim_0 1$.
 - On a $\lim_{x \to -\infty} \frac{h(x)}{-x} = \lim_{x \to -\infty} 1 \frac{e^x}{x} = 1$ donc $h(x) \sim_{-\infty} -x$.
 - On a $\lim_{x \to +\infty} \frac{h(x)}{e^x} = \lim_{x \to +\infty} 1 \frac{x}{e^x} = 1$ par croissance comparée donc $h(x) \sim_{+\infty} e^x$.
- 2. Étudier la fonction $h(x) = e^x x$, définie de \mathbb{R} dans \mathbb{R} . On précisera notamment si elle est dérivable, on dressera son tableau de variations ainsi qu'une allure de son graphe en précisant s'il possède ou non des symétries.

La fonction h est dérivable comme somme de fonctions dérivables et pour tout $x \in \mathbb{R}$, $h'(x) = e^x - 1$. Sa limite en $+\infty$ est $+\infty$ et $+\infty$ en $-\infty$ en utilisant les équivalents trouvés à la question 1.

On en déduit le tableau de variations suivant:

X	$-\infty$		0		$+\infty$
h'(x)		-	0	+	
	$+\infty$				$+\infty$
h(x)		\searrow		7	
			1		

On peut également remarquer que h(x) + x tend vers 0 en $-\infty$, par conséquent le graphe de h admet la droite y = -x pour asymptote en $-\infty$. On remarque que h n'est ni paire ni impaire, le graphe de f n'admet donc a priori aucune symétrie. Le graphe de h est donc:



3. Déduire de la question précédente que pour tout réel x non-nul, il existe un unique réel non-nul y différent de x tel que h(x) = h(y).

Soit x un réel non-nul, alors h(x) > 1. On a $h(x) \in]1, +\infty[$ et $h(\mathbb{R}_{-}^*) =]1, +\infty[$ donc il existe un antécédent y_1 de h(x) dans $h(\mathbb{R}_{-}^*) =]1, +\infty[$. La fonction $h|_{\mathbb{R}_{-}^*}$ est strictement décroissante donc injective, par conséquent, cet antécédent est unique. De même, $h(\mathbb{R}_{+}^*) =]1, +\infty[$ donc il existe un antécédent y_2 de h(x) dans \mathbb{R}_{+}^* . La fonction $h|_{\mathbb{R}_{+}^*}$ est strictement croissante donc injective, par conséquent, cet antécédent est unique. On a donc exactement deux solutions distinctes à l'équation h(x) = h(y) d'inconnue y. Il est clair que x est une des solutions, par conséquent:

Pour tout x non-nul, il existe un unique y non-nul distinct de x tel que h(x) = h(y)

Dans toute la suite, on note f(x) cet unique réel. On définit ainsi une fonction $f: \mathbb{R}^* \to \mathbb{R}^*$ qui à x associe f(x).

2

4. Déduire de l'étude de h faite à la question 1 que $(x < x') \Rightarrow (f(x) > f(x'))$. On différenciera trois cas: 0 < x < x', x < 0 < x' et x < x' < 0. En déduire le sens de variations de f sur \mathbb{R}^* .

Dans un premier temps, on remarque que par définition de f, pour tout réel x on a h(f(x)) = h(x). De plus, si x est strictement positif, alors f(x) est strictement négatif et réciproquement, si x < 0 alors f(x) > 0. En effet, en vertu de ce qui précède, pour tout réel x, les deux solutions de l'équation h(y) = h(x) (qui sont par définition x et f(x)), sont l'une strictement négative et l'autre strictement positive. En particulier, elles sont de signe opposé. On en déduit donc dans un premier temps que si x < 0 < x', alors f(x) > 0 > f(x') et en particulier,

$$\forall x < 0 < x', \ f(x) > f(x')$$

Soient maintenant x et x' deux réels tels que 0 < x < x'. Alors f(x) et f(x') sont strictement négatifs. De plus, h étant croissante sur $\mathbb{R}^{+\star}$, on a $h(x) \leq h(x')$ donc $h(f(x)) \leq h(f(x'))$. Or, h étant décroissante sur $\mathbb{R}^{-\star}$, on a $f(x') \leq f(x)$.

De la même manière, on montre que si x < x' < 0, alors f(x) > f(x'). On en déduit notamment que

La fonction f est une fonction strictement décroissante sur \mathbb{R}^{\star} .

5. Montrer que pour tout $x \in \mathbb{R}^*$, on a f(f(x)) = x.

Soit x un réel. Par définition, f(f(x)) est l'unique réel y différent de f(x) tel que h(y) = h(f(x)). Or on sait que h(f(x)) = h(x) et $f(x) \neq x$ donc nécessairement y = f(x) et

$$\forall x \in \mathbb{R}^*, \ f(f(x)) = x$$

En déduire que f est bijective. On précisera sa réciproque f^{-1} . Que peut-on en déduire sur le graphe de f?

On peut utiliser le résultat du cours: il existe une fonction qui composée à droite et à gauche de f donne l'identité, f est donc bijective et sa bijection réciproque est cette fonction (ici f) donc $f^{-1} = f$. Comme le graphe de f et de sa réciproque sont symétriques par rapport à la première bissectrice, on en déduit que

le graphe de f est symétrique par rapport à la première bissectrice

- 6. On veut retrouver les résultats de la question précédente avec des bijections induites.
 - (a) La fonction h est strictement croissante sur $]0, +\infty[$ donc injective et $h(]0, +\infty[) =]1, +\infty[$. Elle induit donc une bijection $\varphi = h|_{]0, +\infty[}^{]1, +\infty[}$.

De même, h est strictement décroissante sur $]-\infty, 0[$ donc injective et $h(]-\infty, 0[)=]1, +\infty[$ donc elle induit une bijection $\psi=h|_{]-\infty,0[}^{]1,+\infty[}$. On a bien $]-\infty,0[\cup]0,+\infty[=\mathbb{R}^*$ et φ définie sur un sous-intervalle de \mathbb{R}^+ .

J'ai vu beaucoup de " et prend ses valeurs dans" ce qui est très imprécis ! ça ne donne qu'une inclusion. Attention aussi à ne pas simplement dire que $\operatorname{Im}(h) = [1, +\infty[$, cela ne garantit pas que la corestriction soit surjective (il faut restreindre la corestriction à son image à elle, qui peut être différente de celle de h). Enfin, on évite les notations hybrides qui n'ont pas de sens du style $\operatorname{Im}(]0, +\infty[)$

- (b) Pour tout $x \in \mathbb{R}^*$, on a h(f(x)) = h(x) donc
 - Si x > 0, f(x) < 0, on a donc $\varphi(x) = \psi(f(x))$ ce qui est équivalent à $f(x) = \psi^{-1} \circ \varphi(x)$.
 - Si x < 0, f(x) > 0, on a donc $\psi(x) = \varphi(f(x))$ ce qui est équivalent à $f(x) = \varphi^{-1} \circ \psi(x)$.

Au final, on a

$$f(x) = \begin{cases} \psi^{-1} \circ \varphi(x) & \text{si } x > 0 \\ \varphi^{-1} \circ \psi(x) & \text{si } x < 0 \end{cases}$$

- (c) Soit x < y, on a trois cas possibles:
 - Si x < 0 < y, dans ce cas f(x) > 0 et f(y) < 0, on a donc f(y) < 0 < f(x).
 - Si 0 < x < y, alors f(x) > f(y) car $\psi^{-1} \circ \varphi$ est strictement décroissante en tant que composée d'une fonction strictement croissante et d'une fonction strictement décroissante.
 - Si x < y < 0, alors f(x) > f(y) car $\varphi^{-1} \circ \psi$ est strictement décroissante en tant que composée d'une fonction strictement croissante et d'une fonction strictement décroissante.

Dans tous les cas, on a f(x) > f(y) donc f est strictement décroissante.

- (d) Soit $x \in \mathbb{R}^*$. On raisonne par disjonction de cas.
 - Si x > 0, alors $f(x) = \psi^{-1} \circ \varphi(x)$ et f(x) < 0 donc $f(f(x)) = \varphi^{-1} \circ \psi(f(x))$. On a donc $f \circ f(x) = \varphi^{-1} \circ \psi \circ \psi^{-1} \circ \varphi(x) = x$.
 - Si x < 0, alors $f(x) = \varphi^{-1} \circ \psi(x)$ et f(x) > 0 donc $f(f(x)) = \psi^{-1} \circ \varphi(f(x))$. On a donc $f \circ f(x) = \psi^{-1} \circ \varphi \circ \varphi^{-1} \circ \psi(x) = x$.

Dans les deux cas, on a $f \circ f(x) = x$, pour tout $x \in \mathbb{R}^*$.

On admet que pour tout réel x positif, on a $e^x - e^{-x} \ge 2x$.

7. Montrer que pour tout réel x positif, $h(-x) \leq h(x)$.

On a admis que pour tout réel x positif, on a $e^x - e^{-x} \geqslant 2x$. On en déduit que

$$h(f(x)) \geqslant h(-x), \forall x \in \mathbb{R}^+$$

puisque $h(f(x)) = h(x), \forall x \in \mathbb{R}^*$ donc en particulier pour tout x strictement positif.

Supposons par l'absurde qu'il existe $x \in \mathbb{R}^+$ tel que f(x) > -x, alors par décroissance de h sur \mathbb{R}^- , on aurait h(f(x)) < h(-x) ce qui contredit ce que nous venons de montrer. On a donc

$$f(x) \leqslant -x, \forall x \in \mathbb{R}^+$$

En passant à la limite en $+\infty$, on obtient

$$\lim_{x \to +\infty} f(x) = -\infty$$

8. Montrer que pour tout réel x, $f(x) + h(x) = e^{f(x)}$. En déduire la limite de la fonction f + h en $+\infty$. Comment cela se traduit-il en termes de graphe de f et de h?

Par définition de f(x), on a $h(x) = h(f(x)) = e^{f(x)} - f(x)$ donc

$$\boxed{\forall x \in \mathbb{R}^*, \ f(x) + h(x) = e^{f(x)}}$$

En utilisant la question précédente, on en déduit que $\lim_{x\to +\infty} f(x) + h(x) = 0$. En terme de graphes, cela signifie que la distance entre le graphe de f et celui de -h tend vers 0 en $+\infty$. On dit qu'ils sont asymptotiques. Comme le graphe de -h est le symétrique de celui de h par rapport à l'axe des abscisses, cela nous donne l'allure du graphe de f au voisinage de $+\infty$:

le graphe de f est asymptotique au symétrique par rapport à l'axe (0_x) du graphe de h

9. En tenant compte de tous les renseignements obtenus (décroissance, symétrie, prolongement, limites), tracer le graphe de f.

On sait que f est décroissante sur \mathbb{R}^* et qu'elle se prolonge en posant f(0) = 0. Par ailleurs, lorsque x tend vers 0, alors h(x) tend vers 1 et l'unique réel non-nul distinct de x tel que h(x) = h(y) tend également vers 0 donc $\lim_{x\to 0} f(x) = 0$. On sait que le graphe de -h est asymptote en $+\infty$ à f. On obtient l'allure de f sur \mathbb{R}^+ , on en déduit le graphe de f par symétrie par rapport à la première bissectrice.

Correction du DS n 1